
HAL Id: hal-01629938
https://hal.science/hal-01629938v1

Submitted on 7 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposing graphs into a constant number of locally
irregular subgraphs

Julien Bensmail, Martin Merker, Carsten Thomassen

To cite this version:
Julien Bensmail, Martin Merker, Carsten Thomassen. Decomposing graphs into a constant num-
ber of locally irregular subgraphs. European Journal of Combinatorics, 2017, 60, pp.124 - 134.
�10.1016/j.ejc.2016.09.011�. �hal-01629938�

https://hal.science/hal-01629938v1
https://hal.archives-ouvertes.fr


Decomposing graphs into a constant number of locally

irregular subgraphs

Julien Bensmail∗ Martin Merker∗ Carsten Thomassen∗

Department of Applied Mathematics and Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark

September 21, 2016

Abstract

A graph is locally irregular if no two adjacent vertices have the same degree. The
irregular chromatic index χ′

irr(G) of a graph G is the smallest number of locally irregular
subgraphs needed to edge-decompose G. Not all graphs have such a decomposition, but
Baudon, Bensmail, Przyby lo, and Woźniak conjectured that ifG can be decomposed into
locally irregular subgraphs, then χ′

irr(G) ≤ 3. In support of this conjecture, Przyby lo
showed that χ′

irr(G) ≤ 3 holds whenever G has minimum degree at least 1010.
Here we prove that every bipartite graph G which is not an odd length path satisfies

χ′
irr(G) ≤ 10. This is the first general constant upper bound on the irregular chromatic

index of bipartite graphs. Combining this result with Przyby lo’s result, we show that
χ′
irr(G) ≤ 328 for every graph G which admits a decomposition into locally irregular

subgraphs. Finally, we show that χ′
irr(G) ≤ 2 for every 16-edge-connected bipartite

graph G.

1 Introduction

A graph G is locally irregular if any two of its adjacent vertices have distinct degrees. An
edge-weighting of G is called neighbour-sum-distinguishing, if for every two adjacent vertices
of G the sums of their incident weights are distinct. The least number k for which G admits
a neighbour-sum-distinguishing edge-weighting using weights 1, 2, . . . , k is denoted χ′Σ(G).

Karoński,  Luczak, and Thomason [5] made the following conjecture.

Conjecture 1.1 (1-2-3 Conjecture [5]). For every graph G with no component isomorphic
to K2, we have χ′Σ(G) ≤ 3.

This conjecture is equivalent to stating that a graph can be made locally irregular by
replacing some of its edges by two or three parallel edges. Although the 1-2-3 Conjecture
has received considerable attention in the last decade, it is still an open question. The best
result so far was shown by Kalkowski, Karoński, and Pfender [4] who proved χ′Σ(G) ≤ 5
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whenever G has no component isomorphic to K2. For more details, we refer the reader to
the survey by Seamone [8] on the 1-2-3 Conjecture and related problems.

If a graph G is regular, then G admits a neighbour-sum-distinguishing 2-edge-weighting
if and only if G can be edge-decomposed into two locally irregular subgraphs. Motivated
by this connection, Baudon, Bensmail, Przyby lo, and Woźniak [1] asked the more general
question when a graph can be edge-decomposed into locally irregular subgraphs, and how
many locally irregular subgraphs are needed. From now on, all graphs we consider are simple
and finite. A decomposition into locally irregular subgraphs can be regarded as an improper
edge-colouring where each colour class induces a locally irregular graph. We call such an
edge-colouring locally irregular. If G admits a locally irregular edge-colouring, then we call
G decomposable. For every decomposable graph G, we define the irregular chromatic index
of G, denoted by χ′irr(G), as the least number of colours in a locally irregular edge-colouring
of G. If G is not decomposable, then χ′irr(G) is not defined and we call G exceptional. The
following conjecture has a similar flavour to the 1-2-3 Conjecture.

Conjecture 1.2 ([1]). For every decomposable graph G, we have χ′irr(G) ≤ 3.

Every connected graph of even size can be decomposed into paths of length 2 and is thus
decomposable. Hence, all exceptional graphs have odd size and a complete characterisation
of exceptional graphs was given by Baudon, Bensmail, Przyby lo, and Woźniak [1]. To state
this characterisation, we first need to define a family T of graphs. The definition is recursive:

• The triangle K3 belongs to T .

• Every other graph in T can be constructed by 1) taking an auxiliary graph F being
either a path of even length or a path of odd length with a triangle glued to one of its
ends, then 2) choosing a graph G ∈ T containing a triangle with at least one vertex,
say v, of degree 2 in G, and finally 3) identifying v with a vertex of degree 1 of F .

In other words, the graphs in T are obtained by connecting a collection of triangles in a
tree-like fashion, using paths with certain lengths, depending on what elements these paths
connect. Let us point out that all graphs in T have maximum degree 3, have odd size, and
all of their cycles are triangles.

Theorem 1.3 ([1]). A connected graph is exceptional, if and only if it is (1) a path of odd
length, (2) a cycle of odd length, or (3) a member of T .

The number 3 in Conjecture 1.2 cannot be decreased to 2, since χ′irr(G) = 3 if G is
a complete graph or a cycle with length congruent to 2 modulo 4. Baudon, Bensmail,
Przyby lo, and Woźniak [1] verified Conjecture 1.2 for several classes of graphs such as trees,
complete graphs, and regular graphs with degree at least 107. Baudon, Bensmail, and
Sopena [2] showed that determining the irregular chromatic index of a graph is NP-complete
in general, and that, although infinitely many trees have irregular chromatic index 3, the
same problem for trees can be solved in linear time. More recently, Przyby lo [7] gave further
evidence for Conjecture 1.2 by verifying it for graphs of large minimum degree.

Theorem 1.4 ([7]). If a graph G has minimum degree at least 1010, then χ′irr(G) ≤ 3.

Despite this result, Conjecture 1.2 is still wide open, even in much weaker forms. Until
now it was not known whether there exists a constant c such that χ′irr(G) ≤ c holds for
every decomposable graph G. This was also an open problem when restricted to bipartite
graphs, see [1, 2, 3, 7].
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In this paper we show that χ′irr(G) ≤ 328 for every decomposable graph G, hence
providing the first constant upper bound on the irregular chromatic index. The proof
consists of the following three main steps.

• First, we show in Section 2 that we can restrict our attention to connected graphs of
even size. Notice that every connected graph of even size can be decomposed into paths
of length 2 and is thus decomposable. We show that every connected decomposable
graph G of odd size contains a locally irregular subgraph H such that all components
of G− E(H) have even size.

• In Section 3, we investigate connected bipartite graphs G of even size and show that
χ′irr(G) ≤ 9 holds in this case.

• Finally, in Section 4 we decompose a connected graph G of even size into a graph H of
minimum degree 1010 and a (2·1010+2)-degenerate graph D in which every component
has even size. We use Theorem 1.4 to decompose H into three locally irregular
subgraphs, and we further decompose D into 36 bipartite graphs with components of
even size. By using our result for bipartite graphs, this results in a decomposition
of G into 3 + 9 · 36 = 327 locally irregular subgraphs.

We have proved a constant upper bound on the irregular chromatic index, but there
is still a significant gap between our result and the conjectured value 3. We conclude
this article by showing in Section 5 that χ′irr(G) ≤ 2 for every 16-edge-connected bipartite
graph G.

2 Reduction to graphs of even size

In this section we show that the weakening of Conjecture 1.2, where 3 is replaced by a
larger number, can be reduced to connected graphs of even size. More precisely, given a
decomposable graph G with odd size, we can always remove a locally irregular subgraph H
from G, so that all components of G− E(H) have even size.

Lemma 2.1. Let G be a connected graph of odd size. For every vertex v ∈ V (G) there
exists an edge e incident with v such that every component of G− e has even size.

Proof. Let E(v) denote the set of edges incident with v. If e ∈ E(v) is not a cut-edge,
then G − e is connected and of even size. We may thus assume that all edges in E(v) are
cut-edges. For every e ∈ E(v), let He denote the component of G−e not containing v. Now

E(G) =
⋃

e∈E(v)

E(He) ∪ {e} .

Since |E(G)| is odd, there exists e ∈ E(v) for which |E(He) ∪ {e}| is odd. Thus, He is of
even size, and so is the other component of G− e.

Lemma 2.2. Let G be a connected graph of even size. For every vertex v ∈ V (G) there
exists a path P of length 2 containing v such that every component of G − E(P ) has even
size.
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Proof. Let e be an edge incident with v. Then G − e has precisely one component of odd
size, and e is incident with a vertex u of that component, possibly u = v. By Lemma 2.1
we can delete an edge f incident with u so that every component of G − {e, f} has even
size. Since e and f are incident, they form a path P of length 2.

Theorem 2.3. Let G be a connected graph of odd size. If G is decomposable, then G
contains a locally irregular subgraph H such that every component of G − E(H) has even
size.

Proof. We show that we can choose H to be isomorphic to K1,3 or to K1,3 in which two
edges are subdivided once. Assume that G is a graph for which we cannot delete one of
these two graphs so that every component in the resulting graph is of even size. If G has
maximum degree at most 2 and odd size, then G is exceptional. We can thus assume that G
has maximum degree at least 3. Notice that every vertex v of degree at least 3 in G must
be a cutvertex, since otherwise we can delete a claw (i.e. a subgraph isomorphic to K1,3)
centred at v.

First, suppose that G contains a cycle C. Let VC denote the vertices of C with degree
at least 3. For every v ∈ VC , let EC(v) denote the two edges of C that are incident with v.
If G−EC(v) is connected, then we can use Lemma 2.1 to delete one more edge at v so that
every component in the resulting graph has even size. We may thus assume that G−EC(v)
is disconnected. Let GC(v) denote the component of G−EC(v) containing v. If |E(GC(v))|
is odd, then we can again use Lemma 2.1 to delete one more edge at v to reach the desired
conclusion. Thus we may assume that |E(GC(v))| is even for all v ∈ VC . By Lemma 2.2,
there exists a path Pv of length 2 in GC(v) incident with v such that every component of
GC(v)− E(Pv) has even size. If v is the middle vertex of Pv, then Pv together with one of
the two edges in EC(v) forms a claw whose removal leaves a graph with only components
of even size. Thus, we may assume that v is an endvertex of Pv. If C has length at least
4, then let PC be a path of length 3 in C in which v has degree 2. The graph Pv ∪ PC is
locally irregular and it is easy to see that every component of G−E(Pv)−E(PC) has even
size.

Thus we may assume that all cycles of G have length 3. Suppose two cycles C1, C2

have a vertex v in common. Choose an edge ei incident with v in Ci for i ∈ {1, 2}. Now
G− {e1, e2} is connected, so we can apply Lemma 2.1 to delete one more edge at v so that
every component has even size.

So far, we have shown that triangles are the only cycles in G and that any two triangles
are disjoint. Now we show that there exists no induced claw in G. Suppose for a contra-
diction that v is a vertex of degree at least 3 which is the center of an induced claw in G.
If v is contained in a triangle, then we assume that the degree of v is at least 4. Since any
two triangles are disjoint, there exists at most one edge between the neighbours of v. By
Lemma 2.1, we can delete an edge uv so that every component of G′ = G − uv has even
size. By our choice of v, there exists two neighbours u1 and u2 of v such that {u, u1, u2}
is an independent set in G. Let G1 denote the component of odd size in G′ − u1v. If G1

contains v, then we can delete a third edge e at v by Lemma 2.1 such that all components of
G′−u1v− e have even size. Thus, we can assume that G1 contains u1 but not v. Similarly,
we may assume that the odd component G2 of G′−u2v contains u2 but not v. Now we can
apply Lemma 2.1 to delete an edge ei incident with ui in Gi such that every component of
Gi − ei has even size for i ∈ {1, 2}. Thus, every component of G′ − e1 − e2 − u1v − u2v
has even size. Since G1, G2 are distinct components of G − v, the graph we removed is
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isomorphic to K1,3 in which two edges are subdivided once. This contradicts our choice
of G, implying that G has no induced claw.

Thus we may assume that the maximum degree in G is 3 and that every vertex of
degree 3 is contained in a triangle. Since there are no other cycles, this implies that the
contraction of all triangles results in a tree of maximum degree 3. All that remains to show
is that the parities of the path lengths are the same as for the exceptional graphs. Let P be
a path joining a vertex of degree 1 in G with a triangle C. Let v be the common vertex of P
and C. Now P = GC(v) and since |E(GC(v))| is even, the length of P is even. Finally, let
P be a path joining two different triangles C1 and C2. If v1 and v2 denote the endvertices
of P , then

|E(G)| = |E(GC1(v1))|+ |E(GC2(v2))| − |E(P )| .

Since |E(GC1(v1))| and |E(GC2(v2))| are even and |E(G)| is odd, we get that |E(P )| must
also be odd. This shows that G is exceptional.

3 Locally irregular decompositions of bipartite graphs

We now focus on the irregular chromatic index of bipartite graphs. Recall that the only
bipartite exceptional graphs are odd length paths. In Corollary 3.10 we show χ′irr(G) ≤ 10
for every decomposable bipartite graph G, which is the first constant upper bound on χ′irr
for bipartite graphs.

If all vertices in one partition class of the bipartite graph G have even degree, while the
vertices in the other partition class have odd degree, then G is locally irregular. The idea of
the proof is to remove some well-behaved subgraphs from G to obtain a graph which is very
close to this structure. These well-behaved subgraphs include a particular kind of forest,
which is defined as follows.

Definition 3.1. We say a forest is balanced if it has a bipartition such that all vertices in
one of the partition classes have even degree.

Since a balanced forest cannot contain an odd length path as a component, it follows
from [1] that χ′irr(F ) ≤ 3 for every balanced forest F . The characterisation of trees T
with χ′irr(T ) ≤ 2 by Baudon, Bensmail, and Sopena [2] implies that χ′irr(F ) ≤ 2 holds for
balanced forests F . For the sake of completeness, we present a short proof of this special
case.

Lemma 3.2. If F is a balanced forest, then F has a 2-colouring of the edges, such that
each colour induces a locally irregular graph, and, for each vertex v in the partition class
with no odd degree vertex, all edges incident with v have the same colour. In particular,
χ′irr(F ) ≤ 2.

Proof. The proof is by induction on the number of edges of F . Clearly, we may assume
that F is connected. Let A and B be the partition classes of F , where all vertices in B
have even degree. We may assume that some vertex in A has even degree since otherwise
we can give all edges of F the same colour. Let v be a vertex in A of even degree q. We
delete v but keep the edges incident with v and let them go to q new vertices v1, v2, . . . , vq
each of degree 1. In other words, we split F into q new trees T1, T2, . . . , Tq such that the
union of their edges is the edge set of F . Each of the trees T1, T2, . . . , Tq is balanced and
has therefore a colouring of its edges in colours red and blue satisfying the conclusion of
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Lemma 3.2. This also gives a colouring of the edges of F in colours red and blue. By
switchings colours in some of the Ti, if necessary, we can ensure that the red degree of v
is 1. This shows that also F satisfies the conclusion of Lemma 3.2.

Apart from balanced forests we shall also delete a subgraph which is the union of a
path and an induced cycle. The following lemma gives an upper bound on the irregular
chromatic index in this case.

Lemma 3.3. Let G be a bipartite graph and let v be a vertex in G. If G is the edge-disjoint
union of an induced cycle C through v and a path P starting at v, then χ′irr(G) ≤ 4.

Proof. If the length of P is 0, then χ′irr(G) ≤ 3, so we may assume P has positive length.
First suppose that P has odd length. Let e denote the edge of P incident with v. It is easy
to see that χ′irr(C + e) ≤ 2. Thus,

χ′irr(G) ≤ χ′irr(C + e) + χ′irr(P − e) ≤ 2 + 2 = 4 .

Now suppose the length of P is even. If the length of C is divisible by 4, then

χ′irr(G) ≤ χ′irr(C) + χ′irr(P ) ≤ 2 + 2 = 4 .

We may therefore assume the length of C is congruent to 2 modulo 4. Let e denote the
edge of P incident with v, and let f denote the edge incident with e on P . It is easy to
check that if e, f and all edges of C incident to e or f are coloured 1, then this colouring
can be extended to a locally irregular {1, 2}-edge-colouring of C + e+ f . Thus, we have

χ′irr(G) ≤ χ′irr(C + e+ f) + χ′irr(P − e− f) ≤ 2 + 2 = 4 .

The following lemma is well-known.

Lemma 3.4. Let G be a connected graph and let S be a set of vertices. If S is even, then
there exists a collection of |S|2 edge-disjoint paths in G such that each vertex in S is an
endvertex of precisely one of them, and the union of these paths forms a forest.

Proof. Take a spanning tree T of G, and choose a collection of paths in T having the vertices
in S as endvertices, and for which the total length is minimal.

Corollary 3.5. If G is a connected bipartite graph of even size with partition classes A
and B, then there exists a balanced forest F with leaves in A such that in G − E(F ) all
vertices in A have even degree.

Proof. Notice that since G has even size, the number of vertices in A with odd degree is
even. The statement follows by choosing S to be the set of odd-degree vertices in A, and
F as the union of the paths given by Lemma 3.4.

Corollary 3.6. Let G be a connected bipartite graph with partition classes A and B, and
let v be a vertex in B. If all vertices in A have even degree, then there exists a balanced
forest F with leaves in B such that in G− E(F ) all vertices in B \ {v} have odd degree.

Proof. Choose S as the set of even-degree vertices in B. If |S| is odd, then we apply
Lemma 3.4 to the set S∪{v} or S \{v}, and if |S| is even we apply Lemma 3.4 to the set S.
The union of the paths is the desired balanced forest.
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Lemma 3.7. Let G be a bipartite graph with partition classes A and B, and let v be a
vertex in B. If all vertices in A have even degree and all vertices in B \{v} have odd degree,
then there exists a path P starting in v such that G− E(P ) is locally irregular.

Proof. If v has odd degree, then we can choose P as a path of length 0. If v has even degree
and G is not locally irregular, then v is adjacent to a vertex u1 of the same degree. We
choose the edge vu1 as the first edge of P and define G1 = G − vu1. If G1 is not locally
irregular, then u1 is adjacent to a neighbour u2 of the same degree. In this case we extend
P by the edge u1u2 and define G2 = G1 − u1u2. We continue like this, defining Gi+1 if
Gi is not locally irregular by deleting a conflict edge uiui+1. We claim that this process
stops with a locally irregular graph Gk and that the deleted edges form a path. Notice
that if Gi is not locally irregular, then ui is incident to a vertex ui+1 of the same degree.
Moreover, the degree of ui in Gi is d(v)− i, so the degrees d(ui) form a decreasing sequence.
In particular, ui 6= uj for i 6= j and ui 6= v for all i. Thus, eventually the process stops with
a locally irregular graph Gk and G− E(Gk) is a path of length k.

Lemma 3.8. Let G be a bipartite graph with partition classes A and B. If all vertices in
A have even degree, then χ′irr(G) ≤ 7.

Proof. We may assume that G is connected. By Lemma 3.6, we can delete a balanced
forest F with leaves in B such that in the resulting graph G′ there is at most one vertex of
even degree in B, say v. If v does not exist or if v is an isolated vertex in G′, then G′ is
locally irregular and χ′irr(G) ≤ χ′irr(F ) + χ′irr(G

′) ≤ 3. Thus, we may assume that v exists.
Notice that G′ might consist of several components, but every component not containing v
is locally irregular. Let H denote the component of G′ containing v.

If there exists no cycle through v in H, then all edges incident with v are cut-edges.
Let e be an edge incident with v, and let H1 and H2 denote the two components of H − e.
We may assume that H1 contains v. Notice that the degree of v in H1 and in H2 + e is odd,
while the degrees of its neighbours are even. It follows that both H1 and H2 + e are locally
irregular and hence

χ′irr(G) ≤ χ′irr(F ) + χ′irr(H1) + χ′irr(H2 + e) ≤ 4 .

Thus, we may assume that there exists a cycle going through v. Let C be a cycle
through v of shortest length and set H ′ = H − E(C). Since the parities of the degrees
remain unchanged, the vertex v is still the only vertex in B that could have positive even
degree in H ′, while all vertices in A have even degree. By Lemma 3.7, there exists a path P
in H ′ starting in v such that H ′ − E(P ) is locally irregular. Now χ′irr(C ∪ P ) ≤ 4 by
Lemma 3.3 and we have

χ′irr(G) ≤ χ′irr(F ) + χ′irr(H
′ − E(P )) + χ′irr(C ∪ P ) ≤ 2 + 1 + 4 = 7 .

We are now ready for the main result of this section.

Theorem 3.9. If G is a connected bipartite graph of even size, then χ′irr(G) ≤ 9.

Proof. By Lemma 3.5, we can delete a balanced forest F of G so that the degrees in A
in the resulting graph G′ are even. By Lemma 3.2 we have χ′irr(F ) ≤ 2, and χ′irr(G

′) ≤ 7
follows from Lemma 3.8. Thus χ′irr(G) ≤ χ′irr(F ) + χ′irr(G

′) ≤ 2 + 7 = 9.
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Corollary 3.10. If G is a connected bipartite graph and not an odd length path, then
χ′irr(G) ≤ 10.

Proof. Since paths of odd lengths are the only exceptional bipartite graphs, this follows
immediately from Theorems 2.3 and 3.9.

4 Locally irregular decompositions of degenerate graphs

Here we apply the result from the previous section by decomposing degenerate graphs into
bipartite graphs of even size. We show that every connected d-degenerate graph of even
size can be decomposed into at most dlog2(d+ 1)e+ 1 bipartite graphs whose components
all have even size. The proof makes repeated use of the following easy lemma.

Lemma 4.1. If G is a graph with a vertex v such that G− v is bipartite, then there exists
a set E of at most bd(v)

2 c edges incident with v such that G− E is bipartite.

Proof. Since G − v is bipartite, there exists a partition class containing at most bd(v)
2 c

neighbours of v. Deleting all edges in G from v to these vertices results in a bipartite
graph.

Lemma 4.2. Let d be an even natural number, ` ≥ dlog2 de+1, and v a vertex of degree d in
a graph G. If G−v is the edge-disjoint union of ` bipartite graphs in which every component
has even size, then so is G.

Proof. Notice that it suffices to prove the statement for ` = dlog2 de+ 1. We use induction
on d. In the case d = 2 we colour G − v with colours 1 and 2 so that the monochromatic
components are bipartite subgraphs of even size. Let u1, u2 be the neighbours of v in G. If
u1 and u2 are not connected by an odd length path in colour 1, then colouring both vu1

and vu2 with colour 1 will keep all monochromatic components bipartite and of even size.
Thus, we may assume that u1 and u2 are connected by a monochromatic path of odd length
in each colour. Let P = v0v1 . . . vk be a monochromatic path of odd length from u1 to u2

in colour 2, so v0 = u1 and vk = u2. Suppose that for every i ∈ {0, . . . , k − 1} there exists
an even length path in colour 1 from vi to vi+1. By concatenating them, we get a walk of
even length from v0 to vk. Since there is also a path of odd length joining v0 and vk in
colour 1, this contradicts the assumption that the subgraph in colour 1 is bipartite. Thus,
there exists i ∈ {0, . . . , k − 1} for which there is no even length path in colour 1 from vi
to vi+1. Choose i minimal with this property. We change the colour of vivi+1 to colour 1.
By the choice of i, all monochromatic components in colour 1 are still bipartite. Now there
exists precisely one monochromatic component of odd size in each colour. Notice that the
monochromatic component of odd size in colour 1 is incident with both u1 and u2, while
the one in colour 2 is incident with at least one of u1 and u2. Thus, we can colour one of the
edges at v with colour 2 so that all monochromatic components in colour 2 are bipartite and
of even size. Colouring the other edge at v with colour 1 yields the desired decomposition.

Now suppose d ≥ 4 and that the statement is true for all smaller even numbers. Set
d′ = d

2 if d is divisible by 4, and d′ = d
2 + 1 otherwise. Notice that d′ is even and dlog2 de =

dlog2 d
′e + 1. Let H be the collection of dlog2 de + 1 bipartite graphs in G − v with even

component sizes. Choose H ∈ H and denote by GH the graph we get by adding v and all its
incident edges to H. By Lemma 4.1, there exists a set E of d′ edges incident with v such that
GH −E is bipartite. Since d−d′ is even, all components of GH −E have even size. We add
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the edges in E to the union of the graphs in H\{H} to obtain a graph G′. By the induction
hypothesis, we can decompose G′ into dlog2 d

′e+ 1 bipartite graphs where every component
has even size. Together with GH −E, this is a collection of dlog2 d

′e+ 2 = dlog2 de+ 1 such
graphs.

Notice that in general the bound dlog2 de + 1 cannot be decreased by more than 1.
The complete graph Kd+1 is d-degenerate and at least dlog2(d + 1)e bipartite graphs are
needed to decompose it. Moreover, we might need more bipartite graphs to achieve that all
components have even size. For example, the complete graph K4 can be decomposed into
two bipartite graphs, but three bipartite graphs are necessary to achieve even component
sizes.

Theorem 4.3. Let d ≥ 1 be a natural number. If G is a d-degenerate graph in which every
component has even size, then G can be decomposed into dlog2(d+ 1)e+ 1 bipartite graphs
in which all components have even size.

Proof. Suppose not, and let G be a smallest counterexample. Clearly G is connected.

Claim. If v is a cutvertex of G, then v is adjacent to precisely one vertex u of degree 1 and
G− u− v is connected.

To prove the claim, suppose there exists a 1-separation {V1, V2} of G with V1∩V2 = {v}
and |V1|, |V2| ≥ 3. If G[V1] and G[V2] have even size, then we can decompose G[V1] and
G[V2] by induction. If G[V1] and G[V2] have odd size, then we construct two new graphs
H1 and H2 by adding a new vertex vi to G[Vi] together with the single edge vvi. Since |V1|,
|V2| ≥ 3, both H1 and H2 are smaller than G so we can decompose them by induction. We
think of the decomposition as an edge-colouring, and we permute colours so that the edges
vvi receive the same colour in both subgraphs. This corresponds to a colouring of G in
which every monochromatic component is bipartite and of even size. This proves the claim.

In particular, every vertex is adjacent to at most one vertex of degree 1. Among all
vertices of degree greater than 1, let v be one of minimal degree. Since G is d-degenerate,
we have d(v) ≤ d+1. Suppose first that d(v) is even. Since G is a smallest counterexample,
we can decompose G − v into dlog2(d + 1)e + 1 bipartite graphs in which all components
have even size. By Lemma 4.2, this gives rise to the desired decomposition of G.

We may thus assume that d(v) is odd. Set d′ = 1
2(d(v) − 1) if d(v) is congruent to

1 modulo 4, and d′ = 1
2(d(v) + 1) otherwise. Notice that d′ is even and dlog2(d + 1)e ≥

dlog2 d
′e + 1. Let u be a neighbour of v of degree greater than 1. If G − v has an isolated

vertex, then we let w denote that vertex. Otherwise we add an isolated vertex w. The
graph G− v+ uw has even size, so we can decompose it as in the previous case. This gives
us a decomposition of G− v into dlog2(d+ 1)e+ 1 bipartite graphs in which all components
are of even size, apart from one component of odd size which is incident with u. Let H be
the bipartite subgraph of odd size, and let Ho be its component of odd size. Let GH be the
graph we get by adding v and all its incident edges to H. By Lemma 4.1, there exists a
set E of precisely d′ edges incident with v such that GH − E is bipartite. We may assume
that E does not contain all edges that are incident with Ho. Since d(v) − d′ is odd, all
components of GH − E have even size. We add the edges in E to G− v − E(H) to obtain
a graph G′. Notice that G − v − E(H) is the union of dlog2(d + 1)e bipartite graphs with
components of even size. By Lemma 4.2, we can decompose G′ into dlog2(d+ 1)e bipartite
graphs where every component has even size. Together with GH −E, this is a collection of
dlog2(d+ 1)e+ 1 such graphs.

9



Now we can use our result on bipartite graphs to get an upper bound on the irregular
chromatic index of d-degenerate graphs.

Corollary 4.4. If G is a connected d-degenerate graph of even size, then

χ′irr(G) ≤ 9(dlog2(d+ 1)e+ 1) .

Proof. This follows immediately from Theorems 3.9 and 4.3.

To get a constant upper bound for decomposable graphs in general, we combine Corol-
lary 4.4 with Przyby lo’s result on graphs with large minimum degree. For this purpose, we
need the following lemma.

Lemma 4.5. Let d be a natural number. If G is a connected graph of even size, then G can
be decomposed into two graphs D and H such that D is 2d-degenerate, every component of
D has even size, and the minimum degree of H is at least d− 1.

Proof. Start with two graphs D and H having the same vertex set as G, and E(D) = ∅ and
E(H) = E(G). As long as H has a vertex v with degree at most 2d, remove all edges of H
incident with v and add them to D, and delete the isolated vertex v from H. Once this
process stops, the graph D is 2d-degenerate and H has minimum degree at least 2d + 1.
Every component C of D with odd size intersects H; let v(C) be a vertex in the intersection.
Notice that v(C) 6= v(C ′) for different components C and C ′ of D. We choose an almost-
balanced orientation of H, i.e. an orientation where the out-degree and in-degree at every
vertex differ by at most 1. For each component C of odd size, we choose an out-edge e(C)
at v(C) in H. We remove e(C) from H and add it to D. Since every vertex in H might
lose all of its in-edges but at most one out-edge, the minimum degree in H remains at least
d − 1. The edges we add to D in this step induce a 2-degenerate subgraph, so D will still
be 2d-degenerate. Moreover, every component of odd size gains an edge and possibly gets
joined to other components of even size. In any case, all components of D now have even
size.

Now we are ready for the proof of our main result.

Theorem 4.6. If G is a decomposable graph, then χ′irr(G) ≤ 328 .

Proof. By Theorem 2.3 it suffices to show that χ′irr(G) ≤ 327 holds for connected graphs G
of even size. By Lemma 4.5, we can decompose G into two graphs D and H so that D is
(2 · 1010 + 2)-degenerate, every component of D has even size, and the minimum degree of
H is at least 1010. By Theorem 1.4, we have χ′irr(H) ≤ 3 and by Corollary 4.4 we have

χ′irr(D) ≤ 9(dlog2(2 · 1010 + 3)e+ 1) = 324 .

Hence, χ′irr(G) ≤ χ′irr(H) + χ′irr(D) ≤ 3 + 324 = 327.

5 Decomposing highly edge-connected bipartite graphs

Our bound on the irregular chromatic index of decomposable graphs in Theorem 4.6, de-
pends partly on the irregular chromatic index of bipartite graphs. In particular, decreasing
our bound in Theorem 3.9 from 9 down to 3 (as suggested by Conjecture 1.2) would already
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yield an improvement on the constant in Theorem 4.6. The restriction of Conjecture 1.2 to
bipartite graphs, however, appears to be a surprisingly non-trivial problem.

Another interesting question concerning bipartite graphs and locally irregular decom-
positions is about whether the family of bipartite graphs with irregular chromatic index at
most 2 admits an “easy” characterisation. It is legitimate to raise this question, as trees ad-
mit such a characterisation, see [2]. We also note that a similar study of bipartite graphs G
satisfying χ′Σ(G) ≤ 2 was recently conducted by Thomassen, Wu, and Zhang [11], resulting
in such a characterisation. So far all bipartite graphs G with irregular chromatic index 3
we know have minimum degree 1 or 2. It could be the case that minimum degree 3 already
suffices to push the irregular chromatic index down to 2 for bipartite graphs. Notice that
d-regular bipartite graphs G with d ≥ 3 do indeed satisfy χ′irr(G) = 2, as was shown in [1].

Question 5.1. Does there exist a bipartite graph G with minimum degree at least 3 and
χ′irr(G) > 2?

In this section we prove that 16-edge-connected bipartite graphs have irregular chromatic
index at most 2. Our main tool is the following result on factors modulo k in bipartite
graphs, due to Thomassen [10]. That result is based on the proof of the weak version of
Jaeger’s Circular Flow Conjecture by Thomassen [9]. His proof gave a quadratic bound on
the edge-connectivity, which was improved to a linear bound by Lovász, Thomassen, Wu,
and Zhang [6].

Theorem 5.2 ([10]). Let k be a natural number, and let G be a (3k − 2)-edge-connected
bipartite graph with partition classes A and B. If f : V (G)→ Z is a function satisfying∑

v∈A
f(v) ≡

∑
v∈B

f(v) (mod k) ,

then G has a spanning subgraph H with d(v,H) ≡ f(v) (mod k) for every v ∈ V (G).

Theorem 1 in [9] assumes edge-connectivity 3k − 3. But this holds only for k odd. For
k even it should be 3k − 2, see page 11 in [6], and below we shall apply Theorem 5.2 for
k = 6.

Theorem 5.3. For every 16-edge-connected bipartite graph G, we have χ′irr(G) ≤ 2.

Proof. Let A and B denote the partition classes of G. Since G is 16-edge-connected, we
have |A|, |B| ≥ 16.

Suppose first that every vertex has at most one non-neighbour in the other partition
class. Let us assume that |A| ≥ |B|. If |A| − |B| ≥ 2, then G is already locally irregular.
If |A| − |B| ≤ 1, then let H be a subgraph of G consisting of two vertices in B and all
edges incident with one of these vertices. Clearly H is locally irregular. Let H ′ denote the
subgraph G−E(H). For every v ∈ A, we have d(v,H ′) ≤ |B|−2 ≤ |A|−2. For every v ∈ B,
we have d(v,H ′) ≥ |A| − 1 (or d(v,H ′) = 0), so H ′ is locally irregular and χ′irr(G) ≤ 2.

Now suppose that G contains a vertex u with at least two non-neighbours in the other
partition class. We may assume u ∈ A. We denote by A0 and B0 the subsets of A and
B consisting of the vertices of even degree, and by A1 and B1, respectively, the subsets
consisting of the vertices of odd degree. For any function g : V (G)→ Z, we define σA(g) =∑

v∈A g(v) and σB(g) =
∑

v∈B g(v). If G is (3k − 2)-edge-connected and σA(g) ≡ σB(g)
(mod k), then, by Theorem 5.2, there exists a subgraph H of G with d(v,H) ≡ g(v) (mod k)
for all v ∈ V (G). We apply this for k = 6. We assign to each vertex v ∈ V (G) an integer
f(v) in the following way:
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• for every v ∈ A0, we set f(v) = 0;

• for every v ∈ A1, we set f(v) = 1;

• for every v ∈ B0, we set f(v) = 3;

• for every v ∈ B1, we set f(v) = 2.

If σA(f) ≡ σB(f) (mod 6), then we apply Theorem 5.2 to find a subgraph H of G with
d(v,H) ≡ f(v) (mod 6) for all v ∈ V (G). Since the degrees of the vertices in A have different
residues modulo 6 than the degrees of the vertices in B, the graph H is locally irregular.
Let H ′ denote the subgraph G − E(H). The vertices in A in H ′ have even degrees, while
the vertices in B have odd degrees. Thus, also H ′ is locally irregular and χ′irr(G) ≤ 2.

We may therefore assume σA(f) 6≡ σB(f) (mod 6). First, suppose σA(f) ≡ σB(f)
(mod 2). Then σA(f) ≡ σB(f) + 2 (mod 6) or σA(f) ≡ σB(f) + 4 (mod 6). Let x and y be
two different vertices in B. We define two new functions f1 and f2 by setting f1(x) = f2(x) =
f(x)+2, f2(y) = f(y)+2 and setting f1(v) = f(v) for all v ∈ V (G)\{x} and f2(v) = f(v) for
all v ∈ V (G) \{x, y}. Now σA(f1) = σA(f2) = σA(f) and σB(f2) = σB(f1) + 2 = σB(f) + 4.
Thus, one of the functions f1 or f2 satisfies the condition in Theorem 5.2 and the same
argument as above yields a decomposition into two locally irregular subgraphs.

Finally, suppose σA(f) 6≡ σB(f) (mod 2). We define a new function g by setting g(u) =
1 − f(u), where u is the special vertex with at least two non-neighbours in B. We set
g(v) = f(v) for all v ∈ A and all v ∈ B that are non-neighbours of u. If v ∈ B is a
neighbour of u with d(v) − f(v) 6≡ d(u) − g(u) (mod 6), then we also set g(v) = f(v). In
the case that v ∈ B is a neighbour of u with d(v) − f(v) ≡ d(u) − g(u) (mod 6), we set
g(v) = f(v) + 2. Now we have σA(g) ≡ σA(f) + 1 (mod 2) and σB(g) ≡ σB(f) (mod 2), so
σA(g) ≡ σB(g) (mod 2).

If σA(g) ≡ σB(g) (mod 6), then we use Theorem 5.2 for the function g. Let H be the
subgraph of G with d(v,H) ≡ g(v) (mod 6) for all v ∈ V (G). Notice that g(v) ∈ {0, 1} for
v ∈ A and g(v) ∈ {2, 3, 4, 5} for v ∈ B, so H is locally irregular. Let H ′ denote the subgraph
G−E(H). Notice that in H ′ all vertices in B have odd degree, while u is the only vertex in A
of odd degree. Notice that for every neighbour v of u we have d(v,G)−g(v) 6≡ d(u,G)−g(u)
(mod 6) by definition of g, so u is not adjacent to a vertex of the same degree in H ′. Thus,
also H ′ is locally irregular.

If σA(g) 6≡ σB(g) (mod 6), then we define functions g1 and g2 as before by adding 2
to the values of one or two vertices in B, and use Theorem 5.2 for the function g1 or g2.
This time we only choose vertices that are non-neighbours of u, to make sure the value at
a vertex never increases by more than 2 compared to its original f -value. As before, this
yields a decomposition of G into two locally irregular subgraphs.
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