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An introduction to Lorenzen’s “Algebraic and

logistic investigations on free lattices” (1951)

Thierry Coquand Stefan Neuwirth

Lorenzen’s “Algebraische und logistische Untersuchungen über freie Verbände”
appeared in 1951 in The journal of symbolic logic. These “Investigations” have
immediately been recognised as a landmark in the history of infinitary proof theory,
but their approach and method of proof have not been incorporated into the corpus
of proof theory.1 We propose a translation (Lorenzen 2017) and this introduction
with the intent of giving a new impetus to their reception. We also propose a
translation of a preliminary manuscript as an appendix (see section 2).

The “Investigations” are best known for providing a constructive proof of con-
sistency for ramified type theory without axiom of reducibility. They do so by
showing that it is a part of a trivially consistent “inductive calculus” that de-
scribes our knowledge of arithmetic without detour. The proof resorts only to the
inductive definition of formulas and theorems.

They propose furthermore a definition of a semilattice, of a distributive lattice,
of a pseudocomplemented semilattice, and of a countably complete boolean lattice
as deductive calculuses, and show how to present them for constructing the re-
spective free object over a given preordered set. They illustrate that lattice theory
is a bridge between algebra and logic.

The preliminary manuscript contains already the main ideas and applies them
to a constructive proof of consistency for elementary number theory.

1. The beginnings. In 1938, Paul Lorenzen defends his Ph.D. thesis under
the supervision of Helmut Hasse at Göttingen, an “Abstract foundation of the
multiplicative ideal theory”, i.e. a foundation of divisibility theory upon the theory
of cancellative monoids. He is in a process of becoming more and more aware that
lattice theory is the right framework for his research. Lorenzen (1939a, footnote on
page 536) thinks of understanding a system of ideals as a lattice, with a reference
to Köthe 1937; in the definition of a semilattice-ordered monoid on page 544, he
credits Dedekind’s two seminal articles of 1897 and 1900 for developing the concept

1More precisely, Lorenzen proves the admissibility of cut by double induction, on the cut
formula and on the complexity of the derivations, without using any ordinal assignment, contrary
to the presentation of cut elimination in most standard texts on proof theory.
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of lattice. On 6 July 1938 he reports to Hasse: “Momentarily, I am at making a
lattice-theoretic excerpt for Köthe.”2 He also reviews several articles on this subject
for the Zentralblatt, Birkhoff 1938 to start with, then Klein 1939 and George 1939
which both introduce semilattices, Whitman 1941 which studies free lattices. He
also knows about the representation theorem for boolean algebras in Stone 1936
and he discusses the axioms for the arithmetic of real numbers in Tarski 1937 with
Heinrich Scholz.3

In 1939, he becomes assistant to Wolfgang Krull at Bonn. During World War II,
he serves first as a soldier and then, from 1942 on, as a teacher at the naval
college Wesermünde. He devotes his “off-duty evenings all alone on my own”4

to mathematics with the goal of habilitating. On 25 April 1944, he writes to his
advisor that “[. . . ] it became clear to me—about 4 years ago—that an ideal system
is nothing but a semilattice.”5

He will later recall a talk by Gerhard Gentzen on the consistency of elementary
number theory in 1937 or 1938 as a trigger for his discovery that the reformulation
of ideal theory in lattice-theoretic terms reveals that his “algebraic works [. . . ] were
concerned with a problem that had formally the same structure as the problem of
consistency of the classical calculus of logic”;6 compare also his letter to Eckart
Menzler-Trott (2001, page 260). This explains the title of Lorenzen’s article.

In his letter of 13 March 1944 he announces: “Subsequently to an algebraic
investigation of orthocomplemented semilattices, I am now trying to get out the
connection of these questions with the consistency of classical logic. [. . . ] actually I
am much more interested into the algebraic side of proof theory than into the purely
logical.”7 The concept of “orthocomplementation” (see Lorenzen 2017, page 5 for
the definition; the terminology might be adapted from Stone 1936, where it has a

2„Augenblicklich bin ich dabei, für Köthe einen verbandstheoretischen Exzerpt zu machen.“
(Helmut-Hasse-Nachlass, Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod.
Ms. H. Hasse 1:1022.)

3See the collection of documents grouped together by Scholz under the title “Paul Loren-

zen: Gruppentheoretische Charakterisierung der reellen Zahlen” and deposited at the Biblio-
thek des Fachbereichs Mathematik und Informatik of the Westfälische Wilhelms-Universität
Münster, as well as several letters filed in its Scholz-Archiv, the earliest dated 7 April 1944,
http://www.uni-muenster.de/IVV5WS/ScholzWiki/doku.php?id=scans:blogs:hb-01-1040, ac-
cessed 14 March 2017.

4„ganz allein auf mich gestellt – [. . . ] die dienstfreien Abende“ (carbon copy of a letter to
Krull, 13 March 1944, Paul-Lorenzen-Nachlass, Philosophisches Archiv, Universität Konstanz,
PL 1-1-131.)

5„mir vor etwa 4 Jahren – [. . . ] klar wurde, daß ein Idealsystem nichts anderes als ein Halb-
verband ist.“ (Carbon copy of a letter to Krull, PL 1-1-132.)

6„[. . . ] meine algebraischen Arbeiten [. . . ] mit einem Problem beschäftigt waren, das formal

die gleiche Struktur hatte wie das Problem der Widerspruchsfreiheit des klassischen Logikkalküls“
(letter to Carl Friedrich Gethmann 1991, page 76).

7„Im Anschluß an eine algebraische Untersuchung über orthokomplementäre Halbverbände
versuche ich jetzt, den Zusammenhang dieser Fragen mit der Widerspruchsfreiheit der klassischen
Logik herauszubekommen. [. . . ] ich selber eigentlich viel mehr an der algebraischen Seite der
Beweistheorie interessiert bin als an der rein logischen.“ (PL 1-1-131.)
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Hilbert space background; today one says “pseudocomplementation”) must have
been motivated by logical negation from the beginning. On the one hand, such
lattices correspond to the calculus of derivations considered by Gentzen (1936,
section IV), who shows that a given derivation can be transformed into a derivation
“in which the connectives ∨, ∃ and ⊃ no longer occur” and provides a proof of
consistency for this calculus (see section 2 below). On the other hand, note that
Lorenzen reviewed Ogasawara 1939 for the Zentralblatt.

2. The 1944 manuscript. The result of this investigation can be found in “Ein
halbordnungstheoretischer Widerspruchsfreiheitsbeweis”8, for which we provide a
translation on pages 18-25.

This manuscript renews the relationship between logic and lattice theory:
whereas boolean algebras were originally conceived for modeling the classical cal-
culus of propositions, and Heyting algebras for the intuitionistic one, here logic
comes at the rescue of lattice theory for studying countably complete pseudocom-
plemented semilattices. They are described as deductive calculuses of their own,
without any reference to a larger formal framework:9 this conception dates back
to the “systems of sentences” of Hertz (1922, 1923). The rules of the calculus con-
struct the free countably complete pseudocomplemented semilattice over a given
preordered set by taking the inequalities in the set as axioms, by defining induct-
ively formal meets and formal negations, and by introducing inequalities between
the formal elements. One of the introduction rules, stating that

if c 6 a1, c 6 a2, . . . , then c 6
∧

M , where M = {a1, a2, . . .}

(rule c on page 20, compare rule [3.9] in Lorenzen 2017, page 12), stands out: it has
an infinity of premisses. It is in fact an instance of Hilbert’s ω-rule (see Sundholm
1983, Feferman 1986).

The proof that the calculus thus defined is a countably complete pseudocomple-
mented semilattice turns out to be, as Lorenzen realises a posteriori, an instance
of the strategy of Gentzen’s dissertation (1935, IV, § 3) for proving the consist-
ency of elementary number theory without complete induction: the introduction
rules introduce inequalities for formal elements of increasing complexity, i.e. no
inequality can result from a detour; then the corresponding elimination rules are
shown to hold by an induction on the complexity of the introduced inequality,
and at last transitivity of the preorder, i.e. the cut rule, is established by the same
method. In Lorenzen’s later terminology, one would say that these rules are shown
to be “admissible” and can be considered as resulting from an “inversion principle”.
Note that the inductions used here are the ones accurately described by Jacques

8“A preorder-theoretic proof of consistency”, Oskar-Becker-Nachlass, Philosophisches Archiv,
Universität Konstanz, OB 5-3b-5.

9In contradistinction to the “consequence relation” of Tarski (1930) which presupposes set
theory.
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Herbrand (1930, pages 4–5) after having been emphasised by David Hilbert (1928,
page 76), to be called “formula induction” and “theorem induction” by Lorenzen:10

the first proceeds along the construction of formulas starting from prime formulas
through rules; the second proceeds along the construction of theorems starting
from prime theorems through deduction rules.

In other words, Lorenzen starts with a preordered set P, constructs the free
countably complete pseudocomplemented semilattice K over P and emphasises
conservativity, i.e. that no more inequalities come to hold among elements of P
viewed as a subset of K than the ones that have been holding before.11

Then the consistency of elementary number theory with complete induction is
established in § 3 by constructing the free countably complete pseudocomplemen-
ted semilattice over its “prime formulas”, i.e. the numerical formulas, viewed as a
set preordered by material implication.

There are common points and differences with respect to the strategy developed
by Gentzen for proving the consistency of elementary number theory with complete
induction. In his first proof, submitted in August 1935, withdrawn and finally
published posthumously by Bernays in 1974 (after its translation in Szabo 1969),
he defines a concept of reduction process for a sequent and shows that such a
process may be specified for every derivable sequent but not for the contradictory
sequent → 1 = 2. Let us emphasise two aspects of this concept.

• If the succedent of the sequent has the form ∀x F (x), the next step of the
reduction process consists in replacing it by F (n), where n is a number to
be chosen freely.

• A reduction process is defined as the specification of a sequence of steps for
all possible free choices, with the requirement that the reduction terminates
for every such choice.

In a letter to Bernays of 4 November 1935,12 Gentzen visualises a reduction process
as a tree whose every branch terminates.

The proof that a reduction process may be specified for every derivable sequent
is by theorem induction. For this, a lemma is needed, claiming that if reduction
processes are known for two sequents Γ → D and D, ∆ → C, then a reduction
process may be specified for their cut sequent Γ, ∆ → C. The proof goes by
induction on the construction of the cut formula D and traces the claim back
to the same claim with the same cut formula, but with the sequent D, ∆ → C

replaced by a sequent D, ∆∗ → C∗ resulting from it after one or more reduction

10See Lorenzen 1939b for his interest in the foundation of inductive definitions.
11This is exactly the approach of Skolem (1921, § 2) for constructing the free lattice over a

preordered set, in the course of studying the decision problem for lattices.
12Paul-Bernays-Nachlass, ETH Zürich, Hs. 975:1652, translated by von Plato (2017, pages 241–

244).
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steps and the cut sequent replaced by Γ, ∆∗ → C∗. By definition of the reduction
process, this tracing back must terminate eventually.

This last kind of argument may be considered as an infinite descent in the
reduction process. In his letter to Bernays, Gentzen seems to indicate that this
infinite descent justifies an induction on the reduction process. As analysed by
William W. Tait (2015), this would be an instance of the Bar theorem. But in
his following letter, dated 11 December 1935,13 he writes that “[his] proof is not
satisfactory” and announces another proof, to be submitted in February 1936: in it,
he defines the concept of reduction process for a derivation, associates inductively
an ordinal to every derivation, and shows that a reduction process may be specified
for every derivation by an induction on the ordinal.

Let us compare this strategy with Lorenzen’s.

• The free choice is subsumed in a deduction rule, an ω-rule as described
above.14

• Number theory is constructed as the cut-free derivations starting from the
numerical formulas, so that it is trivially consistent, and the cut rule is
shown to be admissible: if derivations are known for two sequents A → B

and B → C, then a cut-free derivation may be specified for their cut sequent
A → C by a formula induction on the cut formula B nested with several
instances of a theorem induction.

In this way, Lorenzen fulfils the endeavour expressed by Tait (2015): “the gap in
Gentzen’s argument is filled, not by the Bar Theorem, but by taking as the basic
notion that of a [cut-free] deduction tree in the first place rather than that of a
reduction tree.”

This draft might be the one that he sends to Wilhelm Ackermann, Gentzen,
Hans Hermes and Heinrich Scholz,15 and for which he gets a dissuasive answer from
Gentzen, dated 12 September 1944: “The consistency of number theory cannot be
proven so simply.”16

3. The 1945 manuscript. In a letter dated 11 December 1945, Heinrich
Scholz submits Lorenzen’s manuscript “Die Widerspruchsfreiheit der klassischen
Logik mit verzweigter Typentheorie”17 to Paul Bernays (Hs. 975:4111). It begins

13Hs. 975:1653, translated by von Plato (2017, page 244).
14Compare Bernays’ suggestion in his letter to Gentzen of 9 May 1938, Hs. 975:1661, translated

by von Plato (2017, pages 254–255).
15See the letters to Scholz dated 13 May 1944, http://www.uni-muenster.de/IVV5WS/Scholz

Wiki/doku.php?id=scans:blogs:hb-01-1036, and 2 June 1944, PL 1-1-138, the postcard to Hasse
dated 25 July 1945, Cod. Ms. H. Hasse 1:1022, and Ackermann’s letter dated 11 November 1946,
PL 1-1-125.

16The letter is reproduced in Menzler-Trott 2001, page 372.
17“The consistency of classical logic with ramified type theory”. A version of this manu-

script can be found in Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod.
Ms. G. Köthe M 10.

5

http://www.uni-muenster.de/IVV5WS/ScholzWiki/doku.php?id=scans:blogs:hb-01-1036


as follows.

The proof of consistency undertaken in the sequel originated as
an application of a purely algebraic theorem of existence about “free”
complete boolean lattices. In the present work, though, I limit myself
exclusively to the logistic application and use no algebraic conceptions
whatsoever.18

The choice of stripping away lattice theory may be motivated by targeting a public
of logicians. In this way, the strategy of Gentzen (1935, IV, § 3) regains its original
form: the deductive calculus of ramified type theory with the axioms of comprehen-
sion, extensionality and infinity, but without the axiom of reducibility, is compared
to an inductive calculus that proceeds “without detour”; w.r.t. Gentzen’s calculus,
it features an induction rule (compare rule [4] in Lorenzen 2017, page 18) which is
an instance of the ω-rule. Lorenzen emphasises that

This proof uses as auxiliary means only formula inductions vs. theorem
inductions, i.e. the fact that the concept of formula and the concept
of theorem is defined inductively. The harmlessness of these auxiliary
means seems to me to be even more perspicuous than the harmlessness
of explicit transfinite inductions.19

Compare the first and the second kind of induction, respectively, in Herbrand
(1930, page 5). They establish that the deductive calculus is a part of the inductive
calculus: in Lorenzen (2017, section 7 on pages 20–25),

(1a) the “logical axiom” c 4 c is proved by formula induction;

(1b) the axiom of comprehension follows from the construction of a λ-calculus
and a rule of constants;

(1c) the axiom of extensionality results from a formula induction with the help
of two auxiliary rules proved by theorem induction;

(1d) the axiom of infinity follows from the properties of the order on numbers;

(2a) the cut rule is proved by a formula induction on the cut formula: if it is
a numerical formula, a double theorem induction on the premisses is used;

18„Der im folgenden durchgeführte Widerspruchsfreiheitsbeweis ist als eine Anwendung eines
rein algebraischen Existenztheorems über “freie” vollständige Boole’sche Verbände entstanden.
In dieser Arbeit beschränke ich mich jedoch ausschließlich auf die logistische Anwendung und
benutze keinerlei algebraische Begriffsbildungen.“

19„Dieser Beweis benutzt als Hilfsmittel nur Formelinduktionen bzw. Satzinduktionen, d. h. die
Tatsache, daß der Formelbegriff und der Satzbegriff induktiv definiert ist. Die Unbedenklichkeit
dieser Hilfsmittel scheint mir noch einleuchtender zu sein, als die Unbedenklichkeit expliziter
transfiniter Induktionen.“
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the only difficulties in the induction step result from the copresence of con-
stants and free and bound variables in rules like [3d] on page 18; as usual,
contraction plays an important rôle.

Bernays is able to appreciate its content on the spot and replies with detailed
comments to Scholz on 24 April 1946 (carbon copy, Hs. 975:4112). On 17 April
1946, Lorenzen writes directly to Bernays (Hs. 975:2947); he gets an answer on 22
May 1946 with the following appreciation.

It seems to me that your argumentation accomplishes in effect the
desired and that thereby at the same time also a new, methodically
more transparent proof of consistency for the number-theoretic form-
alism, as well as for Gentzen’s subformula theorem20 is provided.

In the circumstance that all this is included in your result shows at
the same time the methodical superiority of your method of proof with
respect to a proof (that probably did not come to your knowledge) that
F. B. Fitch [. . . ] gave in 1938, and that also bears on the comparison
of the deductive formalism with a system of formulas which is not de-
limited in a purely operative way; namely, this delimitation is carried
out there according to a definition of truth in which the “tertium non
datur” (indeed only with respect to the species of natural numbers)
is made use of.22 By determining your system of comparison accord-
ing to the idea of a generalisation of Gentzen’s thought of “deduction
without detour”, you gain the possibility of applying the constructive
proof-theoretic view also in the case of your “inductive calculus”, i.e. of
such an inference system that does not comply with the recursiveness
conditions that the customary formalisms fulfil.23

20In the letter of 24 April 1946, Bernays writes more precisely to Scholz “that one also gets
a proof for the main theorem of Gentzen’s ‘Investigations into logical deduction’ out of it, if on
the one hand one omits the higher axioms [(1b, c, d) in Lorenzen 2017, page 15] in the deductive
calculus, on the other hand one retains from the rules of the inductive calculus (for determining
the concept of theorem) only [[2], [3a–d] in Lorenzen 2017, page 18], while one takes also the
formula pairs [c 4 c] as initial theorems for this calculus.”21

21„dass man aus ihm auch einen Beweis für den Hauptsatz von Gentzen’s ,Untersuchungen
über das logische Schliessen‘ erhält, indem man einerseits beim deduktiven Kalkul die höheren
Axiome 1.) b), c), d) weglässt, andererseits von den Regeln des induktiven Kalkuls (zur Bestim-
mung des Satzbegriffes) nur 2) a)–d) beibehält, während man als Ausgangssätze auch für diesen
Kalkul die Formelpaare c ⊂ c nimmt.“

22See Fitch 1938 and the review Bernays 1939.
23„Es scheint mir, dass Ihre Beweisführung in der Tat das Gewünschte leistet und dass damit

zugleich auch ein neuer, methodisch durchsichtigerer Wf.-Beweis für den zahlentheoretischen
Formalismus wie auch ein solcher für Gentzen’s Teilformelsatz geliefert wird.

„In dem Umstande, dass alles dies in Ihrem Ergebnis eingeschlossen ist, zeigt sich zugleich
die methodische Überlegenheit Ihres Beweisverfahrens gegenüber einem (Ihnen wohl nicht zur
Kenntnis gelangten) Beweis, den F. B. Fitch 1938 für die Widerspruchsfreiheit der verzweigten
Typentheorie gegeben hat (im Journal of symb. logic, vol. 3, S. 140-149), und der auch auf dem
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Lorenzen learns about Fitch’s proof of consistency only by this letter. In his
answer (dated 7 June 1946, Hs. 975:2949), he explains the lattice-theoretic back-
ground of his proof and encloses a manuscript, “Über das Reduzibilitätsaxiom”,24

which is a preliminary version of the last section of the published article, in which
the axiom of reducibility is shown to be independent; in fact Fitch (1939) proves
this in his own framework. However, Bernays seems to already have received this
manuscript with Scholz’s letter of 11 December 1945 (see his letter of 24 April
1946).

4. The 1947 manuscript. By a letter dated 21 February 1947, Lorenzen
writes to Bernays:

After a revision of my proof of consistency according to your pre-
cious remarks and after addition of an algebraic part, I would like to
allow myself to ask you for your intercession for a publication in the
Journal of symbolic logic.25

This new draft tries to make a synthesis of “Ein halbordnungstheoretischer Wider-
spruchsfreiheitsbeweis” and “Die Widerspruchsfreiheit der klassischen Logik mit
verzweigter Typentheorie”, but it is rather a juxtaposition of the two: the seams
remain apparent. However, the introduction now takes into account the added al-
gebraic part. In its first paragraph (see Lorenzen 2017), it emphasises that lattice
theory is relevant for ideal theory.

In the new algebraic part, the construction of free semilattices and free dis-
tributive lattices stems in fact from ideal theory. Theorems 1–4 in section 2
(Lorenzen 2017, page 4) introduce a semilattice as a “single statement entailment
relation” and construct the free semilattice over a preordered set. This approach is
paralleled in Lorenzen 1952 by the definition of a system of ideals for an arbitrary
preordered set M on which a monoid G acts by order-preserving operators x: it is
a relation satisfying items 1–4 of theorem 1 and furthermore

if a1, . . . , an ⊢ b, then xa1, . . . , xan ⊢ xb.

In the same way, theorems 5–8 provide the description of a distributive lattice as
a deductive system that has been called since Scott (1971) an “entailment relation”.

Vergleich des deduktiven Formalismus mit einem Formelsystem beruht, das auf eine nicht rein
operative Art abgegrenzt ist; diese Abgrenzung erfolgt nämlich dort im Sinne einer Wahrheitsde-
finition, wobei von dem ,tertium non datur‘ (allerdings nur demjenigen in Bezug auf die Gattung
der natürlichen Zahlen) Gebrauch gemacht wird. Indem Sie Ihr Vergleichssystem gemäss der Idee
einer Verallgemeinerung von Gentzen’s Gedanken der ,umweglosen Herleitung‘ bestimmen, ge-
winnen Sie die Möglichkeit, die konstruktive beweistheoretische Betrachtung auch im Falle Ihres
,induktiven Kalküls‘ anzuwenden, d. h. eines solchen Folgerungssystems, welches nicht den durch
die üblichen Formalismen erfüllten Rekursivitätsbedingungen genügt.“ (Hs. 975:2948.)

24“On the axiom of reducibility”, Hs. 974:149.
25„nach einer Überarbeitung meines Wf.beweises nach Ihren wertvollen Bemerkungen und nach

Hinzufügung eines algebraischen Teiles möchte ich mir erlauben, Sie um Ihre Fürsprache zu bitten
für eine Veröffentlichung im Journal of symbolic logic“ (Hs. 975:2949.)
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This description strikes Bernays as new to him (letter of 3 April 1947, PL 1-1-118).
His theorem 7 (Lorenzen 2017, page 5) corresponds to theorem 1 in Cederquist
and Coquand 2000. This construction is used in Lorenzen 1953 for embedding a
preordered group endowed with a system of ideals into a lattice group containing
this system. Compare Coquand, Lombardi, and Neuwirth 2017.

Section 3 deals with (finite) pseudocomplemented semilattices very much like
in his 1944 manuscript.26 He emphasises that the decision problem has a positive
answer.27

In section 4, Lorenzen shows how to apply the construction of the free pseudo-
complemented semilattice to a simple intuitionistic logic calculus. He does not
develop the notion of a countably complete pseudocomplemented semilattice as in
the 1944 version, but that of a countably complete boolean lattice,28 for which cut
may also be established. Here the ω-rules are [3.9] and [3.10] on page 12. He only
sketches the application to consistency, which goes along the same lines, with one
significant difference: in the deductive system associated to the former setting, he
is able to prove contraction (see lemma (8) on page 8), whereas he has to put it
into the definition in the latter setting (he provides a counterexample on page 12).
This should be put in relation

• with the rôle of contraction, especially for steps 13. 5 1–13. 5 3 in Gentzen’s
proofs of consistency (1936, 1974),

• with the calculus of P. S. Novikoff (1943), in which contraction may be
proved,

• and with the calculus defined by Per Martin-Löf (1970, § 30) for Borel sets,
where the problem of contraction is eluded by “identify[ing] sequents which
are equal considered as finite sets”.

Then he shows how to deduce consistency for the logic of ramified type by a
repeated construction of free countably complete boolean lattices, starting from a
calculus without free variables, along the hierarchy of types.

5. Toward publication. At the end of his letter of 21 February 1947, Lorenzen
asks:

26The theory of pseudocomplemented semilattices continues to develop: one can find an account
of it by Grätzer (2011, pages 99–101) and Chajda, Halaš, and Kühr (2007, chapter 3).

27The existence of the free pseudocomplemented semilattice over a preordered set seems to be
unknown in the literature, which considers only the case where the preorder is trivial; in the
latter case, the decision problem was solved by Tamura (1974).

28In the second paragraph of the introduction, he addresses complete boolean algebras over
a preordered set as studied by MacNeille (1937). The question about the existence of the free
complete boolean algebra is usually attributed to Rieger (1951) and has led to the works of
Gaifman (1964) and Hales (1964).
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I beg once again to ask you for your advice—namely, it is not clear
to me whether I rightly call the logic used here “finite” logic.29

Bernays provides the following answer in his letter of 3 April 1947:

When it comes to the methodical standpoint and to the termino-
logy to be used in relation, then it seems advisable to me to keep with
the mode chosen by Mr Gentzen, that one speaks of “finite” reflections
only in the narrower sense, i.e. relating to considerations that may be
formalised in the framework of recursive number theory (possibly with
extension of the domain of functions to arbitrary computable func-
tions), that one uses in contrast the expression “constructive” for the
appropriate extension of the standpoint of the intuitive self-evidence;
by the way, this is employed also by many an American logician in the
corresponding sense.

Your proof of consistency cannot, I deem, be a finite one in the
narrower sense. Of course, this would conflict with the Gödel theorem.
Actually, a nonfinite element of your reflection lies in the induction rule
of the inductive calculus, which contains indeed a premiss of a more
general form.30

In other words, the ω-rule does not fit into a formal system, and this explains why
Gödel’s theorem does not apply here. But Hilbert (1931, page 491) termed the
ω-rule a “finite deduction rule” and this is probably why Lorenzen qualifies his
deductions as “finite”. More precisely, he answers on 4 May 1947:

Your proposal to call the means of proof not “finite” but “construct-
ive” acted on me as a sort of redemption. I was sticking so far to the
word finite only to emphasise that these are hilbertian ideas that I am
trying to pursue.31

29„Ich bitte noch einmal Sie um Ihren Rat fragen zu dürfen – es ist mir nämlich nicht klar, ob
ich die hier benutzte Logik mit Recht ‚finite‘ Logik nenne.“

30„Was den methodischen Standpunkt und die in Bezug darauf zu verwendende Terminologie
betrifft, so erscheint es mir als empfehlenswert, den von Herrn Gentzen gewählten Modus beizu-
behalten, dass man von ‚finiten‘ Betrachtungen nur im engeren Sinne spricht, d. h. mit Bezug
auf Überlegungen, die sich im Rahmen der rekursiven Zahlentheorie (eventuell mit Erweiterung
des Funktionenbereiches auf beliebige berechenbare Funktionen) formalisieren lassen, dass man
dagegen für die sachgemässe Erweiterung des Standpunktes der anschaulichen Evidenz den Aus-
druck ‚konstruktiv‘ verwendet; dieser wird übrigens auch von manchen amerikanischen Logikern
im entsprechenden Sinn gebraucht.

„Ihr Wf-Beweis kann, so meine ich, kein finiter in dem genannten engeren Sinne sein. Das
würde doch dem Gödelschen Theorem widerstreiten. Tatsächlich liegt, so viel ich sehe, ein nicht-
finites Element Ihrer Betrachtung in der Induktionsregel des induktiven Kalküls, welche ja eine
Prämisse von allgemeiner Form enthält.“

31„Ihr Vorschlag, die Beweismittel nicht ‚finit‘, sondern ‚konstruktiv‘ zu nennen, hat wie eine
Art Erlösung auf mich gewirkt. Ich habe bisher an dem Wort finit nur festgehalten, um zu
betonen, dass es Hilbertsche Ideen sind, die ich fortzuführen versuche.“ (Hs. 975:2953.)
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Lorenzen prepares another final draft that is very close to the published version.32

Bernays sends a first series of comments on 1 September 1947 (PL 1-1-112) and a
second series of comments (on a version including the final section on the axiom
of reducibility) on 6 February 1949 (PL 1-1-107); the article is submitted to The

journal of symbolic logic soon afterwards33 and published as Lorenzen 1951 with
date of reception 17 March 1950. In fact, from 1947 on, Lorenzen is already mostly
occupied by his project of layers of language which will lead to his operative logic.

6. Reception. For early accounts of the manuscripts, see Lorenzen 1948, Köthe
1948, Schmidt 1950, § 11.

On 1 May 1950, Kurt Schütte writes to Lorenzen in order to acknowledge the
latter’s priority in implementing the ω-rule into proofs of consistency.34

[. . . ] I came to know that you had provided already before a proof
of consistency for a still more general domain, and had arrived at the
following result: the cut-eliminability, that in Gentzen had only been
carried out in pure logic, may also be transferred to mathematical form-
alisms, if instead of the inference of complete induction more general
schemes of inference with infinitely many premisses are drawn on by ex-
tending the concept of derivation so that it may contain infinitely many
formulas. This insight gained by you, that appears to me exceptionally
important for fundamental research, I have now taken up.35

In fact, the reception of the logistic part of Lorenzen’s article takes mostly place
through the articles Schütte 1951, 1952 and the book Schütte 1960.36 In his book,
Schütte coins the expression “semi-formal system” for a calculus with an ω-rule.
This detour may have contributed to proof theory continuing to focus on measures
of complexity by ordinal numbers; Tait (1968) provides a very clear presentation

32Two pages of this draft may be found in the file OB 5-3b-5; Cod. Ms. G. Köthe M 10 contains
an excerpt of Part I.

33See the letter of 27 April 1949 to Alonzo Church, in which Lorenzen thanks him for acknow-
ledging receipt of the manuscript, says a few words on its history, and proposes Bernays as a
referee (Alonzo Church Papers, box 26 folder 4, Manuscripts division, Department of rare books
and special collections, Princeton university library.)

34Both are not aware of the work of Novikoff (1939, 1943) in this respect. See Grigori Mints
(1991, 1.2).

35„[. . . ] erfuhr ich, daß Sie schon vorher einen Widerspruchsfreiheitsbeweis für einen noch all-
gemeineren Bereich erbracht hatten und dabei zu folgendem Ergebnis gekommen waren: Die
Schnitt-Eliminierbarkeit, die bei Gentzen nur in der reinen Logik durchgeführt wurde, läßt sich
auch auf mathematische Formalismen übertragen, wenn statt des Schlusses der vollständigen
Induktion allgemeinere Schlußschemata mit unendlich vielen Prämissen herangezogen werden,
indem der Begriff der Herleitung so erweitert wird, dass er unendlich viele Formeln enthalten
darf. Diese von Ihnen gewonnene Erkenntnis, die mir außerordentlich wichtig für die Grundla-
genforschung zu sein scheint, habe ich nun aufgegriffen.“ (PL 1-1-45.)

36See § 18 and chapter IX. Note that Schütte 1977 is not providing a translation, as the author
abandons the treatment of ramified type theory in this second edition; in doing so, he forgets
about Lorenzen’s contributions to proof theory but for a spurious presence in the bibliography.
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of Schütte’s approach. The fact that Lorenzen does not resort to ordinals in his
proof of consistency should be considered as a feature of his approach.

Köthe gives a lecture on proofs of consistency up to Lorenzen’s in Fall 1947
at Mainz (see Cod. Ms. G. Köthe G 3); the preparation of the lecture gives rise
to a correspondence between the two.37 Hermes gives a course on constructive
mathematics centred on Lorenzen in Fall 1951 at Münster.38

Hao Wang (1951) writes the review for The journal of symbolic logic and tries
to compare Lorenzen’s approach with Fitch’s; see Coquand (2014) for a discussion
of this review. Wang (1954, page 252) provides a more accurate comparison.

Lorenzen (1955) expands on the rôle of lattices in mathematics. Lorenzen
(1958, 1987) provide a proof of Gentzen’s subformula theorem by the method of
his article. Lorenzen (1962, § 7) returns to the subject of proofs of consistency.

Haskell B. Curry (1963, Chapter 4, Theorem B9) follows Lorenzen in charac-
terising a distributive lattice as a lattice satisfying cut.

Manfred E. Szabo (1969, pages 12–13) writes on the relationship of Gentzen’s
work with Lorenzen’s article.

Its philosophical significance is addressed by Matthias Wille (2016).

7. Conclusion. Lorenzen’s article is remarkable for its metamathematical
standpoint. A mathematical object is presented as a construction described by
rules. A claim on the object is established by an induction that expresses the very
meaning of the construction.

Also our certitudes admit such a metamathematical presentation; they have the
additional feature that the construction of a certitude proceeds as accumulatively
(“without detour”, i.e. cut) as the construction of the formulas appearing in the
certitude.

In number theory and for the free countably complete boolean lattice, the
construction of a certitude uses an ω-rule that is stronger than the rule of complete
induction but requires infinitely many premisses, so that a certitude corresponds
to a well-formed tree.

Lorenzen’s standpoint holds equally well for a logical calculus and for a lattice:
“logical calculuses are semilattices or lattices” (Lorenzen 2017, page 9). The con-
sistency of a logical calculus is recognised as a consequence of the existence of the
free semilattice or lattice over its certitudes.
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[P. LORENZEN]

A preorder-theoretic proof of consistency.

The dissertation of G. Gentzen contains a proof of consistency of element-
ary number theory without complete induction that relies on the following basic
thought: every deducible sequent must also be deducible without detour, so that
during the deduction only those connectives are being introduced that are abso-
lutely necessary, i.e. those that are contained in the sequent itself. In the proof
of consistency of number theory with complete induction, this basic thought steps
back with regard to others. I wish however to show in the following that it alone
suffices to obtain also this consistency.

Without knowledge of the dissertation of Gentzen I have arrived at this pos-
sibility on the basis of a semilattice-theoretic question. This question is: how may
a preordered set be embedded into an orthocomplemented complete semilattice?
In general several such embeddings are possible – but among the possible embed-
dings one is distinguished, i.e. the one which may be mapped homomorphically
into every other. The existence of this distinguished embedding will be proved in
§ 2.

In order to obtain from this in § 3 the sought-after proof of consistency, now
just a translation of the semilattice-theoretic proof into the logistic language is
necessary. For the calculus that we consider and to which the usual calculuses
may be reduced is contained in the distinguished embedding of the preordered set
of the number-theoretic prime formulas.

§ 1. A set M is called preordered if a binary relation 6 is defined in M so that
for the elements a, b, . . . of M holds:

a 6 a

a 6 b, b 6 c ⇒ a 6 c.

If a 6 b and b 6 a holds, then write we a ≡ b.
If a 6 x holds for every x ∈ M, then we write a 6 . We write as well 6 a if

x 6 a holds for every x. ( 6 means thus that x 6 y holds for every x, y ∈ M.)
A preordered set M is called semilattice if to every a, b ∈ M there is a c ∈ M

so that for every x ∈ M holds

x 6 a, x 6 b ⇐⇒ x 6 c.

c is called the conjunction of a and b: c ≡ a ∧ b.
A semilattice M is called orthocomplemented if to every a ∈ M there is a b ∈ M

so that for every x ∈ M holds

a ∧ x 6 ⇐⇒ x 6 b.

b is called the orthocomplement of a: b ≡ ā.
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A semilattice M is called ω-complete if to every countable sequence M =
a1, a2, . . . in M there is a c ∈ M so that for every x ∈ M holds

(for every n: x 6 an) ⇐⇒ x 6 c.

c is called the conjunction of the elements of M : c ≡
∧

n

an ≡
∧

M

.

If M and M′ are preordered sets, then M is called a part of M′ if M is a subset
of M′ and for every a, b ∈ M a 6 b holds in M′ exactly if a 6 b holds in M.

If M and M′ are preordered sets, we understand by a mapping of M into M′ an
assignment that to every a ∈ M assigns an a′ ∈ M′ so that holds

a ≡ b ⇒ a′ ≡ b′.

If M and M′ are orthocomplemented ω-complete semilattices, we understand by
a homomorphism of M into M′ a mapping → of M into M′, so that for every a, b ∈ M
and a′, b′ ∈ M′ with a → a′ and b → b′ holds

a ∧ b → a′ ∧ b′

ā → a′.

Moreover, for every sequence M = a1, a2, . . . in M and M ′ = a′

1
, a′

2
, . . . in M′ with

an → a′

n
is to hold

∧

M

→
∧

M ′

.

We want to prove now that to every preordered set P there is an orthocomple-
mented ω-complete semilattice K so that

1) P is a part of K,

2) K may be mapped homomorphically into every orthocomplemented ω-com-
plete semilattice that contains P as part.

If K′ were a further orthocomplemented ω-complete semilattice that fulfils condi-
tions 1) and 2), then there would be an assignment by which K would be mapped
homomorphically into K′ and K′ into K, i.e. K and K′ would be isomorphic. K is
thus determined uniquely up to isomorphy by conditions 1) and 2). We call K the
distinguished orthocomplemented ω-complete semilattice over P.

§ 2. Theorem: Over every preordered set there is the distinguished orthocom-
plemented ω-complete semilattice.

We construct for the preordered set P a set K in the following way:

1) Let K contain the elements of P. (These we call the prime elements of K.)

2) Let K contain with finitely many elements a1, a2, . . . , an also the combination
formed out of these as element. (These we designate by a1 ∧ a2 ∧ · · · ∧ an.)
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3) Let K contain with every element a also an element ā.

4) Let K contain with every countable sequence M also an element
∧

M

.

Every element of K may thus be written uniquely as combination a1∧a2∧· · ·∧an

of prime elements and elements of the form ā or
∧

M

.

We define a relation 6 in K in the following way:

1) For prime elements p, q let p 6 q hold in K if p 6 q holds in P. (These
relations we call the basic relations.)

2) Every relation 6 that may be deduced from the basic relations with help of
the following rules is to hold in K:

c 6 a c 6 b
a)

c 6 a ∧ b

a ∧ c 6
b)

c 6 ā

c 6 a1 · · · c 6 an · · ·
c)

c 6
∧

M

a 6 c
d)

a ∧ b 6 c

a 6 b
e)

a ∧ b̄ 6 c

an ∧ b 6 c
f)

∧

M

∧ b 6 c

(M = a1, a2, . . . )

a ∧ a ∧ b 6 c
g)

a ∧ b 6 c .

We call the relations above the line the premisses of the relation below the line.
We have now to show first that K is an orthocomplemented ω-complete semil-

attice w.r.t. the relation 6. For this we must prove

α) a 6 a

β) a 6 b, b 6 c ⇒ a 6 c

γ) c 6 a ∧ b ⇒ c 6 a

δ) c 6 ā ⇒ a ∧ c 6

ε) c 6
∧

M

⇒ c 6 an (M = a1, a2, . . . )

These properties together with a), b), and c) express in fact that K is an orthocom-
plemented ω-complete semilattice.

α) holds for prime elements. If α) holds for a and b, then also for a ∧ b because
of

a 6 a

a ∧ b 6 a

b 6 b

a ∧ b 6 b

a ∧ b 6 a ∧ b .
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If α) holds for every an ∈ M , then also for
∧

M

because of

a1 6 a1

∧

M

6 a1

· · ·
an 6 an

∧

M

6 an

· · ·

∧

M

6
∧

M

.

If α) holds for a, then also for ā, because of

a 6 a

a ∧ ā 6

ā 6 ā .

Hereby α) is proved in general.
As β) is the most difficult to prove, we take first γ).
In order to prove γ), we have to show that if c 6 a ∧ b is deducible, then also

c 6 a must always be deducible.
We lead the proof indirectly by a transfinite induction. Let c 6 a ∧ b be

deducible, but not c 6 a. Then the last step of the deduction of c 6 a∧b cannot be
c 6 a c 6 b

c 6 a ∧ b
, likewise not

c1 6 c2

c1 ∧ c2 6 a ∧ b
(c = c1 ∧ c2), as then

c1 6 c2

c1 ∧ c2 6 a
would be deducible at once.

For the last step remain only the possibilities

c1 6 a ∧ b

c1 ∧ c2 6 a ∧ b

c1 ∧ c1 ∧ c2 6 a ∧ b
(c = c1 ∧ c2)

c1 ∧ c2 6 a ∧ b

c1 ∧ c′ 6 a ∧ b · · · cn ∧ c′ 6 a ∧ b · · ·
(

M = a1, a2, . . .

c =
∧

M

∧ c′.

)

∧

M

∧ c′ 6 a ∧ b

Here must now c1 6 a resp. c1 ∧ c1 ∧ c2 6 a resp. for at least one n cn ∧ c′ 6 a

not be deducible, as otherwise at once c 6 a would be deducible. In the deduction
of c 6 a ∧ b the claim γ) would thus already be false for a premiss. If in the
deduction of a relation I go over to a premiss, of this again to a premiss, etc., then
I am after finitely many steps at a basic relation. We would thus obtain a basic
relation, for which the claim γ) would be false. But as this is impossible, γ) is
thereby proved.

We call the induction that we have undertaken here a premiss induction.
With help of premiss inductions, the proof for δ) and ε) proceeds just as simply

as for γ), so that I am not going into this any further.
It remains only to show in addition β). Instead of this we prove the stronger

claim
ζ) a 6 b, b ∧ b ∧ · · · ∧ b ∧ c 6 d ⇒ a ∧ c 6 d
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in order to be able to apply premiss inductions hereupon.
Let first b, c and d be prime elements. Then ζ) holds for every basic relation a 6

b. We assume as induction hypothesis that ζ holds for every premiss of a 6 b.
As b is a prime element, the last step of the deduction of a 6 b can only be:

a1 6 b

a1 ∧ a2 6 b

a1 ∧ a1 ∧ a2 6 b
(a = a1 ∧ a2)

a1 ∧ a2 6 b

a1 6 a2
(a = a1 ∧ a2)

a1 ∧ a2 6 b

an ∧ a′ 6 b
(

M = a1, a2, . . .

a =
∧

M

∧ a′.

)

∧

M

∧ a′ 6 b

According to the induction hypothesis, then a1 ∧c 6 d resp. a1 ∧a1 ∧a2 ∧c 6 d

resp. an ∧ a′ ∧ c 6 d is deducible. In every case a ∧ c 6 d is at once deducible, as
well from a1 6 a2 because of

a1 6 a2

a1 ∧ a2 6 d

a ∧ c 6 d .

Thereby ζ) is proved for prime elements b, c and d.
Now let only b still be a prime element. Then ζ) holds thus for arbitrary a

and prime elements c, d. A premiss induction results now in ζ) holding for every
relation b ∧ b1 ∧ · · · ∧ b1 ∧ c 6 d. Every premiss of b ∧ b ∧ · · · ∧ b ∧ c 6 d has in
fact again the form b ∧ · · · ∧ b ∧ c 6 d. Thereby ζ) is proved in general for prime
elements b.

If ζ) holds for elements b1 and b2, then obviously also for b1 ∧b2. If ζ) holds for
every bn ∈ M , then also for b =

∧

M

. (Proof by premiss induction:
∧

M

∧
∧

M

∧· · ·∧
∧

M

∧c 6

d can have the following premiss: bn ∧
∧

M

∧ · · · ∧
∧

M

∧ c 6 d. According to induction

hypothesis holds then a 6
∧

M

, bn ∧
∧

M

∧ · · · ∧
∧

M

∧ c 6 d ⇒ bn ∧ a ∧ c 6 d. But as

ζ) is also assumed for b = bn, and because of

a 6
∧

M

⇒ a 6 bn,

also a 6
∧

M

, bn ∧ a ∧ c 6 d ⇒ a ∧ a ∧ c 6 d holds. But from a ∧ a ∧ c 6 d may be

deduced a ∧ c 6 d. Every other premiss of
∧

M

∧
∧

M

∧ · · · ∧
∧

M

∧ c 6 d is trivial.)

If ζ) holds for b, then also for b̄. (Proof by premiss induction: b̄∧b̄∧· · ·∧b̄∧c 6 d

can have the following premiss: b̄∧· · ·∧b̄∧c 6 b. Then holds according to induction
hypothesis

a 6 b̄, b̄ ∧ · · · ∧ b̄ ∧ c 6 b ⇒ a ∧ c 6 b.
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As ζ) is also assumed for b, also holds

a ∧ c 6 b, a ∧ b 6 d ⇒ a ∧ a ∧ c 6 d.

Thus holds also a 6 b̄, b̄∧· · ·∧ b̄∧c 6 b ⇒ a∧c 6 d because of a 6 b̄ ⇒ a∧b 6 d.
Every other premiss is again trivial.)

Thus ζ) is valid in general. Thereby is proved that K is an orthocomplemented
ω-complete semilattice.

P is a part of K, as
p 6 q in P ⇐⇒ p 6 q in K

holds. We have for this to convince ourselves that no relation p 6 q is deducible
in K that is not already holding in P. But this goes without saying, as none of
the rules except g) actually yield relations p 6 q below the line. A deduction of a
relation p 6 q can thus only use the rules d) and g). But with these only the basic
relations are deducible.

For the proof of our theorem it remains now in addition to show that K may be
mapped homomorphically into every other orthocomplemented ω-complete semil-
attice K′ that contains P as part. This mapping we define by

1) for prime elements p holds p → p,

2) moreover is to hold

a → a′, b → b′ ⇒ a ∧ b → a′ ∧ b′

a → a′ ⇒ ā → a′

an → a′

n
⇒

∧

M

→
∧

M ′

(

M = a1, a2, . . .

M ′ = a′

1, a′

2, . . .

)

Hereby obviously a homomorphism is being defined, for with a → a′ and b → b′

always holds a 6 b ⇒ a′ 6 b′.
Every deduction of a 6 b proves in fact at once also a′ 6 b′, as the deduction

steps a)–g) are always correct in every orthocomplemented ω-complete semilattice.

§ 3. In order to be able to prove the consistency of elementary number theory
with complete induction from the theorem proved in § 2, we use the following
formalisation. As prime formulas we take the signs for number-theoretic predic-
ates A(. . . ), B(. . . ), . . . with the numbers 1, 1′, 1′′, . . . as arguments, e.g. 1 = 1′′,
1 + 1 = 1′.

These prime formulas P,Q, . . . form a preordered set if we set P → Q in case
the predicate P implies the predicate Q. To the basic relations P → Q we are also
adding the relations of the form → P, P → , → , as far as they are contentually
correct.
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Over this preordered set P of the prime formulas we construct now as in § 2
the distinguished orthocomplemented ω-complete semilattice. We use for this the
logistic signs, thus → instead of 6, & instead of ∧.

To the formulas belong thus the prime formulas, with A and B also A & B,
with A also A. We restrict the conjunction of countable sequences to the sequences
of the form A(1),A(1′), . . . . We designate this conjunction by (x)A(x).

Moreover we introduce in addition free variables a = a, b, . . . by the following
rule of inference:

if A(1), A(1′), . . . are deducible relations, then
A(a) is also to be deducible.

By this the proofs of § 2 are only modified unessentially. We obtain overall a
calculus N with the following rules of inference

C → A C → B
a)

C → A & B

A & C →
b)

C → A

C → A(1) · · · C → A(n) · · ·
c)

C → (x)A(x)

A → C
d)

A & B → C

A → B
e)

A & B → C

A(n) & B → C
f)

(x)A(x) & B → C

A & A & B → C
g)

A & B → C

A & B → C
h)

B & A → C

A & (B & C) → D
i)

(A & B) & C → D

A(1) · · · A(n) · · ·
j)

A(a) .

The rules of inference h) and i) were dispensable in § 2, as we have introduced
there a ∧ b ∧ c ∧ · · · at once as sign for the combination of a, b, c, . . . .

The proof in § 2 yields now the following result: the calculus N is consistent,
e.g. the empty relation → is not deducible, as only the contentually correct
relations hold in P and P is a part of N. To the calculus N the following rules of
inference can be added without increasing the set the deducible relations:

A → B B → C
k)

A → C

C → A & B
l)

C → A

C → A & B
m)

C → B

C → A
n)

A & C →

C → (x)A(x)
o)

C → A(n) .
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To the basic relations can be added A → A.
This result from § 2 we can now supplement:

1) The rule of inference
A(a)

p)
A(n)

can also be added.

The proof is again being led by a transfinite premiss induction. If A(a) is
deducible in N and if the last rule of inference of this deduction is not

A(1) · · · A(n) · · ·

A(a) ,

then the premiss has the form A′(a). If we assume as induction hypothesis that
for every premiss A′(a) also A′(n) is deducible, then A(n) follows at once.

2) To the basic relations may be added A → A.

For every prime formula P holds in fact always either → P or P →. Because of

→ P

P → P

P →

→ P

P → P

, P → P is thus always deducible for every prime formula.

From this follows in general the deducibility of A → A (cf. e.g. Hilbert-Bernays,
Grundlagen der Mathematik II ).

3) The complete induction

A(a) → A(a′)
q)

A(1) → A(b)

can also be added to the rules of inference without increasing the set the
deducible relations.

In fact, if A(a) → A(a′) is deducible, then also the relation A(n) → A(n′) for
every number n.

For every number m follows therefrom at once A(1) → A(m) by m-fold applic-
ation of the rule of inference k).

Because of
A(1) → A(1) · · · A(1) → A(m) · · ·

A(1) → A(b)
also A(1) → A(b) is thus

deducible.
Thereby the consistency the elementary number theory is proved, as the overall

admissible rules of inference define a calculus that obviously contains the classical
calculus of predicates.
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