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Abstract

This paper aims at theoretically and empirically comparing two standard optimiza-
tion criteria for Reinforcement Learning: i) maximization of the mean value and
ii) minimization of the Bellman residual. For that purpose, we place ourselves in
the framework of policy search algorithms, that are usually designed to maximize
the mean value, and derive a method that minimizes the residual ‖T∗vπ − vπ‖1,ν
over policies. A theoretical analysis shows how good this proxy is to policy op-
timization, and notably that it is better than its value-based counterpart. We also
propose experiments on randomly generated generic Markov decision processes,
specifically designed for studying the influence of the involved concentrability
coefficient. They show that the Bellman residual is generally a bad proxy to policy
optimization and that directly maximizing the mean value is much better, despite
the current lack of deep theoretical analysis. This might seem obvious, as directly
addressing the problem of interest is usually better, but given the prevalence of
(projected) Bellman residual minimization in value-based reinforcement learning,
we believe that this question is worth to be considered.

1 Introduction

Reinforcement Learning (RL) aims at estimating a policy π close to the optimal one, in the sense
that its value, vπ (the expected discounted return), is close to maximal, i.e ‖v∗ − vπ‖ is small (v∗
being the optimal value), for some norm. Controlling the residual ‖T∗vθ − vθ‖ (where T∗ is the
optimal Bellman operator and vθ a value function parameterized by θ) over a class of parameterized
value functions is a classical approach in value-based RL, and especially in Approximate Dynamic
Programming (ADP). Indeed, controlling this residual allows controlling the distance to the optimal
value function: generally speaking, we have that

‖v∗ − vπvθ ‖ ≤
C

1− γ ‖T∗vθ − vθ‖, (1)

with the policy πvθ being greedy with respect to vθ [17, 19].

Some classical ADP approaches actually minimize a projected Bellman residual, ‖Π(T∗vθ − vθ)‖,
where Π is the operator projecting onto the hypothesis space to which vθ belongs: Approximate Value
Iteration (AVI) [11, 9] tries to minimize this using a fixed-point approach, vθk+1

= ΠT∗vθk , and it has
been shown recently [18] that Least-Squares Policy Iteration (LSPI) [13] tries to minimize it using
a Newton approach1. Notice that in this case (projected residual), there is no general performance
bound2 for controlling ‖v∗ − vπvθ ‖.

1(Exact) policy iteration actually minimizes ‖T∗v − v‖ using a Newton descent [10].
2With a single action, this approach reduces to LSTD (Least-Squares Temporal Differences) [5], that can be

arbitrarily bad in an off-policy setting [20].
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Despite the fact that (unprojected) residual approaches come easily with performance guarantees,
they are not extensively studied in the (value-based) literature (one can mention [3] that considers
a subgradient descent or [19] that frames the norm of the residual as a delta-convex function). A
reason for this is that they lead to biased estimates when the Markovian transition kernel is stochastic
and unknown [1], which is a rather standard case. Projected Bellman residual approaches are more
common, even if not introduced as such originally (notable exceptions are [16, 18]).

An alternative approach consists in maximizing directly the mean value Eν [vπ(S)] for a user-
defined state distribution ν, this being equivalent to directly minimizing ‖v∗ − vπ‖1,ν , see Sec. 2.
This suggests defining a class of parameterized policies and optimizing over them, which is the
predominant approach in policy search3 [7].

This paper aims at theoretically and experimentally studying these two approaches: maximizing the
mean value (related algorithms operate on policies) and minimizing the residual (related algorithms
operate on value functions). In that purpose, we place ourselves in the context of policy search
algorithms. We adopt this position because we could derive a method that minimizes the residual
‖T∗vπ − vπ‖1,ν over policies and compare to other methods that usually maximize the mean value.
On the other hand, adapting ADP methods so that they maximize the mean value is way harder4. This
new approach is presented in Sec. 3, and we show theoretically how good this proxy.

In Sec. 4, we conduct experiments on randomly generated generic Markov decision processes to
compare both approaches empirically. The experiments are specifically designed to study the influence
of the involved concentrability coefficient. Despite the good theoretical properties of the Bellman
residual approach, it turns out that it only works well if there is a good match between the sampling
distribution and the discounted state occupancy distribution induced by the optimal policy, which is a
very limiting requirement. In comparison, maximizing the mean value is rather insensitive to this
issue and works well whatever the sampling distribution is, contrary to what suggests the sole related
theoretical bound. This study thus suggests that maximizing the mean value, although it doesn’t
provide easy theoretical analysis, is a better approach to build efficient and robust RL algorithms.

2 Background

2.1 Notations

Let ∆X be the set of probability distributions over a finite set X and Y X the set of applications
from X to the set Y . By convention, all vectors are column vectors, except distributions (for left
multiplication). A Markov Decision Process (MDP) is a tuple {S,A, P,R, γ}, where S is the
finite state space5, A is the finite action space, P ∈ (∆S)S×A is the Markovian transition kernel
(P (s′|s, a) denotes the probability of transiting to s′ when action a is applied in state s),R ∈ RS×A
is the bounded reward function (R(s, a) represents the local benefit of doing action a in state s) and
γ ∈ (0, 1) is the discount factor. For v ∈ RS , we write ‖v‖1,ν =

∑
s∈S ν(s)|v(s)| the ν-weighted

`1-norm of v.

Notice that when the function v ∈ RS is componentwise positive, that is v ≥ 0, the ν-weighted
`1-norm of v is actually its expectation with respect to ν: if v ≥ 0, then ‖v‖1,ν = Eν [v(S)] = νv.
We will make an intensive use of this basic property in the following.

A stochastic policy π ∈ (∆A)S associates a distribution over actions to each state. The policy-induced
reward and transition kernels,Rπ ∈ RS and Pπ ∈ (∆S)S , are defined as

Rπ(s) = Eπ(.|s)[R(s,A)] and Pπ(s′|s) = Eπ(.|s)[P (s′|s,A)].

The quality of a policy is quantified by the associated value function vπ ∈ RS :

vπ(s) = E[
∑
t≥0

γtRπ(St)|S0 = s, St+1 ∼ Pπ(.|St)].

3A remarkable aspect of policy search is that it does not necessarily rely on the Markovian assumption, but
this is out of the scope of this paper (residual approaches rely on it, through the Bellman equation). Some recent
and effective approaches build on policy search, such as deep deterministic policy gradient [15] or trust region
policy optimization [23]. Here, we focus on the canonical mean value maximization approach.

4Approximate linear programming could be considered as such but is often computationally intractable [8, 6].
5This choice is done for ease and clarity of exposition, the following results could be extended to continuous

state and action spaces.
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The value vπ is the unique fixed point of the Bellman operator Tπ , defined as Tπv = Rπ + γPπv for
any v ∈ RS . Let define the second Bellman operator T∗ as, for any v ∈ RS , T∗v = maxπ∈(∆A)S Tπv.
A policy π is greedy with respect to v ∈ RS , denoted π ∈ G(v) if Tπv = T∗v. There exists an
optimal policy π∗ that satisfies componentwise vπ∗ ≥ vπ, for all π ∈ (∆A)S . Moreover, we have
that π∗ ∈ G(v∗), with v∗ being the unique fixed point of T∗.

Finally, for any distribution µ ∈ ∆S , the γ-weighted occupancy measure induced by the policy π
when the initial state is sampled from µ is defined as

dµ,π = (1− γ)µ
∑
t≥0

γtP tπ = (1− γ)µ(I − γPπ)−1 ∈ ∆S .

For two distributions µ and ν, we write ‖µν ‖∞ the smallest constant C satisfying, for all s ∈ S,
µ(s) ≤ Cν(s). This quantity measures the mismatch between the two distributions.

2.2 Maximizing the mean value

Let P be a space of parameterized stochastic policies and let µ be a distribution of interest. The
optimal policy has a higher value than any other policy, for any state. If the MDP is too large,
satisfying this condition is not reasonable. Therefore, a natural idea consists in searching for a policy
such that the associated value function is as close as possible to the optimal one, in expectation,
according to a distribution of interest µ. More formally, this means minimizing ‖v∗ − v‖1,µ =
Eµ[v∗(S) − vπ(S)] ≥ 0. The optimal value function being unknown, one cannot address this
problem directly, but it is equivalent to maximizing Eµ[vπ(S)].

This is the basic principle of many policy search approaches:

max
π∈P

Jν(π) with Jν(π) = Eν [vπ(S)] = νvπ.

Notice that we used a sampling distribution ν here, possibly different from the distribution of interest
µ. Related algorithms differ notably by the considered criterion (e.g., it can be the mean reward rather
than the γ-discounted cumulative reward considered here) and by how the corresponding optimization
problem is solved. We refer to [7] for a survey on that topic.

Contrary to ADP, the theoretical efficiency of this family of approaches has not been studied a lot.
Indeed, as far as we know, there is a sole performance bound for maximizing the mean value.
Theorem 1 (Scherrer and Geist [22]). Assume that the policy space P is stable by stochastic mixture,
that is ∀π, π′ ∈ P,∀α ∈ (0, 1), (1−α)π+απ′ ∈ P . Define the ν-greedy-complexity of the policy
space P as

Eν(P) = max
π∈P

min
π′∈P

dν,π(T∗vπ − Tπ′vπ).

Then, any policy π that is an ε-local optimum of Jν , in the sense that

∀π′ ∈ Π, lim
α→0

νv(1−α)π+απ′ − νvπ
α

≤ ε,

enjoys the following global performance guarantee:

µ(v∗ − vπ) ≤ 1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

(Eν(P) + ε) .

This bound (as all bounds of this kind) has three terms: an horizon term, a concentrability term and
an error term. The term 1

1−γ is the average optimization horizon. This concentrability coefficient
(‖dµ,π∗/ν‖∞) measures the mismatch between the used distribution ν and the γ-weighted occupancy
measure induced by the optimal policy π∗ when the initial state is sampled from the distribution of
interest µ. This tells that if µ is the distribution of interest, one should optimize Jdµ,π∗ , which is
not feasible, π∗ being unknown (in this case, the coefficient is equal to 1, its lower bound). This
coefficient can be arbitrarily large: consider the case where µ concentrates on a single starting
state (that is µ(s0) = 1 for a given state s0) and such that the optimal policy leads to other states
(that is, dµ,π∗(s0) < 1), the coefficient is then infinite. However, it is also the best concentrability
coefficient according to [21], that provides a theoretical and empirical comparison of Approximate
Policy Iteration (API) schemes. The error term is Eν(P) + ε, where Eν(P) measures the capacity of
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the policy space to represent the policies being greedy with respect to the value of any policy in P
and ε tells how the computed policy π is close to a local optimum of Jν .

There exist other policy search approches, based on ADP rather than on maximizing the mean value,
such as Conservative Policy Iteration (CPI) [12] or Direct Policy Iteration (DPI) [14]. The bound of
Thm. 1 matches the bounds of DPI or CPI. Actually, CPI can be shown to be a boosting approach
maximizing the mean value. See the discussion in [22] for more details. However, this bound is also
based on a very strong assumption (stability by stochastic mixture of the policy space) which is not
satisfied by all commonly used policy parameterizations.

3 Minimizing the Bellman residual

Direct maximization of the mean value operates on policies, while residual approaches operate on
value functions. To study these two optimization criteria together, we introduce a policy search
method that minimizes a residual. As noted before, we do so because it is much simpler than
introducing a value-based approach that maximizes the mean value. We also show how good this
proxy is to policy optimization. Although this algorithm is new, it is not claimed to be a core
contribution of the paper. Yet it is clearly a mandatory step to support the comparison between
optimization criteria.

3.1 Optimization problem

We propose to search a policy in P that minimizes the following Bellman residual:

min
π∈P
Jν(π) with Jν(π) = ‖T∗vπ − vπ‖1,ν .

Notice that, as for the maximization of the mean value, we used a sampling distribution ν, possibly
different from the distribution of interest µ.

From the basic properties of the Bellman operator, for any policy π we have that T∗vπ ≥ vπ.
Consequently, the ν-weighted `1-norm of the residual is indeed the expected Bellman residual:

Jν(π) = Eν [[T∗vπ](S)− vπ(S)] = ν(T∗vπ − vπ).

Therefore, there is naturally no bias problem for minimizing a residual here, contrary to other residual
approaches [1]. This is an interesting result on its own, as removing the bias in value-based residual
approaches is far from being straightforward. This results from the optimization being done over
policies and not over values, and thus from vπ being an actual value (the one of the current policy)
obeying to the Bellman equation6.

Any optimization method can be envisioned to minimize Jν . Here, we simply propose to apply a
subgradient descent (despite the lack of convexity).
Theorem 2 (Subgradient of Jν). Recall that given the considered notations, the distribution νPG(vπ)

is the state distribution obtained by sampling the initial state according to ν, applying the action
being greedy with respect to vπ and following the dynamics to the next state. This being said, the
subgradient of Jν is given by

−∇Jν(π) =
1

1− γ
∑
s,a

(
dν,π(s)− γdνPG(vπ),π(s)

)
π(a|s)∇ lnπ(a|s)qπ(s, a),

with qπ(s, a) = R(s, a) + γ
∑
s′∈S P (s′|s, a)vπ(s′) the state-action value function.

Proof. The proof relies on basic (sub)gradient calculus, it is given in the appendix.

There are two terms in the negative subgradient −∇Jν : the first one corresponds to the gradient of
Jν , the second one (up to the multiplication by −γ) is the gradient of JνPG(vπ)

and acts as a kind of
correction. This subgradient can be estimated using Monte Carlo rollouts, but doing so is harder than
for classic policy search (as it requires additionally sampling from νPG(vπ), which requires estimating

6The property T∗v ≥ v does not hold if v is not the value function of a given policy, as in value-based
approaches.
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the state-action value function). Also, this gradient involves computing the maximum over actions
(as it requires sampling from νPG(vπ), that comes from explicitly considering the Bellman optimality
operator), which prevents from extending easily this approach to continuous actions, contrary to
classic policy search.

Thus, from an algorithmic point of view, this approach has drawbacks. Yet, we do not discuss
further how to efficiently estimate this subgradient since we introduced this approach for the sake
of comparison to standard policy search methods only. For this reason, we will consider an ideal
algorithm in the experimental section where an analytical computation of the subgradient is possible,
see Sec. 4. This will place us in an unrealistically good setting, which will help focusing on the main
conclusions. Before this, we study how good this proxy is to policy optimization.

3.2 Analysis

Theorem 3 (Proxy bound for residual policy search). We have that

‖v∗ − vπ‖1,µ ≤
1

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
Jν(π) =

1

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
‖T∗vπ − vπ‖1,ν .

Proof. The proof can be easily derived from the analyses of [12], [17] or [22]. We detail it for
completeness in the appendix.

This bound shows how controlling the residual helps in controlling the error. It has a linear dependency
on the horizon and the concentrability coefficient is the best one can expect (according to [21]). It has
the same form has the bounds for value-based residual minimization [17, 19] (see also Eq. (1)). It is
even better due to the involved concentrability coefficient (the ones for value-based bounds are worst,
see [21] for a comparison).

Unfortunately, this bound is hardly comparable to the one of Th. 1, due to the error terms. In Th. 3,
the error term (the residual) is a global error (how good is the residual as a proxy), whereas in Th. 1
the error term is mainly a local error (how small is the gradient after minimizing the mean value).
Notice also that Th. 3 is roughly an intermediate step for proving Th. 1, and that it applies to any
policy (suggesting that searching for a policy that minimizes the residual makes sense). One could
argue that a similar bound for mean value maximization would be something like: if Jµ(π) ≥ α, then
‖v∗ − vπ‖1,µ ≤ µv∗ − α. However, this is an oracle bound, as it depends on the unknown solution
v∗. It is thus hardly exploitable.

The aim of this paper is to compare these two optimization approaches to RL. At a first sight,
maximizing directly the mean value should be better (as a more direct approach). If the bounds of
Th. 1 and 3 are hardly comparable, we can still discuss the involved terms. The horizon term is better
(linear instead of quadratic) for the residual approach. Yet, an horizon term can possibly be hidden in
the residual itself. Both bounds imply the same concentrability coefficient, the best one can expect.
This is a very important term in RL bounds, often underestimated: as these coefficients can easily
explode, minimizing an error makes sense only if it’s not multiplied by infinity. This coefficient
suggests that one should use dµ,π∗ as the sampling distribution. This is rarely reasonable, while using
instead directly the distribution of interest is more natural. Therefore, the experiments we propose on
the next section focus on the influence of this concentrability coefficient.

4 Experiments

We consider Garnet problems [2, 4]. They are a class of randomly built MDPs meant to be totally
abstract while remaining representative of the problems that might be encountered in practice. Here,
a Garnet G(|S|, |A|, b) is specified by the number of states, the number of actions and the branching
factor. For each (s, a) couple, b different next states are chosen randomly and the associated
probabilities are set by randomly partitioning the unit interval. The reward is null, except for 10% of
states where it is set to a random value, uniform in (1, 2). We set γ = 0.99.

For the policy space, we consider a Gibbs parameterization: P = {πw : πw(a|s) ∝ ew
>φ(s,a)}.

The features are also randomly generated, F (d, l). First, we generate binary state-features ϕ(s) of
dimension d, such that l components are set to 1 (the others are thus 0). The positions of the 1’s are

5



selected randomly such that no two states have the same feature. Then, the state-action features, of
dimension d|A|, are classically defined as φ(s, a) = (0 . . . 0 ϕ(s) 0 . . . 0)

>, the position of the
zeros depending on the action. Notice that in general this policy space is not stable by stochastic
mixture, so the bound for policy search does not formally apply.

We compare classic policy search (denoted as PS(ν)), that maximizes the mean value, and residual
policy search (denoted as RPS(ν)), that minimizes the mean residual. We optimize the relative
objective functions with a normalized gradient ascent (resp. normalized subgradient descent) with
a constant learning rate α = 0.1. The gradients are computed analytically (as we have access to
the model), so the following results represent an ideal case, when one can do an infinite number of
rollouts. Unless said otherwise, the distribution µ ∈ ∆S of interest is the uniform distribution.

4.1 Using the distribution of interest

First, we consider ν = µ. We generate randomly 100 Garnets G(30, 4, 2) and 100 features F (8, 3).
For each Garnet-feature couple, we run both algorithms for T = 1000 iterations. For each algorithm,
we measure two quantities: the (normalized) error ‖v∗−vπ‖1,µ‖v∗‖1,µ (notice that as rewards are positive, we
have ‖v∗‖1,µ = µv∗) and the Bellman residual ‖T∗vπ − vπ‖1,µ, where π depends on the algorithm
and on the iteration. We show the results (mean±standard deviation) on Fig. 1.
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Figure 1: Results on the Garnet problems, when ν = µ.

Fig. 1.a shows that PS(µ) succeeds in decreasing the error. This was to be expected, as it is the
criterion it optimizes. Fig. 1.c shows how the residual of the policies computed by PS(µ) evolves.
By comparing this to Fig. 1.a, it can be observed that the residual and the error are not necessarily
correlated: the error can decrease while the residual increases, and a low error does not necessarily
involves a low residual.

Fig. 1.d shows that RPS(µ) succeeds in decreasing the residual. Again, this is not surprising, as it is
the optimized criterion. Fig. 1.b shows how the error of the policies computed by RPS(µ) evolves.
Comparing this to Fig. 1.d, it can be observed that decreasing the residual lowers the error: this is
consistent with the bound of Thm. 3.

Comparing Figs. 1.a and 1.b, it appears clearly that RPS(µ) is less efficient than PS(µ) for decreasing
the error. This might seem obvious, as PS(µ) directly optimizes the criterion of interest. However,
when comparing the errors and the residuals for each method, it can be observed that they are not
necessarily correlated. Decreasing the residual lowers the error, but one can have a low error with a
high residual and vice versa.

As explained in Sec. 1, (projected) residual-based methods are prevalent for many reinforcement
learning approaches. We consider a policy-based residual rather than a value-based one to ease the
comparison, but it is worth studying the reason for such a different behavior.

4.2 Using the ideal distribution

The lower the concentrability coefficient ‖dµ,π∗ν ‖∞ is, the better the bounds in Thm. 1 and 3 are.
This coefficient is minimized for ν = dµ,π∗ . This is an unrealistic case (π∗ is unknown), but since
we work with known MDPs we can compute this quantity (the model being known), for the sake
of a complete empirical analysis. Therefore, PS(dµ,π∗) and RPS(dµ,π∗) are compared in Fig. 2. We
highlight the fact that the errors and the residuals shown in this figure are measured respectively to
the distribution of interest µ, and not the distribution dµ,π∗ used for the optimization.
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Figure 2: Results on the Garnet problems, when ν = dµ,π∗ .

Fig. 2.a shows that PS(dµ,π∗) succeeds in decreasing the error ‖v∗ − vπ‖1,µ. However, comparing
Fig. 2.a to Fig. 1.a, there is no significant gain in using ν = dµ,π∗ instead of ν = µ. This suggests
that the dependency of the bound in Thm. 1 on the concentrability coefficient is not tight. Fig. 2.c
shows how the corresponding residual evolves. Again, there is no strong correlation between the
residual and the error.

Fig. 2.d shows how the residual ‖T∗vπ − vπ‖1,µ evolves for RPS(dµ,π∗). It is not decreasing, but it
is not what is optimized (the residual ‖T∗vπ − vπ‖1,dµ,π∗ , not shown, decreases indeed, in a similar
fashion than Fig. 1.d). Fig. 2.b shows how the related error evolves. Compared to Fig. 2.a, there is no
significant difference. The behavior of the residual is similar for both methods (Figs. 2.c and 2.d).

Overall, this suggests that controlling the residual (RPS) allows controlling the error, but that this
requires a wise choice for the distribution ν. On the other hand, controlling directly the error (PS)
is much less sensitive to this. In other words, this suggests a stronger dependency of the residual
approach to the mismatch between the sampling distribution and the discounted state occupancy
measure induced by the optimal policy.

4.3 Varying the sampling distribution

This experiment is designed to study the effect of the mismatch between the distributions. We sample
100 Garnets G(30, 4, 2), as well as associated feature sets F (8, 3). The distribution of interest is no
longer the uniform distribution, but a measure that concentrates on a single starting state of interest
s0: µ(s0) = 1. This is an adverserial case, as it implies that ‖dµ,π∗µ ‖∞ =∞: the branching factor
being equal to 2, the optimal policy π∗ cannot concentrate on s0.

The sampling distribution is defined as being a mixture between the distribution of interest and the
ideal distribution. For α ∈ [0, 1], να is defined as να = (1− α)µ+ αdµ,π∗ . It is straightforward to
show that in this case the concentrability coefficient is indeed 1

α (with the convention that 1
0 =∞):∥∥∥∥dµ,π∗να

∥∥∥∥
∞

= max

(
dµ,π∗(s0)

(1− α) + αdµ,π∗(s0)
;

1

α

)
=

1

α
.

For each MDP, the learning (for PS(να) and RPS(να)) is repeated, from the same initial policy, by
setting α = 1

k , for k ∈ [1; 25]. Let πt,x be the policy learnt by algorithm x (PS or RPS) at iteration t,
the integrated error (resp. integrated residual) is defined as

1

T

T∑
t=1

‖v∗ − vπt,x‖1,µ
‖v∗‖1,µ

(resp.
1

T

T∑
t=1

‖T∗vπt,x − vπt,x‖1,µ).

Notice that here again, the integrated error and residual are defined with respect to µ, the distribution
of interest, and not να, the sampling distribution used for optimization. We get an integrated error
(resp. residual) for each value of α = 1

k , and represent it as a function of k = ‖dµ,π∗να
‖∞, the

concentrability coefficient. Results are presented in Fig. 3, that shows these functions averaged across
the 100 randomly generated MDPs (mean±standard deviation as before, minimum and maximum
values are shown in dashed line).

Fig. 3.a shows the integrated error for PS(να). It can be observed that the mismatch between measures
has no influence on the efficiency of the algorithm. Fig. 3.b shows the same thing for RPS(να). The
integrated error increases greatly as the mismatch between the sampling measure and the ideal one
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PS(να).
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for RPS(να).

Figure 3: Results for the sampling distribution να.

increases (the value to which the error saturates correspond to no improvement over the initial policy).
Comparing both figures, it can be observed that RPS performs as well as PS only when the ideal
distribution is used (this corresponds to a concentrability coefficient of 1). Fig. 3.c and 3.d show the
integrated residual for each algorithm. It can be observed that RPS consistently achieves a lower
residual than PS.

Overall, this suggests that using the Bellman residual as a proxy is efficient only if the sampling
distribution is close to the ideal one, which is difficult to achieve in general (the ideal distribution
dµ,π∗ being unknown). On the other hand, the more direct approach consisting in maximizing the
mean value is much more robust to this issue (and can, as a consequence, be considered directly with
the distribution of interest).

One could argue that the way we optimize the considered objective function is rather naive (for
example, considering a constant learning rate). But this does not change the conclusions of this
experimental study, that deals with how the error and the Bellman residual are related and with how
the concentrability influences each optimization approach. This point is developed in the appendix.

5 Conclusion

The aim of this article was to compare two optimization approaches to reinforcement learning:
minimizing a Bellman residual and maximizing the mean value. As said in Sec. 1, Bellman residuals
are prevalent in ADP. Notably, value iteration minimizes such a residual using a fixed-point approach
and policy iteration minimizes it with a Newton descent. On another hand, maximizing the mean
value (Sec. 2) is prevalent in policy search approaches.

As Bellman residual minimization methods are naturally value-based and mean value maximization
approaches policy-based, we introduced a policy-based residual minimization algorithm in order to
study both optimization problems together. For the introduced residual method, we proved a proxy
bound, better than value-based residual minimization. The different nature of the bounds of Th. 1
and 3 made the comparison difficult, but both involve the same concentrability coefficient, a term
often underestimated in RL bounds.

Therefore, we compared both approaches empirically on a set of randomly generated Garnets,
the study being designed to quantify the influence of this concentrability coefficient. From these
experiments, it appears that the Bellman residual is a good proxy for the error (the distance to the
optimal value function) only if, luckily, the concentrability coefficient is small for the considered
MDP and the distribution of interest, or one can afford a change of measure for the optimization
problem, such that the sampling distribution is close to the ideal one. Regarding this second point,
one can change to a measure different from the ideal one, dµ,π∗ (for example, using for ν a uniform
distribution when the distribution of interest concentrates on a single state would help), but this is
difficult in general (one should know roughly where the optimal policy will lead to). Conversely,
maximizing the mean value appears to be insensitive to this problem. This suggests that the Bellman
residual is generally a bad proxy to policy optimization, and that maximizing the mean value is more
likely to result in efficient and robust reinforcement learning algorithms, despite the current lack of
deep theoretical analysis.

This conclusion might seems obvious, as maximizing the mean value is a more direct approach, but
this discussion has never been addressed in the literature, as far as we know, and we think it to be
important, given the prevalence of (projected) residual minimization in value-based RL.
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A Proof of Theorem 2

Theorem 2 (Subgradient of Jν). Recall that given the considered notations, the distribution νPG(vπ)

is the state distribution obtained by sampling the initial state according to ν, applying the action
being greedy with respect to vπ and following the dynamics to the next state. This being said, the
subgradient of Jν is given by

−∇Jν(π) =
1

1− γ
∑
s,a

(
dν,π(s)− γdνPG(vπ),π(s)

)
π(a|s)∇ lnπ(a|s)qπ(s, a),

with qπ(s, a) = R(s, a) + γ
∑
s′∈S P (s′|s, a)vπ(s′).

Proof. The considered objective function can be rewritten as

Jν(π) =
∑
s∈S

ν(s)

(
max
a∈A

qπ(s, a)− vπ(s)

)
.

The classic policy gradient theorem [24] states that

∇(νvπ) =
∑
s∈S

ν(s)∇vπ(s)

=
1

1− γ
∑
s∈S

dν,π(s)
∑
a∈A
∇π(a|s)qπ(s, a).

On the other hand, from basic subgradient calculus rules, we have that ∇maxa∈A qπ(s, a) =
∇qπ(s, a∗s), with a∗s ∈ argmaxa∈A qπ(s, a). Therefore:

∇
∑
s∈S

ν(s) max
a∈A

qπ(s, a)

=
∑
s∈S

ν(s)∇qπ(s, a∗s),

=
∑
s∈S

ν(s)∇
(
R(s, a∗s) + γ

∑
s′∈S

P (s′|s, a∗s)vπ(s′)

)
= γ

∑
s∈S

ν(s)
∑
s′∈S

P (s′|s, a∗s)∇vπ(s′).

By noticing that ν(s)
∑
s′∈S P (s′|s, a∗s) = [νPG(vπ)](s) and that∇π(a|s) = π(a|s)∇ lnπ(a|s), we

obtain the stated result.

B Proof of Theorem 3

Theorem 3 (Proxy bound for residual policy search). We have that

‖v∗ − vπ‖1,µ ≤
1

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
Jν(π) =

1

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
‖T∗vπ − vπ‖1,ν .

Proof. The proof can be easily derived from the analyses of [12], [17] or [22]. We detail it for
completeness in the following.

First, notice that for any policy π we have that v∗ ≥ vπ , thus ‖v∗ − vπ‖1,µ = µ(v∗ − vπ). Using the
fact that vπ = (I − γPπ)−1Rπ , we have:

vπ′ − vπ = (I − γPπ′)−1Rπ′ − vπ
= (I − γPπ′)−1(Rπ′ + γPπ′ − vπ)

= (I − γPπ′)−1(Tπ′vπ − vπ).
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Using this and the fact that T∗vπ ≥ Tπ′vπ , we have that

µ(vπ′ − vπ) = µ(I − γPπ′)−1(Tπ′vπ − vπ)

=
1

1− γ dµ,π′(Tπ′vπ − vπ)

≤ 1

1− γ dµ,π′(T∗vπ − vπ).

By the definition of the concentrability coefficient, dµ,π′ ≤ ν‖dµ,π′ν ‖∞, and as we assumed that
ν(T∗vπ − vπ) ≤ e, we have

µ(vπ′ − vπ) ≤ 1

1− γ

∥∥∥∥dµ,π′ν

∥∥∥∥
∞
ν(T∗vπ − vπ)

≤ 1

1− γ

∥∥∥∥dµ,π′ν

∥∥∥∥
∞
e.

Choosing π′ = π∗ gives the stated bound.

C More on the relation between the residual and the error
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Figure 4: Error as a function of the residual.

As said at the end of the experimental section, one could argue that the way we optimize the considered
objective function is rather naive (for example, considering a constant learning rate). But this does
not change the conclusions of this experimental study, that deals with how the error and the Bellman
residual are related and with how the concentrability influences each optimization approach.

To expand on this, we consider the experiment of Sec. 4.1, where the distribution of interest is directly
used. As this distribution is uniform, the concentrability coefficient is bounded (by the number of
states), whatever the MDP is. Recall that for this experiment, we generated 100 Garnets and ran both
algorithms for 1000 iterations, measuring the normalized error and the Bellman residual.

In Fig. 4, we show the error as a function of the Bellman residual for these experiments. These are
the same data that where used for Fig. 1, presented in a different manner. Each curve corresponds to
the learning in one MDP. Fig. 4.a shows the error as a function of the Bellman residual for RPS(µ),
and Fig. 4.b shows the same thing for PS(µ).

The important thing is that these figures depend weakly on how the optimization is performed. A
wise choice of the meta-parameters (or even of the optimization algorithm) will influence how fast
and how well the objective criterion is optimized, but not on the mapping from residual to errors (or
the converse).

Fig. 4.a shows this link for RPS. To see how learning processes, take the start of a curve in the
upper-right of the graph (high residual) and follow it up to the left (low residual). As the residual
decreases, so the error does (depending also on the concentrability of the MDP), which is consistent
with the bound of Th. 3.
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Fig. 4.b shows this link for PS. To see how learning processes, take the start of a curve in the upper-left
of the graph (high error), and follow it up to the bottom (low error). We do not observe the same
behavior as before. This was to be expected, and shows mainly that the error is not a proxy to the
residual. More importantly, it shows that for decreasing the error, it might be efficient to highly
increase the residual. This suggests that the residual is a bad proxy to policy optimization, and that
maximizing directly the mean value is much more efficient (and insensitive to the concentrability,
according to the rest of the experiments, which is a very important point).
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