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Abstract. Human activity recognition using smart home sensors is one
of the bases of ubiquitous computing in smart environments and a topic
undergoing intense research in the field of ambient assisted living. The
increasingly large amount of data sets calls for machine learning methods.
In this paper, we introduce a deep learning model that learns to classify
human activities without using any prior knowledge. For this purpose,
a Long Short Term Memory (LSTM) Recurrent Neural Network was
applied to three real world smart home datasets. The results of these
experiments show that the proposed approach outperforms the existing
ones in terms of accuracy and performance.
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1 Introduction

Human Activity recognition has been an active research area in the last decades
due to its applicability in different domains and the increasing need for home
automation and convenience services for the elderly [1]. Among them, activity
recognition in Smart Homes with the use of simple and ubiquitous sensors, has
gained a lot of attention in the field of ambient intelligence and assisted living
technologies for enhancing the quality of life of the residents within the home
environment [2].

The goal of activity recognition is to identify and detect simple and complex
activities in real world settings using sensor data. It is a challenging task, as the
data generated from the sensors are sometimes ambiguous with respect to the
activity taking place. This causes ambiguity in the interpretation of activities.
Sometimes the data obtained can be noisy as well. Noise in the data can be
caused by humans or due to error in the network system which fails to give
correct sensor readings. Such real-world settings are full of uncertainties and
calls for methods to learn from data, to extract knowledge and helps in making
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decisions. Moreover, the inverse probability allows to infer unknowns and to
make predictions [3].

Consequently, many different probabilistic, but also non-probabilistic models,
have been proposed for human activity recognition. Patterns corresponding to
the activities are detected using sensors such as accelerometers, gyroscopes or
passive infrared sensors, etc., either using feature extraction on sliding window
followed by classification [4] or with Hidden Markov Modeling (HMM) [5].

In recent years, there has been a growing interest in deep learning techniques.
Deep learning is a general term for neural network methods which are based on
learning representations from raw data and contain more than one hidden layer.
The network learns many layers of non-linear information processing for feature
extraction and transformation. Each successive layer uses the output from the
previous layer as input. Deep learning techniques have already outperformed
other machine learning algorithms in applications such as computer vision [6],
audio [7] and speech recognition [8].

In this paper, we introduce a recurrent neural network model for human
activity recognition. The classification of the human activities such as cooking,
bathing, and sleeping is performed using the Long Short-Term Memory classifier
(LSTM) on publicly available Benchmark datasets [9]. An evaluation of the
results has been performed by comparing with the standardized machine learning
algorithms such as Naive Bayes, HMM, Hidden Semi-Markov Model (HSMM)
and Conditional Random Fields (CRF).

The paper is organized as follows. Section 2 presents an overview of activity
recognition models and related work in machine learning techniques. Section 3
introduces Long Short-Term Memory (LSTM) recurrent neural networks. Sec-
tion 4 describes the datasets that were used and explains the results in compari-
son to different well-known algorithms. Finally, Section 5 discusses the outcomes
of the experiments and suggestions for future work.

2 Related work

In previous research, activity recognition models have been classified into data-
driven and knowledge-driven approaches. The data-driven approaches are capa-
ble of handling uncertainties and temporal information [10] but require large
datasets for training and learning. Unfortunately, the availability of large real
world datasets is a major challenge in the field of ambient assisted living. The
knowledge-driven techniques are used in predictions and follow a description-
based approach to model the relationships between sensor data and activities.
These approaches are easy to understand and use but they cannot handle un-
certainty and temporal information [11].

Various approaches have been explored for activity recognition, among them
the majority of the techniques focuses on classification algorithms such as Naive
Bayes (NB) [12], Decision Trees [13], HMM [5] , CRF [14], Nearest Neighbor
(NN) [15], Support Vector Machines (SVM) [16] and different boosting tech-
niques.
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A simple probabilistic classifier in machine learning is the Naive Bayes clas-
sifier which yields good accuracy with large amounts of sample data but does
not model any temporal information. The HMM, HSMM, and CRF are the most
popular approaches for including such temporal information. However, these ap-
proaches sometimes discard pattern sequences that convey information through
the length of intervals between events. This motivates the study of recurrent neu-
ral networks (RNN) which promises the recognition of patterns that are defined
by temporal distance [17].

LSTM is a recurrent neural network architecture that is designed to model
temporal sequences and learn long-term dependency problems. The network is
well suited for language modeling tasks; it has been shown that the network in
combination with clustering techniques increases the training and testing time
of the model [18] and outperforms the large scale acoustic model in speech recog-
nition systems [19].

3 LSTM Model

LSTM is a recurrent neural network architecture that was proposed in [20].
Another version without a forget gate was later proposed in [21] and extended
in [22]. LSTM has been developed in order to deal with gradient decay or gradient
blow-up problems and can be seen as a deep neural network architecture when
unrolled in time. The LSTM layer’s main component is a unit called memory
block. An LSTM block has three gates which are input, output and forget gates.
These gates can be seen as write, read and reset operations for the cells. An
LSTM cell state is the key component which carries the information between
each LSTM block. Modifications to the cell state are controlled with the three
gates described above. An LSTM single cell, as well as how each gate is connected
to each other and the cell state itself, can be seen in Figure 1.

Fig. 1: LSTM single cell image [23].
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Each gate and cell state are governed by multiplicative equations that are
given by:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi),

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo),

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc),

ht = ot tanh ct,

with W being the weight matrix and x is the input, σ being the sigmoid and
tanh is the hyperbolic tangent activation function. The terms i, f and o are
named after their corresponding gates and c represents the memory cell [23].

xt−n

LSTMht−n−1

yt−n

...

xt+n

LSTM ht+n+1

yt+n

Fig. 2: Illustrations of an LSTM network with x being the binary vector for
sensor input and y being the activity label prediction of the LSTM network.

By unrolling LSTM single cells in time we construct an LSTM layer where
ht is the hidden state and yt is the output at time t as shown in Figure 2.

4 Experiments

4.1 Dataset

Publicly available and annotated sensor datasets have been used to evaluate
the performance of the proposed approach [9]. In this dataset, there are three
houses with different settings to collect sensory data. The three different houses
were all occupied by a single user named A, B, and C respectively. Each user
recorded and annotated their daily activities. Different number of binary sensors
were deployed in each house such as passive infrared (PIR) motion detectors to
detect motion in a specific area, pressure sensors on couches and beds to identify
the user’s presence, reed switches on cupboards and doors to measure open or
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close status, and float sensors in the bathroom to measure toilet being flushed
or not. The data were annotated using two approaches: (1) keeping a diary in
which the activities were logged by hand and (2) with the use of a blue tooth
headset along with a speech recognition software. A total of three datasets were
collected from the three different houses. Details about the datasets are shown in
Table 1 where each column shows the details of the house with the information
of the user living in it, the sensors placed in the house and the number of activity
labels that were used.

Table 1: Details of the datasets.
House A House B House C

Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6

Duration 25days 14days 19days
Sensors 14 23 21

Activities 10 13 16
Annotation Bluetooth Diary Bluetooth

The data used in the experiments have different representation forms. The
first form is raw sensor data, which are the data received directly from the sensor.
The second form is last-fired sensor data which are the data received from the
sensor that was fired last. The last firing sensor gives continuously 1 and changes
to 0 when another sensor changes its state. For each house, we left one day out
of the data to be used later for the testing phase and used the rest of the data
for training. We repeated this for every day and for each house. Separate models
are trained for each house since the number of sensors varies, and a different
user resides in each house. Sensors are recorded at one-minute intervals for 24
hours, which totals in 1440 length input for each day.

4.2 Results

The results presented in Table 2 show the performance of the LSTM model
on raw sensor data in comparison with the results of NB, HMM, HSMM and
CRF [9]. Table 3 shows the results of the LSTM model on last-fired sensor data
again in comparison with the results of NB, HMM, HSMM and CRF. For the
LSTM model, a time slice of (70) with hidden state size (300) are used. For the
optimization of the network, Adam is used with a learning rate of 0.0004 [24]
and Tensorflow was used to implement the LSTM network. The training took
place on a Titan X GPU and the time required to train one day for one house is
approximately 30 minutes, but training times differ amongst the houses. Since
different houses have different days we calculated the average accuracy amongst
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all days. The training is performed using a single GPU but the trained models
can be used for inference without losing performance when there is no GPU.

Table 2: Results of raw sensor data
Model House A House B House C

Naive Bayes 77.1 ± 20.8 80.4 ± 18.0 46.5 ± 22.6
HMM 59.1 ± 28.7 63.2 ± 24.7 26.5 ± 22.7

HSMM 59.5 ± 29.0 63.8 ± 24.2 31.2 ± 24.6
CRF 89.8 ± 8.5 78.0 ± 25.9 46.3 ± 25.5

LSTM(Ours) 89.8± 8.2 85.7± 14.3 64.22± 21.9

Table 2 shows the results of different models on raw data from three different
houses. The LSTM model has the best performance for all three data sets. In
House B and House C, LSTM improves the best result significantly especially
on House C where the improvement is approximately 40%.

Table 3: Results of last-fired sensor data
Model House A House B House C

Naive Bayes 95.3 ± 2.8 86.2 ± 13.8 87.0 ± 12.2
HMM 89.5 ± 8.4 48.4 ± 26.0 83.9 ± 13.9

HSMM 91.0 ± 7.2 67.1 ± 24.8 84.5 ± 13.2
CRF 96.4± 2.4 89.2± 13.9 89.7± 8.4

LSTM 95.3 ± 2.0 88.5 ± 12.6 85.9 ± 10.6

Table 3 shows the results on last fired data from three different houses using
the same models as in Table 2. The LSTM model did not improve the results in
this section but it matched the best performance for two data sets with a slight
drop in House C.

5 Discussion

The results presented in this paper show that the deep learning based approaches
for activity recognition from raw sensory inputs can lead to significant improve-
ment in performance, increased accuracy, and better results. As shown in Section
4.2 our LSTM based activity predictor matched or outperformed existing prob-
abilistic models such as Naive Bayes, HMM, HSMM and CRF on raw input
and in one case improved the best result by 40%. Predicting on raw input also
reduces the human efforts required on data preprocessing and handcrafting fea-
tures which can be very time consuming when it comes to an AAL (Ambient
Assisted Living) environment.
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6 Future Work

Our future work will focus on reducing the variance on our predictions and early
stopping criteria while training on different days. The LSTM model has different
hyperparameters which affect the performance of the model significantly. Differ-
ent optimization and hyperparameter search techniques could be investigated
in the future. Since the LSTM model has proven to be superior on raw data it
would be interesting to also apply other deep learning models. One problem is
that deep learning badly captures model uncertainty. Bayesian models offer a
framework to reason about model uncertainty. Recently, Yarin & Ghahramani
(2016) [25] developed a theoretical framework casting dropout training in deep
neural networks as approximate Bayesian inference in deep Gaussian processes.
This mitigates the problem of representing uncertainty in deep learning without
sacrificing either computational complexity or test accuracy.
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