
1

Bridging the Gap between Imitation Learning and
Inverse Reinforcement Learning
Bilal Piot, Matthieu Geist, and Olivier Pietquin, Senior Member, IEEE

Abstract—Learning from Demonstrations (LfD) is a paradigm
by which an apprentice agent learns a control policy for a
dynamic environment by observing demonstrations delivered by
an expert agent. It is usually implemented as either Imitation
Learning (IL) or Inverse Reinforcement Learning (IRL) in the
literature. On the one hand, IRL is a paradigm relying on Markov
Decision Processes (MDPs), where the goal of the apprentice
agent is to find a reward function from the expert demonstrations
that could explain the expert behavior. On the other hand, IL
consists in directly generalizing the expert strategy, observed in
the demonstrations, to unvisited states (and it is therefore close
to classification, when there is a finite set of possible decisions).
While these two visions are often considered as opposite to each
other, the purpose of this paper is to exhibit a formal link between
these approaches from which new algorithms can be derived.
We show that IL and IRL can be redefined in a way that they
are equivalent, in the sense that there exists an explicit bijective
operator (namely the inverse optimal Bellman operator) between
their respective spaces of solutions. To do so, we introduce the
set-policy framework which creates a clear link between IL and
IRL. As a result, IL and IRL solutions making the best of both
worlds are obtained. In addition, it is a unifying framework from
which existing IL and IRL algorithms can be derived and which
opens the way for IL methods able to deal with the environment’s
dynamics. Finally, the IRL algorithms derived from the set-policy
framework are compared to algorithms belonging to the more
common trajectory-matching family. Experiments demonstrate
that the set-policy-based algorithms outperform both standard
IRL and IL ones and result in more robust solutions.

Index Terms—Learning from Demonstrations, Inverse Rein-
forcement Learning, Imitation Learning.

I. INTRODUCTION

Because of the growing interest in robotics and other
complex systems (such as interactive systems), new machine
learning methods for model-free control have been the subject
of many researches this last decade. Especially, Learning from
Demonstrations (LfD) [1]–[4] is a promising paradigm where
limited programming skills are required and almost no ad hoc
modeling is necessary. LfD consists in providing examples of
the optimal behavior (in the form of a sequence of actions)
to a learning agent so as to make it reproducing a similar
behavior, even in unseen situations. The learning agent is then
called the apprentice and the demonstrating agent is called the
expert. This paradigm, because of its promising applications,
has already been used in several domains such as robotics [4]
or human-machine interaction [5].

B. Piot is a member of Univ. Lille, Centrale Lille, Inria, CNRS, UMR 9189
- CRIStAL, F-59000 Lille, France, bilal.piot@univ-lille1.fr

M. Geist, UMI 2958, Georgia Tech - CNRS, CentraleSupélec, Université
Paris-Saclay, 57070 Metz, France, matthieu.geist@centralesupelec.fr

O. Pietquin is a member of IUF and Univ. Lille, Centrale Lille, Inria, CNRS,
UMR 9189 - CRIStAL, F-59000 Lille, France, olivier.pietquin@univ-lille1.fr

In many cases, the LfD problem is placed in the framework
of Markov Decision Processes (MDP) [6], [7]. In machine
learning, this is a standard framework for describing a dy-
namical system and learning an optimal controller for it. The
system is described as a set of states, actions and transitions
and the learned behavior takes the form of a policy, mapping
from states to actions. Usually, this is done via Reinforcement
Learning [8] where, after each action, the learning agent is
provided with an immediate numerical feedback (called a re-
ward) depending on the quality of the action. In consequence,
the agent learns a policy that maximizes the cumulative reward
over time. In the MDP framework, solving the LfD problem
thus consists in learning a policy performing as well as the
expert agent but using a finite set of demonstrations instead
of the reward signal. The type of guidance used in LfD
(demonstration of expert actions in given states) is thus very
different from the one used in RL (numerical feedback).

In the literature, one can find two main trends of imple-
mentation of LfD: Imitation Learning (IL) [1], [2], [9], [10] or
Inverse Reinforcement Learning (IRL) [11], [12]. While these
two approaches are often considered in opposition, the main
contribution of this paper is to propose a unifying framework,
namely the set-policy framework, exhibiting a formal link
between their spaces of solutions.

IL consists in directly learning the mapping between states
and actions (the policy), considering this task as a supervised
learning problem. Most of the time, the action set is finite,
and IL can be reduced to a Multi-Class Classification (MCC)
problem [1], [10], [13] where each state is labeled with
the corresponding expert action. MCC algorithms are easy
to implement, can be non-parametric and even extended to
relational domains [14]. MCC-based IL has also been shown
to be theoretically sound in the finite [10] and infinite [15]
horizon settings. However, MCC algorithms do not take into
account the dynamics of the underlying MDP, which is an
important drawback. Indeed, an MCC algorithm will not learn
on the basis of the consequences of its actions when applied to
the dynamical system but relies only on demonstrations. To al-
leviate this limitation, some rare IL methods integrate informa-
tion about the dynamics by using a regularized classification
method [16] or a kernel-based classification technique [17]
where the kernel is determined using MDP metrics [18]. This
often leads to much more complex algorithms. We do not
consider here IL methods relying on the assumption that it is
possible to query the expert for specific demonstrations during
the learning process [19], [20].

On the other hand, IRL [11], [12] relies on the assump-
tion that the expert’s policy is optimal with respect to an

2

unknown reward function. In this case, the first aim of the
apprentice is to learn a reward function that explains the
observed expert behavior. Then, using direct reinforcement
learning, it optimizes its policy according to this reward and
hopefully behaves as well as the expert. Learning a reward has
some advantages over learning a policy immediately. First, the
reward can be analyzed so as to better understand the expert’s
behavior. Second, it allows adapting to perturbations in the
dynamics of the environment [15], [21]. In other words, it is
transferable to other environments. Third, it allows improving
with time through real interactions and without requiring new
demonstrations. However, a major issue is that an MDP must
be solved to obtain the optimal policy with respect to the
learned reward. Another issue is that the IRL problem is ill-
posed as every policy is optimal for the null reward (which is
obviously not the reward one is looking for). More generally, a
good IRL algorithm should discard reward functions for which
too many actions are optimal (trivial rewards).

The seminal IRL algorithms were incremental and needed
to repeatedly solve MDPs [22]–[24]. These incremental meth-
ods can be seen as a family of algorithms that iteratively
build a reward generating policies for which the trajectories
(in the MDP) gets closer to the ones of the expert [25].
Here, we refer to this family as the trajectory-matching
framework. Each step of these algorithms requires solving
an MDP for an intermediate reward (one exception is the
Relative Entropy algorithm [26]), which is a difficult problem
in general. In addition, these algorithms usually assume a
linear parameterization of the reward functions with respect
to some features. The choice of features is highly problem-
dependent and requires a careful engineering work. Avoiding
these drawbacks, recent IRL algorithms such as Structured
Classification for IRL (SCIRL) [27], Relative Entropy [26] or
Cascaded Supervised IRL (CSI) [28] directly learn a reward
function without solving any MDP.

To sum up, it comes out that IL suffers from ignoring
the dynamics of the environment and IRL from being ill-
posed. The major claim of this paper is that the proposed
set-policy framework tackles these two issues and provides
a best-of-both-world solution. More precisely, we show that
it is possible to slightly modify the definitions of both IL
and IRL problems such that they are equivalent in the sense
that there exists an explicit bijective operator (namely the
inverse optimal Bellman operator) between their respective
spaces of solutions. Doing so, IRL and IL benefit from each
other, IRL becomes well-defined and IL takes the dynamics
into account. Besides, this new paradigm allows us to easily
derive existing IRL algorithms such as SCIRL and CSI. It also
provides some insights on how it is possible to obtain new
IL algorithms that take into account the underlying dynamics
such as Reward Regularized Classification for Apprenticeship
Learning (RCAL) [16].

The remaining of the paper is organized as follows. First, the
MDP, IRL and IL frameworks are presented in Sec. II. Then,
the set-policy framework, which is the main contribution of
this paper, is introduced in Sec. III. From this, the SCIRL,
CSI and RCAL algorithms are derived again in Sec. IV.
Finally, IRL algorithms relying on the set-policy framework

are compared to trajectory-matching algorithms in a generic
experiment (see Sec. V) which uses randomly generated MDPs
called Garnet [29]. Comparison is made according to different
levels of knowledge of the dynamics and given several levels
of quality of the feature space. Experiments show that com-
bining both IRL and IL results in an increased robustness of
algorithms and improved performances.

II. BACKGROUND

In this section, we briefly present the concepts of MDP,
IRL and IL. The notations are given as we go along and
summarized in Sec. VI-C.

A. Markov Decision Processes

In this section, MDPs are briefly described. The reader can
refer to [6] for further details. In this paper, we will consider
finite MDPs1. An MDP2 models the interactions of an agent
evolving in a dynamic environment and is represented by a
tuple MR = {S,A,R, P, γ} where S = {si}1≤i≤NS is the
finite state space with NS ∈ N∗ states, A = {ai}1≤i≤NA
is the finite action space with NA ∈ N actions, R ∈ RS×A
is the reward function 3 where R(s, a) is the local benefit
of doing action a in state s, γ ∈]0, 1[is a discount factor
and P ∈ ∆S×A

S is the Markovian dynamics which gives the
probability4, P (s′|s, a), to step in s′ by performing action a
in state s. A Markovian and stationary policy π is an element
of ∆S

A and defines the behaviour of an agent. In particular,
π(a|s) gives the probability of doing the action a in the state
s. When ∀s ∈ S,Card(Supp(π(.|s))) = 1 which means that
for all states only one action is chosen5, the policy π ∈ ∆S

A is
said deterministic and can be identified to an element πD ∈ AS
such that: ∀s ∈ S, πD(s) = Supp(π(.|s)). In the remaining, if
π is deterministic, with an abuse of notation, π will represent
π ∈ ∆S

A or its counterpart πD ∈ AS depending on the context.
In order to quantify the quality of a policy π with respect

to the reward R, the quality function, also called the state-
action value function, is defined. For a given MDP MR

and a given policy π, the quality function QπR ∈ RS×A
maps each state-action couple (s, a) to the expected and
discounted cumulative reward for starting in state s, doing
the action a and following the policy π afterwards. It can
be formalized as QπR(s, a) = Eπs,a[

∑+∞
t=0 γ

tR(st, at)], where
Eπs,a is the expectation over the distribution of the admissible
trajectories (s0, a0, s1, ., . . .) obtained by executing the policy
π starting from s0 = s and a0 = a. In addition, the function
Q∗R ∈ RS×A defined as Q∗R = maxπ∈∆S

A
QπR is called

the optimal quality function. For ease of writing, for each
Q ∈ RS×A and each π, we define f∗Q ∈ RS such that

1This work could be easily extended to measurable state spaces as in [30]
for instance; we choose the finite case for the ease and clarity of exposition.

2MDPs will be indexed by their reward function R which means that the
other parameters are fixed and R is seen as a variable.

3Let X and Y be two non empty sets, Y X is the set of functions from X
to Y .

4If X and Y are finite, ∆X the set of distributions over X and ∆Y
X is the

set of functions from Y to ∆X .
5Card(X) represents the cardinal of a finite set X and Supp(α) is the

support of α: Supp(α) = {x ∈ X,α(x) > 0} where α ∈ ∆X

3

∀s ∈ S, f∗Q(s) = maxa∈AQ(s, a) and fπQ ∈ RS such that
∀s ∈ S,∀a ∈ A, fπQ(s) =

∑
a∈A π(a|s)Q(s, a). From the

quality function QπR and the optimal quality function Q∗R, we
can define the value function V πR = fπQπR

and the optimal value
function V ∗R = f∗Q∗

R
. Furthermore, one can show that QπR and

Q∗R are fixed points of the two following contracting operators
TπR and T ∗R [6], ∀Q ∈ RS×A,∀(s, a) ∈ S ×A:

TπRQ(s, a) = R(s, a) + γEP (.|s,a)[f
π
Q],

T ∗RQ(s, a) = R(s, a) + γEP (.|s,a)[f
∗
Q]. (1)

Finally, a policy π is said greedy with respect to a function
Q if: ∀s ∈ S, Supp(π(.|s)) ⊂ argmaxa∈AQ(s, a).
If π is deterministic, π is greedy with respect to a function
Q if: ∀s ∈ S, π(s) ∈ argmaxa∈AQ(s, a).

Dynamic Programming denotes a set of techniques to find
optimal policies given an MDP which are characterized by
Theorem 1. Several variants of this theorem are proven in [6],
[7].

Theorem 1 (Characterization of optimal policies). For a given
MDP MR = {S,A,R, P, γ}, a policy π ∈ ∆S

A is said optimal
if and only if:

V πR = V ∗R ⇔∀s ∈ S, Supp(π(.|s)) ⊂ argmax
a∈A

[QπR(s, a)],

⇔∀s ∈ S, Supp(π(.|s)) ⊂ argmax
a∈A

[Q∗R(s, a)].

This theorem states that greedy policies with respect to the
optimal quality function or to their own quality functions are
optimal. It is central (see Sec. III) in our set-policy framework.

B. Inverse Reinforcement Learning (IRL)

IRL is a method that aims at finding a reward function R
that could explain the expert policy πE (which is considered
optimal with respect to an unknown reward RE) from demon-
strations. Demonstrations are provided in the form of sampled
transitions (possibly but not necessarily forming trajectories)
of the expert policy. In general, IRL occurs in a batch setting
where the dynamics P of the MDP is unknown and where
no interaction with the MDP is possible while learning. Thus,
only transitions sampled from an MDP and without rewards
{S,A, P, γ} are available to the apprentice. More formally, a
batch IRL algorithm receives as inputs a set DE of expert
sampled transitions DE = (sk, ak, s

′
k)1≤k≤NE where sk ∈ S,

ak ∼ πE(.|sk)6, and s′k ∼ P (.|sk, ak) and if available a set
of non-expert sampled transitions DNE = (sl, al, s

′
l)1≤l≤NNE

where sl ∈ S, al ∈ A, and s′l ∼ P (.|sl, al) which provides
partial information on the dynamics.

The goal of an IRL algorithm is to compute a reward R for
which all expert actions and only expert actions are optimal:

∀s ∈ S, argmax
a∈A

Q∗R(s, a) = Supp(πE(.|s)).

Indeed, preventing non-expert actions to be optimal with
respect to the reward R is crucial to imitate the expert. To

6Let x ∈ X , the notation x ∼ ν means that x is a realization of a random
variable which is sampled according to ν ∈ ∆X

do that, one must search for a non-trivial reward, that is a
reward for which the expert policy is optimal and for which
only expert actions are optimal or at least a subset of expert
actions:

∀s ∈ S, argmax
a∈A

Q∗R(s, a) ⊂ Supp(πE(.|s)). (2)

The IRL literature thus consists of methods aiming at finding
non-trivial rewards [22]–[24], [26], [27]. Once the reward is
learned, the MDP MR = {S,A,R, P, γ} must be solved to
compute the apprentice policy, which is a problem as such.

C. Imitation Learning (IL)

IL designates methods trying to generalize the policy πE
observed in the expert data set DE to any situation. More
formally, the aim of an IL algorithm is to find, for each state
s, the set of actions that would have been performed by the
expert Supp(πE(.|s)), or at least a subset of Supp(πE(.|s)),
from the expert data set DE and maybe some information on
the dynamics P . Most often, IL is realized in a batch setting
where only available information is DE and DNE . The IRL
and IL batch settings thus share the same input sets.

Batch IL is often reduced to Multi-class Classification
(MCC) [10], [15]. Basically, MCC learns a mapping f ∈ Y X
between inputs x ∈ X and labels y ∈ Y (Y being finite)
given a training set (xk, yk)1≤k≤N . Especially, score-based
MCC learns a score function L(x, y) so that the mapping
is obtained by f(x) = argmaxy L(x, y). In theory, MCC
consists in finding a decision rule f ∈ H ⊂ Y X (where H
is an hypothesis space) that minimizes the empirical risk:

1

N

N∑
k=1

1{yk 6=f(xk)}. (3)

IL is reduced to MCC by identifying X to S and Y to A and
the expert data set DCE = (sk, ak)1≤k≤NE extracted from
DE = (sk, ak, s

′
k)1≤k≤NE is used as the training set. A state

sk is thus seen as an input and the associated action ak as a
label for the classification algorithm. Then, the mapping f is
identified to the decision rule π ∈ AS which can be interpreted
as a policy.

In practice, minimizing the empirical risk is computationally
hard and practitioners use convex surrogates [31]. In addition,
one can notice that the empirical risk in Eq. (3) doesn’t
involve the dynamics P of the MDP. The dynamical nature
of the environment is therefore ignored which is an important
drawback of IL. However, MCC methods are easy to use and
have been justified theoretically in a finite and infinite horizon
settings [9], [10], [15], [19].

From now on, only score-based IL methods will be con-
sidered. They can also be reduced to score-based MCC
methods [13], [16]. Because the learned score function L
associates a score L(x, y) ∈ R to a pair (x, y), we identify
it to a Q-function (Q ∈ RS×A) which associates a value
Q(s, a) to a pair (s, a) representing how good action a
is in state s. The decision rule π associated to the score
function Q consists in taking the action with the best score:
π(s) = argmaxa∈AQ(s, a). It is interesting to notice that the

4

same greedy process allows deriving a deterministic optimal
policy π∗ from an optimal quality function Q∗R (see Th. 1) in
the reinforcement learning framework. Thus, one can wonder
if a score function can be interpreted as an optimal quality
function and, if it is the case, which reward corresponds to
this score function when the expert policy is applied. So, let
us answer this question.

The goal of a score-based IL method is to compute a score
function Q ∈ RS×A that gives the highest scores to expert
actions:

∀s ∈ S, argmax
a∈A

Q(s, a) = Supp(πE(.|s)), (4)

or at least some of them:

∀s ∈ S, argmax
a∈A

Q(s, a) ⊂ Supp(πE(.|s)) (similar to Eq. (2)),

which also means that the support (or at least a fraction of
the support) of the expert policy is obtained by being greedy
with respect to the score function Q. The score function Q
can thus be directly interpreted as an optimal quality function
with respect to a reward R (Q∗R) if R verifies:

R = Q(s, a)− γEP (.|s,a)[f
∗
Q]. (5)

Indeed, with this definition of R, we have Q(s, a) = R +
γEP (.|s,a)[f

∗
Q] = T ∗RQ(s, a) (from Eq. (1)) and by uniqueness

of the fixed point of T ∗R, this means that Q = Q∗R. The fact
that a score function Q, verifying Eq (5), can be seen as an
optimal quality function Q∗R means that the expert actions and
only the expert actions are optimal with respect to the reward
R. Thus, R can be seen as the target of an IRL method. This
naturally establishes a link between IL and IRL methods that
we are going to study in a deeper fashion through the set-
policy framework.

III. THE SET-POLICY FRAMEWORK

This section first defines the notion of set-policy. Then,
score-based IL and IRL problems are cast within this frame-
work. Moreover, it is shown that there exists a bijection
between the space of solutions of the IRL problem and the one
of the score-based IL problem obtained by the inverse optimal
Bellman operator J∗ (defined in Def. 9). This is the main
result of the paper. It provides insights to better understand and
to easily derive (see Sec. IV) existing algorithms. In addition,
two IRL meta-algorithms that use the link between a score-
function and an optimal quality function are provided.

Theorem 1 states that a Markovian stationary policy is
optimal if and only if, for each state s, it selects an action in
the specific set argmaxa∈A[Q∗R(s, a)]. Thus, to characterize
the optimality of a policy π, the necessary and sufficient
information is {Supp(π(.|s))}s∈S , which is a set of finite and
non-empty sets of actions. Therefore, it is quite natural to
consider functions which associate a state to a non empty and
finite set of actions. We call these functions set-policies.

Definition 1 (Set-policy). A set-policy π is an element7 of
(P(A)\∅)S . The set of set-policies is noted Π = (P(A)\∅)S .
It contains (2NA − 1)NS elements.

7If X is a non-empty set, then we note P(X) the powerset of X

Definition 2 (Inclusion and Equality for set-policies). Let π1

and π2 be two sets-policies, π1 ⊂ π2 if:

∀s ∈ S, π1(s) ⊂ π2(s).

Moreover, π1 = π2 if π1 ⊂ π2 and π2 ⊂ π1.

To each policy π, we can associate a set-policy π called the
the set-policy associated to π and defined as follows:

Definition 3 (Associated set-policy). Let π ∈ ∆S
A, π ∈ Π is

called the the set-policy associated to π and:

∀s ∈ S, Supp(π(.|s)) = π(s).

The associated set-policy of π indicates, for each state, the set
of actions that might be chosen by π.

If π is a deterministic policy, it is interesting to remark that
the set policy π associated to π is:

∀s ∈ S, Supp(π(.|s)) = π(s) = πD(s).

Thus, the associated set-policy can be seen as a generalization
of πD ∈ AS for non-deterministic policies. Moreover, to each
MDP MR, we associate a special set-policy that we name
optimal set-policy generated by MR and defined as follows:

Definition 4 (Generated set-policy). Let R ∈ RS×A, π∗R ∈ Π,
called the optimal set-policy generated by MR, is defined as:

∀s ∈ S, π∗R(s) = argmax
a∈A

[Q∗R(s, a)].

The optimal set-policy generated by MR indicates, for each
state, the set of optimal actions to choose in order to optimize
the reward R. Thanks to definitions 3 and 4, Theorem 1 can
be rewritten: V πR = V ∗R ⇔ π ⊂ π∗R.

Now, we have the tools to define the IRL problem in the set-
policy framework. Originally, the IRL problem [12] consists
in finding the unknown reward function RE for which the
expert policy πE is optimal. Thus, we have V πERE = V ∗RE ,
which means via Theorem 1 that πE ⊂ π∗RE . A first and
naive approach, to solve the IRL problem in the set-policy
framework, would be to find a reward function R for which
the expert policy πE is optimal:

V πER = V ∗R ⇔ πE ⊂ π∗R. (6)

However, this approach is not safe in the sense that we can
find R satisfying Eq. (6) such that π∗RE ⊂ π∗R, which means
that non-optimal actions for the original reward RE could be
optimal for the reward R as shown in Fig. 1(a). For instance,

(a) Naive approach for IRL.

�π𝐸𝐸 �π𝑅𝑅∗

�π𝑅𝑅𝐸𝐸
∗

(b) Safe approach for IRL.

Fig. 1. Comparison between naive and safe-IRL.

the null reward function, for which all actions are optimal,

5

satisfies Eq. (6). Thus, this approach should not be considered.
A second approach, to solve the IRL problem in the set-policy
framework, would be to find a reward function R such that all
optimal actions are also expert actions:

π∗R ⊂ πE ⊂ π∗RE . (7)

This is the safe approach to IRL because, if one manages to
find R satisfying Eq. (7), then optimal actions for the reward
R are also optimal for the original reward RE as shown in
Fig. 1(b). However, it is likely that some actions shown by the
expert are not optimal for R.

Definition 5 (Safe-IRL in the set-policy framework). From the
data sets DE and DNE , find a reward R ∈ RS×A such that
π∗R ⊂ πE .

Finally, it is possible to combine the two preceding ap-
proaches in order to find a reward R such that the optimal
set-policy generated by MR is equal to the set-policy πE
associated to the observed expert policy πE . This is what we
call IRL in the set-policy framework.

Definition 6 (IRL in the set-policy framework). From the data
sets DE and DNE , find a reward R ∈ RS×A such that π∗R =
πE .

This is the ideal case where all the expert actions and only
the expert actions are optimal.

Now, the problem is to characterize, for a given MDP MR

and a given set-policy π, the set Cπ = {R ∈ RS×A, π = π∗R}.
Indeed by definition, the set of rewards CπE are the solutions
of the IRL problem in the set-policy framework and the
set of rewards

⋃
π⊂πE Cπ are the solutions of the safe-IRL

problem. As CπE ⊂
⋃
π⊂πE Cπ , it is easier to solve the

safe-IRL problem. Characterizations of the IRL solutions set
have already been done for deterministic policies [12] and
for stationary and Markovian policies [32]. However, the set-
policy framework allows proposing the notion of safe-IRL
which is new and central in order to retrieve recent IRL
algorithms.

In addition, the set-policy framework allows defining easily
the notion of score-based IL. Indeed, for a fixed set-policy π,
let us consider the set Hπ of score functions such that:

Hπ = {Q ∈ RS×A,∀s ∈ S, argmax
a∈A

Q(s, a) = π(s)}. (8)

The set Hπ contains all the score functions Q for which:

∀s ∈ S, argmax
a∈A

Q(s, a) = π(s) = Supp(π(.|s)).

Thus, by definition (see Eq. (4)), HπE is the set of score-based
solutions of the IL problem for the policy πE associated to
the set policy πE . So, in the set-policy framework IL can be
defined as:

Definition 7 (Definition of IL in the set-policy framework).
From the data sets DE and DNE , find Q ∈ HπE .

Moreover, it is also possible to define the safe-IL solutions
set for the expert policy πE which is

⋃
π⊂πE Hπ . This set

contains all the score functions Q verifying:

∀s ∈ S, argmax
a∈A

Q(s, a) ⊂ πE(s) = Supp(πE(.|s)).

Definition 8 (Definition of safe-IL in the set-policy frame-
work). From the data sets DE and DNE , find Q ∈⋃
π⊂πE Hπ .

Those score-functions select only expert actions. This is
interesting as it guarantees to obtain an optimal behavior with
respect to the original reward RE for which the expert is
optimal.

Now, that we have formally defined the notions of IRL and
score-based IL in the set-policy framework, a formal link can
be established between them. To do so, let us introduce the
operator J∗, called the inverse optimal Bellman operator [32],
which is a function from RS×A to RS×A (here we also define
the inverse Bellman operator Jπ for a given policy π ∈ ∆S

A).

Definition 9 (Definitions of J∗ and Jπ). ∀Q ∈
RS×A,∀(s, a) ∈ S ×A:

J∗Q(s, a) = Q(s, a)− γEP (.|s,a)[f
∗
Q], (9)

JπQ(s, a) = Q(s, a)− γEP (.|s,a)[f
π
Q]. (10)

The operator J∗ represents the one-to-one relation existing
between the optimal quality function Q∗R and its reward
function R as shown in Theorem 2.

Theorem 2 (Properties of J∗ and Jπ). The inverse optimal
Bellman operator J∗ is a bijection from RS×A to RS×A and
we have:

∀Q ∈ RS×A, Q = Q∗R, with R = J∗Q,

which also means that ∀R ∈ RS×A, (J∗)−1R = Q∗R. In
addition, for a given policy π ∈ ∆S

A, the inverse Bellman
operator Jπ is a bijection from RS×A to RS×A and we have:

∀Q ∈ RS×A, Q = QπR, with R = JπQ,

which also means that ∀R ∈ RS×A, (Jπ)−1R = QπR.

Proof of Theorem 2 is given in appendix VI-A. It is
straightforward via the inverse Bellman operator properties
that:

J∗(Hπ) = {R ∈ RS×A,∀s ∈ S, argmax
a∈A

[Q∗R(s, a)] = π(s)},

= {R ∈ RS×A, π∗R = π} = Cπ.

In particular, J∗(HπE) = CπE . So, the IRL solutions set CπE
is the image of the IL solutions set HπE by the operator J∗ as
shown in Fig. 2(a). Contrary to CπE , it is easy to characterize

𝐻𝜋 𝐸 𝐶𝜋 𝐸

(𝐽∗)−1

𝐽∗

(a) Formal link between IL solutions
set and IRL solutions set.

 𝐻𝜋
π ⊂π 𝐸

 𝐶𝜋
π ⊂π 𝐸

(𝐽∗)−1

𝐽∗

(b) Formal link between safe-IL solu-
tions set and safe-IRL solutions set.

Fig. 2. Equivalence between IL and IRL problems.

6

concretely an element of HπE as it is shown by Eq. (8). This
characterization does not depend on the dynamics P and only
on the set-policy πE .

Moreover, {Hπ}π∈Π is a finite partition of RS×A (see
appendix VI-B for the proof).

Theorem 3. {Hπ}π∈Π is a finite partition of RS×A. In
addition, for each π ∈ Π, Hπ has an infinite cardinal.

Therefore, as J∗ is a bijection and as for each policy π,
J∗(Hπ) = Cπ , then {Cπ}π∈Π is also a finite partition of
RS×A. This guarantees that CπE is not empty. So, the IRL
problem in the set-policy framework has at least one solution.
However, the number of solutions is infinite because, for each
π ∈ Π, the set Hπ has an infinite cardinal. Thus, the IRL
solution set has to be constrained in order to obtain a unique
solution or, at least, restrain the solution set. For instance, one
can force a linear parameterization of the reward.

In addition, as {Hπ}π∈Π is a finite partition:

J∗(
⋃

π⊂πE

Hπ) =
⋃

π⊂πE

J∗(Hπ) =
⋃

π⊂πE

Cπ,

which means there exists also a formal link between safe-
IL solutions

⋃
π⊂πE Hπ and safe-IRL solutions

⋃
π⊂πE Cπ as

shown in Fig. 2(b). This implies, for instance, that if one finds
a score-function Q which is a solution of the safe-IL problem,
then by applying J∗ to Q one finds a reward function R =
J∗Q which is a solution of the safe-IRL problem. When faced
with batch data DE and DNE , finding Q ∈

⋃
π⊂πE Hπ can

be done by using a classification method and the application
of J∗ can be seen as a regression step (see Sec. IV-A).

Now, we propose two canonical meta-algorithms that al-
low finding or retrieving IRL algorithms via the set-policy
framework. These two meta-algorithms are presented in the
safe-IRL case but can be adapted to the IRL case by using
HπE in lieu of

⋃
π⊂πE Hπ . We choose to focus on safe-IRL

algorithms because they allow retrieving existing algorithms
of the literature. The first meta-algorithm consists in two
steps. The first step is to find Q ∈

⋃
π⊂πE Hπ which

is a score-based safe-IL step. The second step consists in
applying the operator J∗ to Q. The result, R, is guaranteed
to be in

⋃
π⊂πE Cπ as J∗(

⋃
π⊂πE Hπ) =

⋃
π⊂πE Cπ . The

second algorithm consists in directly searching R such that
(J∗)−1R = Q∗R ∈

⋃
π⊂πE Hπ . As (J∗)−1(

⋃
π⊂πE Cπ) =⋃

π⊂πE Hπ , this means that R ∈
⋃
π⊂πE Cπ .

Algorithm 1 Meta-Algorithm 1 for safe-IRL
Require: πE .

1: Find Q ∈ RS×A, such that Q ∈
⋃
π⊂πE Hπ (This is a

score-based safe-IL step).
2: R = J∗Q.

Algorithm 2 Meta-Algorithm 2 for safe-IRL
Require: πE .

1: Find R ∈ RS×A such that (J∗)−1R = Q∗R ∈
⋃
π⊂πE Hπ .

IV. IRL AND IL ALGORITHMS THROUGH THE SET-POLICY
FRAMEWORK

In this section, we revisit recent IRL algorithms of the
literature in the light of the set-policy framework. This is
done by showing how the different steps of the previous meta-
algorithms can be computed when faced with the data sets
DE and DNE of the batch IL and IRL settings. Moreover,
a general framework to find new score-based IL algorithms
is proposed. It combines the main advantages of IRL (using
the underlying dynamics of the MDP) and IL (simplicity and
efficiency).

A. Cascaded Supervised IRL (CSI)

Here, CSI [28] is derived from meta-algorithm 1. The first
step is a score-based safe-IL problem and consists in finding
Q such that Q ∈

⋃
π⊂πE Hπ . In particular, we can search

Q ∈ Hπ where π ⊂ πE and ∀s ∈ S, π(s) is a singleton. This
means that the deterministic policy π ∈ AS , defined as ∀s ∈
S, π(s) = π(s), is the only greedy policy with respect to Q.
Moreover, as we want to imitate the expert, the deterministic
policy π associated to π must be as similar as possible to πE .
So, we can ask that π(s) ∈ argmaxa∈A πE(a|s). Thus, we
are looking for a score function Q such that there exists a
deterministic policy π verifying:

∀s ∈ S, π(s) ∈ argmax
a∈A

πE(a|s),

∀s ∈ S, argmax
a∈A

Q(s, a) = π(s).

This can be seen as a classification problem. Indeed, given
two random variables x taking its values in X and y taking
its values in Y (X and Y are finite spaces), a classification
problem consists in finding a deterministic function f ∈ H ⊂
Y X , where H is an hypothesis space, such that:

∀x ∈ X, f(x) ∈ argmax
y∈Y

κ(x|y),

where κ(.|.) ∈ ∆X
Y is the transition kernel between the

variables x and y. If the deterministic function f is de-
rived from a score function L ∈ RX×Y such that ∀x ∈
X, argmaxy∈Y L(x, y) = f(x) then it is a score-based MCC
problem. Here, we are looking for a deterministic function π ∈
AS which approximates as well as possible the transition ker-
nel πE ∈ ∆S

A. As the deterministic function π is derived from
a score function Q such that ∀s ∈ S, argmaxa∈AQ(s, a) =
π(s), then the score-based IL problem can be reduced to a
score-based classification problem. In practice, when faced
with the input data sets DE and DNE , a classical score-based
MCC algorithm used in IL is the large-margin approach [13],
[33]. This algorithm only uses the set DCE extracted from DE

and as a consequence does not take into account the underlying
dynamics of the MDP.

The second step of the meta-algorithm 1 is R = J∗Q, which
can be rewritten as:

∀(s, a) ∈ S ×A,R(s, a) = EP (.|s,a)[Q(s, a)− γf∗Q]. (11)

Thus, if the dynamics P is available, R can be computed
directly from Q for any state-action couple. In the case where

7

P is only known through the input data sets DE and DNE ,
Eq. (11) can be seen as a regression. Indeed a regression prob-
lem consists, given two random variables x taking its values in
X and y taking its values in R, in finding a function f∗ ∈ RX ,
such that f∗(x) = E[y|x] = minf∈RX

∫
x∈X,y∈R(f(x) −

y)2κ(dx, dy) where κ(., .) is the probability distribution of the
couple (x,y). This function f∗ can also be written f∗(x) =
EP (.|x)[y] =

∫
y∈R κ(y|x)ydy where κ(.|.) is the transition

kernel between the variables x and y. So, R(s, a) has the
same form as f∗(x) where x = (s, a), y = Q(s, a)−γf∗Q and
κ(y|x) = P (Q(s, a) − γmaxb∈AQ(s′, b)|s, a). When faced
with samples D = (xi ∈ X, yi ∈ R){1≤i≤N}, a regression
algorithm consists in finding a function f ∈ H ⊂ RX , H
is an hypothesis space, which is a good estimation of f∗.
Here, our regression data set DR = {(si, ai), r̂i}1≤i≤NR is
constructed from DE ∪ DNE = (si, ai, s

′
i)1≤i≤NR where

r̂i = Q(si, ai) − γmaxa∈AQ(s′i, a) and NR = NE + NNE .
It can be performed with a regression tree [34], [35] or by
a least-squares method for instance. Thus, it appears that
meta-algorithm 1 gives us canonically the algorithm CSI
which consists of a first step of classification followed by a
second step of regression. CSI is summarized by Algo 3. It
is interesting to notice that, by choosing non-parametric MCC
and regression algorithms, CSI is made non-parametric and
model-free. In addition, CSI has theoretical guarantees which
are presented in the original paper [28].

Algorithm 3 The Cascaded-Supervised Learning Algorithm
Require: The sets DE and DNE .

1: Compute the function Q thanks to a score-based IL
algorithm.

2: Construct the data set DR = {(si, ai), r̂i}1≤i≤NR .
3: Return the function R̂ thanks to a regression algorithm

fed by the data DR.

𝐷𝐸

𝐷𝑁𝐸

Score-based IL Regression

𝑄

𝑅

Fig. 3. Illustration of the CSI algorithm.

B. Structured Classification for IRL (SCIRL)

In this section, SCIRL [27] is derived from the meta-
algorithm 2. It consists in finding R ∈ RS×A such that
(J∗)−1R ∈

⋃
π⊂πE Hπ . In the SCIRL framework, the expert

policy is supposed to be deterministic, thus
⋃
π⊂πE Hπ =

HπE . In addition, as ∀Q ∈ HπE , f
πE
Q = f∗Q which implies

that ∀Q ∈ HπE , J
∗Q = JπEQ and as J∗ is a bijection, then:

∀R ∈ CπE , (J∗)−1R = (JπE)−1R.

So, we are looking for R such that (JπE)−1R = QπER ∈ HπE .
Moreover, in the SCIRL framework, the reward is consid-

ered as a linear combination of some features which are a finite

set of p ∈ N∗ functions (φi)
p
i=1 such that φi ∈ RS×A. Thus,

for each vector θ ∈ Rp, a reward function Rθ can be associated
such that: Rθ(s, a) =

∑p
i=1 φi(s, a)θi = θ>φ(s, a), where

φ(s, a) = (φi(s, a))pi=1 ∈ Rp. The linear parameterization of
the reward imposes a linear parameterization of the quality
function QπERθ :

QπERθ (s, a) = EπEs,a[

+∞∑
t=0

γtRθ(st, at)],

= θ>EπEs,a[

+∞∑
t=0

γtφ(st, at)] = θ>µπE (s, a),

where µπE (s, a) = EπEs,a[
∑+∞
t=0 γ

tφ(st, at)] is the so-called
expert feature expectation for (s, a) [22]. When faced with
the batch data set DE , the expert feature expectation µπE (s, a)
can be estimated via an LSTD-like algorithm which is called
LSTD-µ [36] and the help of some heuristics [27]. The result
of the estimation is µ̂πE and the estimation of QπERθ (s, a) is
therefore Q̂πERθ (s, a) = θ>µ̂πE (s, a).

The problem becomes: find a reward Rθ in the set R =
{Rθ ∈ RS×A, θ ∈ Rp} such that Q̂πERθ θ ∈ HπE . As seen
before (see Sec. IV-A), this kind of problems can be reduced
to a score-based MCC algorithm which consists in finding a
score function Qθ ∈ HπE in the hypothesis set of functions
Q ⊂ RS×A where:

Q = {Qθ ∈ RS×A, Qθ(s, a) = θ>µ̂πE (s, a), θ ∈ Rp}.

As in [27], a large margin method [33] can be used to
realize this classification step which is the choice done in our
experiments for the implementation of SCIRL. The output of
this classification algorithm is a vector θC and the output of
the SCIRL algorithm is the reward RθC . So, meta-algorithm 2
leads to SCIRL which consists in an evaluation step of the fea-
ture expectation µπE followed by a score-based classification
algorithm. In [27], the authors give theoretical results on the
near-optimality of the expert-policy with respect to the reward
output by the algorithm. SCIRL is presented in Algo. 4.

Algorithm 4 The SCIRL Algorithm
Require: The sets DE and DNE .

1: Compute the estimation µ̂πE via LSTD-µ.
2: Compute θC thanks to a score based IL with hypothesis

set Q.
3: Return RθC .

Contrary to CSI, SCIRL is by nature a parametric algorithm
as the reward is linearly parameterized by the features (φi)

p
i=1.

Thus, a good choice of features is important in order to have a
correct representation of the reward. This matter is discussed in
our experiments where the performance of SCIRL with a good
representation of the reward versus a bad one are compared.

C. A general approach to design IL algorithms

This section provides a general method to derive score-
based IL algorithms that makes use of the underlying dynamics
of the MDP thanks to the set-policy framework. Notice that,

8

𝐷𝐸

𝐷𝑁𝐸

Evaluation of µ π𝐸
 Score-based IL

µ π𝐸

 θ𝐶

ϕ

Fig. 4. Illustration of the SCIRL algorithm.

as they are also MCC algorithms, they can be used as a
first step of the CSI algorithm. In addition, they combine
the main advantages of IL methods (simplicity, efficiency
and computing a policy without solving any MDPs) and IRL
methods (accounting for the underlying dynamics).

It was shown earlier that score-based IL consists in finding
a score function Q ∈

⋃
π⊂πE Hπ . To obtain a satisfying

solution, the hypothesis space is constrained to exhibit two
properties : having a small complexity and to contain an
element of

⋃
π⊂πE Hπ . Indeed, a small complexity reduces

the variance of the classification algorithm [37] and having
H
⋂⋃

π⊂πE Hπ non-empty guarantees that there is no bias.
The hypothesis space H can be chosen, for instance, by

constraining the score functions. In addition, to leverage the
information of dynamics in the data sets DE and DNE , the
constraint should integrate the dynamics P of the MDP. As
seen previously, each score function Q can be seen as an
optimal quality function Q = Q∗R where R = J∗Q. The
reward associated to Q by J∗, R = J∗Q, will also be noted
RQ. To introduce in a natural way the dynamics P appearing
in J∗, the reward function RQ is constrained in lieu of the
score function Q. Possible constraints on the reward may
depend on some prior such as a state-only dependency, linear
parameterization, a Lipschitz condition, a sparsity, etc. Thus,
let us note H =

{
Q ∈ RS×A, RQ satisfies a constraint

}
. In

practice, finding Q ∈
⋃
π⊂πE Hπ is realized by score-based

MCC solved by minimizing a criterion L(Q,DCE) (for in-
stance the large marin one [33]) depending on the score-
function Q and the dataset DCE :

L(Q,DCE) =
1

NE

NE∑
i=1

max
a∈A

[Q(si, ai)+l(si, a, ai)]−Q(si, ai),

where l ∈ RS×A×A is a margin function that imposes a
structure on the score function Q. In order to adapt this
algorithm to find Q ∈ H

⋂⋃
π⊂πE Hπ , one can solve the

following optimization problem:

min
Q∈RS×A

L(Q,DCE),

such that Q ∈ H.

For instance, for RCAL [16], the constraint consists in
choosing an associated reward function RQ with a small L1,ν-
norm which favors the sparseness of the reward. The sparse
reward constraint is quite natural in the MDP framework as
it is the type of rewards that are encountered in practical
problems. In addition, in MDPs with sparse rewards, the
dynamics plays an important role. Indeed, the agent must

perform a long sequence of actions before receiving a re-
ward [15]. Thus, the principle of RCAL, illustrated in Fig 5,
consists in finding a score function in the hypothesis space
H =

{
Q ∈ RS×A, ‖RQ‖1,ν ≤ η

}
, where η ∈ R∗+ is small

and such that Q ∈
⋃
π⊂πE Hπ .

�
�π⊂ �π𝐸𝐸

𝐻𝐻�π

𝑄𝑄 ∈ �
�π⊂ �π𝐸𝐸

𝐻𝐻�π , 𝑅𝑅𝑄𝑄 1,ν ≤ η

Fig. 5. Search space of RCAL.

In order to integrate the information of dynamics, the score-
function can be taken from H =

{
Q ∈ RS×A, ‖RQ‖1,ν ≤ η

}
where η is the smallest possible. Thus, we search Q that
minimize the following constrained problem:

min
Q∈RS×A,η∈R∗

L(Q,DCE) + λη,

such that ‖RQ‖1,ν ≤ η,

where λ is a trade-off parameter between having a small
classification criterion L(Q,DCE) and having a small norm
‖RQ‖1,ν = ‖J∗Q‖1,ν . This problem, as the variable η is
tight and positive, is equivalent to minimizing the following
unconstrained regularized criterion:

L(Q,DCE , λ) = L(Q,DCE) + λ‖RQ‖1,ν .

However, as the dynamics P is unknown, it is not possible to
compute RQ = J∗Q. The idea presented in [16] consists in
using a biased proxy of the norm ‖RQ‖1,ν which is:

1

NR

NR∑
i=1

|r̂i| =
1

NR

NR∑
i=1

|Q(si, ai)− γmax
a∈A

Q(s′i, a)|,

where (si, ai, s
′
i) ∈ DR = DE ∪DNE and r̂i = Q(si, ai) −

γmaxa∈AQ(s′i, a) is an unbiased estimate of the reward
RQ(si, ai) = Q(si, ai) − γEP (.|si,ai)[f

∗
Q]. Finally, RCAL

consists in minimizing:

L(Q,DCE , DR, λ) = L(Q,DCE) +
λ

NR

NR∑
i=1

|r̂i|.

This criterion is not convex, hence there is no guarantee to
obtain a global minimum using a (sub-)gradient minimization
technique. However, it can be seen as a perturbation of the
convex criterion L(Q,DCE). Thus, a good start point to min-
imize L(Q,DCE , DR, λ) can be a minimizer of L(Q,DCE).
For more details about the soundness of RCAL or about the
minimization technique of L(Q,DCE , DR, λ), one can refer
to the original paper [16].

V. EXPERIMENTS

A. Motivations

This section reports comparisons of IRL algorithms de-
rived from the trajectory-matching framework [25] to IRL

9

algorithms from the set-policy framework (CSI and SCIRL)
and to IL algorithms (Tree, Classif and RCAL). From the
trajectory matching framework, selected algorithms are the
Projection algorithm [22] (Proj), the Multiplicative Weight
Apprenticeship Learning algorithm [23] (MWAL) and the Max
Margin Planning algorithm [38] adapted to IRL [25] (MMP).
In addition, performances of three IL algorithms are reported.
First, Classif is a large margin classifier [13]. Second, Tree is
a classification tree [34]. The last one is RCAL with λ = 0.1.

Algorithms were tested on different tasks in their respective
original papers. Some of those tasks were toy problems and
others were real ones. Unlike toy problems, in real problems
the dynamics P of the MDP is often unknown, a canonical
linear parameterization of the reward is often not provided and
real problems are much larger. The knowledge of the dynamics
P through the data set DNE and features (φi)

p
i=1 are key

ingredients of most IRL algorithms. This may not not be the
case for IL algorithms which can be non-parametric. Also, they
use only the expert state-action couples data set DCE . So, it
is interesting to see if the IRL algorithms are suited for real
problems where those ingredients are not perfectly provided.

Thus, this experiment try to establish how the knowledge
of the dynamics P and a good linear parameterization of the
reward can affect the performance of the IRL algorithms. That
is why a generic task is chosen for comparison. It consists
in generating randomly MDPs and test the algorithms on a
large set of those problems. Those MDPs, called Garnet [29],
which are slightly modified [16] from the ones presented in
the original paper, are representative of the kind of MDPs that
might be encountered in practice (see Sec. V-B for details).
They are finite MDPs where the dynamics P is known and
a tabular basis can be used. Thus, an optimal policy can be
computed for each Garnet via the policy iteration algorithm,
and the quality and value functions can be evaluated for any
policy and any reward. It is also easy to sample transitions of a
Garnet for any policy. It is also possible to give the dynamics
P and a tabular basis to the user. As an optimal policy can be
exactly computed, the trajectory matching framework, often
requiring to solve repeatedly MDPs, can easily be applied. In
addition, when P is known, CSI can use directly the operator
J∗ in order to retrieve the reward. When P is not provided,
a batch RL algorithm such as LSPI (Least Squares Policy
Iteration) [39] or Fitted-Q [40] can be used as an approximate
MDP solver for the IRL algorithms of the trajectory matching
framework. In our experiments, the batch RL algorithm used
is LSPI and the estimation of the expert feature expectation
for SCIRL is done via LSTD-µ [36].

Besides, a choice of features must be done for most IRL al-
gorithms (one exception is CSI). The features chosen are either
a tabular basis in order to guarantee a perfect representation
of the reward or Radial Basis Functions (RBF) (see Sec. V-B
for details). Notice that the only IRL algorithm without a
feature choice is CSI. Indeed, a non-parametric version of this
algorithm is presented here. Its classification step is realized
by a non-parametric version of RCAL and the regression step
by a regression tree.

Algorithms are compared in four different settings. The first
setting stands for the perfect setting where P and a tabular

basis are provided to the user. In the second setting, the
dynamics P is unknown and the tabular basis is provided.
In the third setting, the dynamics is known and the RBF basis
is used. The fourth setting approximates the real case scenario
where the dynamics is unknown and the RBF basis is used.

B. The Garnet experiment

This experiment focuses on stationary Garnet problems,
which are a class of randomly constructed finite MDPs repre-
sentative of the kind of finite MDPs that might be encountered
in practice. A stationary Garnet problem is characterized by
3 parameters: Garnet(NS , NA, NB). The parameters NS and
NA are the number of states and actions respectively, and NB
is a branching factor specifying the number of next states for
each state action pair. In this experiment, the Garnets present a
topological structure relative to real dynamical systems. Those
systems are generally multi-dimensional state spaces MDPs
where an action leads to different next states close to each
other. The fact that an action leads to close next states can
model the noise in a real system for instance. Thus, problems
such as the highway simulator [27], the mountain car or the
inverted pendulum (possibly discretized) are particular cases
of this type of Garnets. For those particular Garnets, the state
space is composed of d dimensions (d = {1, 2, 3} in this par-
ticular experiment) and each dimension i has a finite number
of elements xi (xi = 10). So, a state s = [s1, s2, .., si, .., sd]
is a d-uple where each component si can take a finite value
between 1 and xi. In addition, the distance between two states
s, s′ is ‖s− s′‖22 =

∑i=d
i=1(si − s′i)2. Thus, we obtain MDPs

with a state space size of
∏d
i=1 xi. For instance, when d = 3,

the state space size is NS = 1000. The number of actions
is fixed to NA = 5. For each state action couple (s, a), the
NB next states (NB = 5) are chosen randomly via a Gaussian
distribution of d dimensions centered in s where the covariance
matrix is the identity matrix of size d, Id, multiplied by a term
σ (here σ = 1). The term σ allows handling the smoothness
of the MDP: if σ is small the next states s′ are close to s
and if σ is large, the next states s′ can be very far form each
other and also from s. The probability of going to each next
state s′ is generated by partitioning the unit interval at NB−1
cut points selected randomly. A sparse expert reward RE is
built by choosing NS

10 states (uniform random choice without
replacement) where RE(s, a) = 1, elsewhere RE(s, a) = 0.
For each Garnet problem, it is possible to compute an expert
policy πE = π∗ and the expert value function V πERE via the
policy iteration algorithm.

In this experiment, 100 Garnets {Gp}1≤p≤100 were gener-
ated as explained before. For each Garnet Gp, 10 data sets
{Dp,q

E }1≤q≤10 are generated, composed of LE trajectories of
HE sampled transitions (si, πE(si), s

′
i) of the expert policy

πE and 10 data sets {Dp,q
NE}1≤q≤10 of LNE trajectories of

HNE sampled transitions of the random policy (for each
state, the action is uniformly chosen over the set of actions)
(si, ai, s

′
i). Each trajectory begins from a state picked uni-

formly over the state space, this uniform distribution is noted
ρ. There are 4 settings considered. In the first setting the
IRL algorithm uses the knowledge of the dynamics P and

10

a tabular basis to parameterize the reward function. In the
second setting, P is not provided but replaced by Dp,q

NE .
Thus LSPI is used as an MDP solver. LSPI needs a set
of sampled transitions of the form (si, ai, ri, s

′
i) as input.

Here, this can be easily provided to optimize a reward R̂
as we can use the data set Dp,q

R = Dp,q
E ∪ Dp,q

NE where to
each transition (si, ai, s

′
i) of Dp,q

R we add the information
ri = R̂(si, ai). In the third setting, the reward is parameterized
by an RBFs basis and P is provided. Finally, in the fourth
setting the dynamics is unknown and an RBF basis is used. It
is important to note that the provided basis (tabular or RBFs)
are used by LSPI and LSTD-µ too. The RBFs basis consists
in choosing NRBF states (scj)1≤j≤NRBF without replacement
from the state space which are called centered states (the
choice can be done such that the centered states are uniformly
distributed). Then, it is possible to define a notion of similarity
between couples (scj , a) and (s, b) by the following formula
∀1 ≤ j ≤ NRBF ,∀(s, a, b) ∈ S ×A×A:

exp(−
‖scj − s‖22

σφ
)δA(a, b),

where σφ ∈ R+ is a parameter that controls the width of
the RBF around the center scj . Finally, let us define a feature
extractor φ that represents the RBFs basis. φ is a matrix of
size (NSNA, NCNA) such that:

φ(i+(NS−1)p, j+(NC−1)q) = exp(−
‖scj − si‖22

σφ
)δA(ap, aq).

The RBF basis represented by φ is an approximation of the
tabular basis because if NRBF = NS and σφ → 0, then the
RBF basis is exactly the tabular basis. In the experiments,
the centered states are chosen uniformly distributed over the
states space such that NC = NS

2 and σφ = 1. Recall that the
trajectory matching IRL algorithms need to solve repeatedly
MDPs. Here, we fix the number of solving steps to 10.

For each data set Dp,q
E and Dp,q

NE , an IRL algorithm A
outputs a reward Rp,qA . Performances are compared according
to T p,qA which represents the normalized error between the
expert policy and the optimal policy with respect to Rp,qA :

T p,qA =
Eρ[|V πERE − V

π∗
R
p,q
A

RE
|]

Eρ[|V πERE |]
.

For IL algorithms, for each data sets Dp,q
E and Dp,q

NE , the
criterion of performance is T p,qA :

T p,qA =
Eρ[|V πERE − V

πA
RE
|]

Eρ[|V πERE |]
,

where πA is the policy output by the IL algorithm A. There-
fore, the lower T p,qA is, the better is the performance.

For a given algorithm A, the mean performance criterion
TA is 1

1000

∑100
p=1

∑10
q=1 T

p,q
A . For each algorithm, the standard

deviation stdpA = (1
10

∑10
q=1(T p,qA − 1

10

∑10
q=1 T

p,q
A)2)

1
2 and

the mean standard deviation is stdA = 1
100

∑100
1 stdpA are

provided. Fig. 6 shows the performance criterion TA and the
mean standard deviation stdA for the first setting when d = 3.
Here, LE = 5 and HE is the evolving parameter.

H
E

=Length of the expert trajectory
0 100 200 300

T
A

=C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(a) Performance.

H
E

=Length of the expert trajectory
0 50 100 150 200 250 300st

d
A

=M
ea

n
 o

f
st

an
d

ar
d

 d
ev

ia
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(b) Standard deviation.

Fig. 6. Garnet Experiment: First setting with d = 3 and LE = 5.

In Fig. 6(a), one can observe that CSI and SCIRL perform
better when the amount of data is small. This is particu-
larly true for SCIRL. However, when the number of expert
data grows, MMP and MWAL manage to obtain the same
performance as CSI and SCIRL. We also observe that IRL
algorithms outperform IL algorithms at the exception of RCAL
which has the same performance as CSI (because RCAL is
used as a first step of CSI and the regression step is done by
directly applying the bijective operator J∗). IRL algorithms
use the information of dynamics to improve their performance
which is not the case of IL algorithms (at the exception of
RCAL). In Fig. 6(b), we observe that Classif, RCAL, SCIRL,
Tree, and CSI have low standard deviations which is not the
case for MMP, MWAL and Proj. Thus, it seems that the
algorithms from the set-policy framework are more stable.
Similar results are obtained when the size of the MDP is
different. In Fig 7, one can observe the results for d = 2
(NS = 100). In Fig. 8, the performance and the standard

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90 100

T
A

=C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(a) Performance.

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90100st

d
A

=M
ea

n
 o

f
st

an
d

ar
d

 d
ev

ia
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12 Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(b) Standard deviation.

Fig. 7. Garnet Experiment: First setting with d = 2 and LE = 5.

deviation are plotted for the second setting (tabular basis
and unknown dynamics). Here, the dynamics is only known
through the data set DNE where LNE = 200 and HNE = 5.
This is a batch IRL setting where a perfect representation of
the reward function is used but a too limited amount of non-
expert data is provided, preventing to have a good model of
the dynamics. SCIRL manages to obtain good results in that
configuration compared to the other IRL algorithms. Indeed,
it does not use the non-expert data to estimate its feature
expectations but rather uses heuristics [27]. Thus, it appears
that when a good representation of the reward function is
provided, SCIRL performs well. The performance deteriora-

11

tion of MMP, MWAL and Proj comes from the use of the
approximate MDP solver (LSPI). As they repeatedly use it, the
LSPI errors propagate and deteriorate their performance. This
is not the case for set-policy-based algorithms that directly
learn a reward. However, CSI suffers from a lack of non-
expert data to regress correctly the reward. Indeed, RCAL
which is used as first step of CSI performs well, thus the
bad performance of CSI comes from the regression step. The
performance of Tree and Classif stay the same as they do not
take into account the dynamics.

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90 100

T
A

=C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(a) Performance.

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90100st

d
A

=M
ea

n
 o

f
st

an
d

ar
d

 d
ev

ia
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(b) Standard deviation.

Fig. 8. Garnet Experiment: Second setting with LNE = 200, LE = 5,
HNE = 5 and d = 2.

In Fig. 9, the performance and the standard deviation are
plotted for the third setting (dynamics known and RBF basis).
We observe here, that CSI obtains better results than the
other IRL algorithms. The main reason is that CSI is non-
parametric. Therefore, it manages to find automatically a good
representation of the reward function which is not the case for
the other IRL algorithms. Moreover, CSI uses the knowledge
of the dynamics P . RCAL has the same performance of CSI
as the regression is done by directly applying J∗. Fig. 10

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90 100

T
A

=C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(a) Performance.

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90100st

d
A

=M
ea

n
 o

f
st

an
d

ar
d

 d
ev

ia
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(b) Standard deviation.

Fig. 9. Garnet Experiment: Third setting with LE = 5 and d = 2.

shows the performance and the standard deviation for the
fourth setting (unknown dynamics and RBF basis). Here, no
IRL algorithm manages to outperform Classif and RCAL.
We voluntarily restricted the number of non-expert sampled
transitions (LNE = 200, HNE = 5) to exhibit a case where
IRL algorithms have not enough data on the dynamics to
perform well. However, CSI performs better than Tree and
if more non-expert sampled transitions are added it also beats
Classif. Thus, IRL algorithms have a poor performance when
provided with few non-expert transitions and when features
are not carefully engineered. This shows the importance of the

choice of features and the need to have as much as possible
information on the dynamics. Finally, it is important to note

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90 100

T
A

=C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(a) Performance.

H
E

=Length of the expert trajectory
0 10 20 30 40 50 60 70 80 90100st

d
A

=M
ea

n
 o

f
st

an
d

ar
d

 d
ev

ia
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

Tree
Classif
SCIRL
CSI
Proj
MWAL
MMP
RCAL

(b) Standard deviation.

Fig. 10. Garnet Experiment: Fourth setting with LNE = 200, LE = 5,
HNE = 5 and d = 2.

that SCIRL and CSI are computationally more efficient than
IRL algorithms from the trajectory matching framework in all
settings. This is explained mostly because they do not solve
MDPs repeatedly.

C. Discussion

In these experiments, it was shown that IRL algorithms
perform well when the dynamics and a good representation of
the reward are provided. Moreover, CSI and SCIRL, derived
from the set-policy framework, outperform IRL algorithms
from the trajectory matching family. When the features are
well chosen and the dynamics is unknown, SCIRL manages to
obtain good results and when the features are poorly chosen
and the dynamics is known, CSI performs well. When the
features are not well chosen and the dynamics is only known
through few non-expert sampled transitions, IRL algorithms do
not reach better results than basic IL algorithms. However, if
we add more non-expert sampled transitions, CSI manages,
as in Fig. 9, to perform better than IL algorithms. These
non-expert sampled transitions could be easily obtained, for
instance, via an online RL algorithm trying to optimize a first
reward obtained by CSI. Then, the estimation of the reward
could be improved by these non-expert sampled transitions
collected by the online algorithm and so on. Finally, RCAL
shows good performance in every setting because it combines
the advantages of MCC algorithms (it can be non-parametric
and does not need a good parameterization of the reward) and
those of IRL (it uses the knowledge of the dynamics).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an original paradigm,
called the set-policy framework, that establishes a formal link
between score-based IL methods and IRL methods. This is
done via the inverse optimal Bellman operator J∗ which
maps a score-function Q to a reward R such that Q = Q∗R.
We also defined the notion of safe-IL solutions and safe-
IRL solutions where safe means that they only search for
optimal actions as shown by the expert. In addition, two recent
IRL algorithms, namely SCIRL and CSI, were derived from
this framework. They use the link between score-functions

12

and optimal quality functions. As a direct consequence, those
algorithms have the particularity to directly compute a reward
function without solving repeatedly MDPs, contrary to most
algorithms in the literature. This framework also results in
non-parametric algorithms such as CSI which consists in a
first step of classification followed by a regression step.

The experiments showed that IRL algorithms provide better
results than IL algorithms (at the exception of RCAL) when
a good representation of the reward and the dynamics P are
given. Moreover, in the batch IRL setting (the dynamics is
unknown), SCIRL manages to obtain good results if a good
reward representation is provided. If the features of the reward
are not well chosen, the parametric IRL algorithms do not
provide better results than IL algorithms. This shows that
the features choice is important in the batch IRL framework.
However, if sufficient information on the dynamics is provided
through non-expert data, CSI manages to obtain better results
than classification without any feature choice as it is non-
parametric. Thus, depending on the problem configuration, one
can choose CSI in lieu of SCIRL and vice versa.

Finally, the set-policy framework may be an interesting
paradigm to develop new IL algorithms and analyze them.
Indeed, we provide a general method to derive IL algorithms
that take into account the dynamics of the MDP. It consists
in imposing a constraint on the set of rewards associated to
the score functions we are looking for. The constraint choice
can depend on some prior about the expert reward function
such as a linear parameterization of the reward, a Lipschitz
reward, a sparse reward, etc. An application of this general
method is RCAL where sparsity of the reward is chosen as
a constraint. RCAL shows promising results on each of the
proposed settings as it combines the best of IL and IRL.

A. Proof of theorem 2

Proof. Let R ∈ RS×A. Thanks to Eq. (9) and the uniqueness
of the fixed point of T ∗R:

J∗Q = R⇔ Q = T ∗RQ⇔ Q∗R = Q.

This means that the inverse image of every singleton R ∈
RS×A under J∗ exists, is unique and equal to Q∗R. In addition,
thanks to Eq. (10) and the uniqueness of the fixed point of TπR:

JπQ = R⇔ Q = TπRQ⇔ QπR = Q.

This means that the inverse image of every singleton R ∈
RS×A under Jπ exists, is unique and equal to QπR.

B. Proof of theorem 3

Proof. First, let π1 and π2 be two different set-policies and
let show that Hπ1 ∩Hπ2 = ∅. We recall that:

∀π ∈ Π, Hπ = {Q ∈ RS×A,∀s ∈ S, argmax
a∈A

Q(s, a) = π(s)}.

Let us suppose that there is an element Q ∈ Hπ1
∩Hπ2

. This
means that: ∀s ∈ S, argmaxa∈AQ(s, a) = π1(s) = π2(s). So
π1 = π2 which is not the case. Thus, Hπ1 ∩Hπ2 = ∅. Then,
let π ∈ Π and let show that Hπ 6= ∅. Let Qπ ∈ RS×A be the
following function ∀(s, a) ∈ S ×A,Qπ(s, a) = 1a∈π(s).

Qπ is clearly in Hπ . So, Hπ 6= ∅. Moreover for each x ∈ R,
xQπ is obviously in Hπ . So the cardinal of Hπ is infinite. Fi-
nally, the last step to show that {Hπ}π∈Π is a finite partition of
RS×A is:

⋃
π∈ΠHπ = RS×A. Let Q ∈ RS×A. We define the

following set-policy: ∀s ∈ S, πQ(s) = argmaxa∈AQ(s, a).
Thus, Q ∈ HπQ . So,

⋃
π∈ΠHπ = RS×A. In conclusion,

{Hπ}π∈Π is a finite partition because Π is a finite set.

C. Notations

(R, |.|) is the real space associated to its canonical norm.
Let X and Y be two non empty sets, XY is the set of
functions from Y to X . For the remaining of this section,
X and Y are finite and Card(X) is the cardinal of X:
X = (xi)1≤i≤Card(X). We note P(X) the powerset of X
and ∆X the set of distributions over X . Therefore, ∆Y

X is the
set of functions from Y to ∆X . Let ξ ∈ ∆Y

X and y ∈ Y ,
ξ(y) ∈ ∆X is also noted ξ(.|y) and ∀x ∈ X, [ξ(y)](x) =
ξ(x|y). Let α ∈ RX or α ∈ ∆X , Supp(α) ∈ P(X) is
the support of α: Supp(α) = {x ∈ X,α(x) > 0}. Let
ν ∈ ∆X and 1 ≤ p ≤ +∞, then we can define the
Lp-norm of α noted ‖α‖p and the Lp,ν-norm of α noted
‖α‖p,ν such that: ‖α‖p = (1

Card(X)

∑
x∈X |α(x)|p)

1
p and

‖α‖p,ν = (
∑
x∈X ν(x)|α(x)|p)

1
p . Let x ∈ X , the notation

x ∼ ν means that x is a realization of a random variable which
is sampled according to ν and Eν [α] =

∑
x∈X ν(x)α(x) is the

expectation of α under the distribution ν. Moreover, we note
δX ∈ RX×X the function such that for each (x, x′) ∈ X×X ,
δX(x, x′) = 1 if x = x′ and δX(x, x′) = 0 if x 6= x′.

ACKNOWLEDGMENT

This work has received funding from the European Union
Seventh Framework Program (FP7/2007-2013) under grant
agreement number 270780 (ILHAIRE).

REFERENCES

[1] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” DTIC Document, Tech. Rep., 1989.

[2] C. Atkeson and S. Schaal, “Robot learning from demonstration,” in Proc.
of ICML, 1997.

[3] S. Schaal, “Learning from demonstration,” in Proc. of NIPS, 1997, pp.
1040–1046.

[4] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[5] O. Pietquin, “Inverse Reinforcement Learning for Interactive Systems,”
in Proc. of MLIS 2013, 2013.

[6] M. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 1994.

[7] D. Bertsekas, Dynamic programming and optimal control. Athena
Scientific, Belmont, MA, 1995, vol. 1, no. 2.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998.

[9] S. Ross and J. Bagnell, “Efficient reductions for imitation learning,” in
Proc. of AISTATS, 2010.

[10] U. Syed and R. Schapire, “A reduction from apprenticeship learning to
classification,” in Proc. of NIPS, 2010.

[11] S. Russell, “Learning agents for uncertain environments,” in Proc. of
COLT, 1998.

[12] A. Ng, S. Russell et al., “Algorithms for inverse reinforcement learning,”
in Proc. of ICML, 2000.

[13] N. Ratliff, J. Bagnell, and S. Srinivasa, “Imitation learning for locomo-
tion and manipulation,” in Proc. of IEEE-RAS International Conference
on Humanoid Robots, 2007.

13

[14] S. Natarajan, S. Joshi, P. Tadepalli, K. Kersting, and J. Shavlik, “Im-
itation learning in relational domains: A functional-gradient boosting
approach,” in Proc. of AAAI, 2011, pp. 1414–1420.

[15] B. Piot, M. Geist, and O. Pietquin, “Learning from demonstrations: is
it worth estimating a reward function?” in Proc. of ECML, 2013.

[16] ——, “Boosted and reward-regularized classification for apprenticeship
learning,” in Proc. of AAMAS, 2014.

[17] F. Melo and M. Lopes, “Learning from demonstration using MDP
induced metrics,” in Proc. of ECML, 2010.

[18] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Markov
decision processes,” in Proc. of UAI, 2004, pp. 162–169.

[19] S. Ross, G. Gordon, and J. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. of
AISTATS, 2011.

[20] K. Judah, A. Fern, and T. Dietterich, “Active imitation learning via
reduction to iid active learning,” in Proc. of UAI, 2012.

[21] T. Munzer, B. Piot, M. Geist, O. Pietquin, and M. Lopes, “Inverse
reinforcement learning in relational domains,” in Proc. of IJCAI, 2015.

[22] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proc. of ICML, 2004.

[23] U. Syed and R. Schapire, “A game-theoretic approach to apprenticeship
learning,” in Proc. of NIPS, 2008.

[24] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, 2008, pp. 1433–1438.

[25] G. Neu and C. Szepesvári, “Training parsers by inverse reinforcement
learning,” Machine learning, vol. 77, no. 2, 2009.

[26] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse rein-
forcement learning,” in Proc. of AISTATS, 2011.

[27] E. Klein, M. Geist, B. Piot, and O. Pietquin, “Inverse reinforcement
learning through structured classification,” in Proc. of NIPS, 2012.

[28] E. Klein, B. Piot, M. Geist, and O. Pietquin, “A cascaded supervised
learning approach to inverse reinforcement learning,” in Proc. of ECML.
Springer, 2013.

[29] T. Archibald, K. McKinnon, and L. Thomas, “On the generation
of Markov decision processes,” Journal of the Operational Research
Society, 1995.

[30] A. Farahmand, R. Munos, and C. Szepesvári, “Error propagation for
approximate policy and value iteration,” Proc. of NIPS, 2010.

[31] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and
support vector machines,” Advances in Computational Mathematics,
vol. 13, no. 1, pp. 1–50, 2000.

[32] F. Melo, M. Lopes, and R. Ferreira, “Analysis of inverse reinforcement
learning with perturbed demonstrations,” in Proc of ECAI, 2010.

[33] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning
structured prediction models: A large margin approach,” in Proc. of
ICML, 2005.

[34] L. Breiman, Classification and regression trees. CRC press, 1993.
[35] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Machine learning, 2006.
[36] E. Klein, M. Geist, and O. Pietquin, “Batch, off-policy and model-free

apprenticeship learning,” in Recent Advances in Reinforcement Learning.
Springer, 2012, pp. 285–296.

[37] V. Vapnik, Statistical learning theory. Wiley, 1998.
[38] N. Ratliff, J. Bagnell, and M. Zinkevich, “Maximum margin planning,”

in Proc. of ICML, 2006.
[39] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of

Machine Learning Research, 2003.
[40] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-

forcement learning,” in Journal of Machine Learning Research, 2005.

Bilal Piot studied Signal Processing at Supelec (a
french grande ecole) where he obtained a master
degree in 2010. At the same time, he obtained a
master degree in applied Mathematics from Uni-
versity of Metz in 2010 and a master degree in
applied Mathematics from University Paris-Est in
2011. Soon after, he began his PhD supervised by
Oliver Pietquin and Matthieu Geist and financed
by the European project ILHAIRE (Incorporating
Laughter into Human Avatar Interactions: Research
and Experiments) in the team MaLIS (Machine

Learning and Interactive Systems group) part of the lab UMI 2958 (Geor-
giaTech - CNRS). He defended the 14th of November 2014. From October
2014 to September 2015, he was ATER (postdoctorate) at University Lille 3
and affiliated to the CRIStAL (UMR CNRS 9189) lab’s Sequential Learning
(SequeL) Team (also INRIA team-project). Since September 2015, he is an
assistant professor at University Lille 1 where he teaches computer science
and still a member of SequeL.

Matthieu Geist obtained an Electrical Engineering
degree and an Msc degree in Mathematics from
Supelec (France), both in September 2006, as well
as a PhD degree in Mathematics from the Univer-
sity Paul Verlaine of Metz (France) in November
2009. From January 2007 to January 2010, he was
a member of the Measure and Control lab (MC
cluster) of ArcelorMittal Research and a member of
the CORIDA project-team of INRIA. In February
2010, he joined the IMS-MaLIS research group of
Supelec (now called CentraleSupelec) as an assistant

professor. Since late 2013, he is also an associate member of the UMI 2958
(Georgia Tech - CNRS). His research interests include statistical machine
learning (especially reinforcement learning), as well as applications to man-
machine interactions. He authored or co-authored more than 60 international
publications in these fields.

Olivier Pietquin (M’01 - SM’11) obtained an Elec-
trical Engineering degree from the Faculty of Engi-
neering, Mons (Belgium) in 1999 and a PhD degree
in 2004. In 2001, he has been a visiting researcher
at the Speech and Hearing lab of the University of
Sheffield (UK). Between 2004 and 2005, he was
a Marie-Curie Fellow at the Philips Research lab
in Aachen (Germany). From 2005 to 2013 he was
professor at Supelec (France), and headed several
research groups among which the Machine Learning
and Interactive Systems group (MaLIS). From 2007

to 2010, he was also a member of the IADI INSERM lab. He was a full
member of the GeorgiaTech - CNRS joint lab from 2010 to 2013 and
coordinated the computer science department of this international lab. He
is now a Full Professor at University Lille 1 and affiliated to the CRIStAL
lab’s Sequential Learning (SequeL) Team. In 2014, he has been appointed at
the Institut Universitaire de France. Olivier Pietquin sat on the IEEE Speech
and Language Technical Committee from 2009 to 2012. His research interests
include machine learning, speech and signal processing and applications to
spoken dialog systems. He authored or co-authored over 130 publications in
these domains.

