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Abstract This paper reports applications of Difference of Convex functions (DC)
programming to Learning from Demonstrations (LfD) and Reinforcement Learn-
ing (RL) with expert data. This is made possible because the norm of the Optimal
Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms,
is DC. Improvement in performance is demonstrated on two specific algorithms,
namely Reward-regularized Classification for Apprenticeship Learning (RCAL)
and Reinforcement Learning with Expert Demonstrations (RLED), through ex-
periments on generic Markov Decision Processes (MDP), called Garnets.

1 Introduction

The Optimal Bellman Residual (OBR), being a core optimization criterion in
Reinforcement Learning (RL), as been recently proven to be a Difference of Convex
(DC) functions (Piot et al, 2014c). As a consequence, this paper aims at extending
previous results obtained in DC for batch RL to the fields of control with expert
data and Learning from Demonstrations (LfD). More precisely, its objective is to
leverage the knowledge in DC programming in order to improve the performance
of existing methods in control and LfD.

In control theory, there are two canonical ways to make an apprentice agent
learn a task from expert demonstrations. The first one consists in directly learning
a behaviour (mapping situations to decisions) generalising the expert decisions
in states that were unvisited during demonstrations. This is the framework of
LfD (Pomerleau, 1989; Atkeson and Schaal, 1997; Schaal, 1997; Argall et al, 2009).
The second approach consists in inferring a goal that the apprentice agent should
achieve from the demonstrations. The apprentice would than have to interact with
the environment and find a strategy to attain it. When this goal is defined trough a
reward function representing the local benefit of doing a particular action in a given
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state, the agent aims at maximising the sum of rewards encountered during its
interaction with the environment. This is the framework of Reinforcement Learning
(RL) (Sutton and Barto, 1998). From a human perspective, the reward represents
a local satisfaction and realising a task consists in maximising the sum of the
local satisfactions. RL has the advantage of clearly defining a task through a
reward function, providing with an optimisation criterion. However, optimising a
sparsely distributed reward is sometimes a tricky task (sparse rewards are mainly
encountered in practice because there are easier to define) as the agent has often
to explore exhaustively its environment to discover rewards. For this reason, it can
be useful to combine RL with LfD (Schaal, 1997; Piot et al, 2014b) in order to
avoid learning from scratch and knowing precisely the task to achieve. There is a
vast literature on LfD and RL but very few articles on how DC techniques can
improve those methods (one exception being (Piot et al, 2014c)).

DC programming (Tao and An, 1997, 2005) can transform a complex non-
convex (but DC) problem into a series of simpler convex problems solvable via
gradient-descent/ascent methods or Linear Programming (LP). This property is
very interesting as it allows leveraging the huge amount of gradient-descent/ascent
and LP literature. Thus, DC techniques have been applied to several domains
and Machine Learning (ML) is no exception (Le Thi et al, 2014b,a). Indeed, DC
methods can be used to address classification tasks (Le Thi et al, 2008; Le et al,
2015) and RL problems (Piot et al, 2014c).

To make use of DC, we place ourselves in the Markov Decision Process (MDP)
paradigm, well-suited to study sequential decision making problems in stochastic,
discrete-time and finite action-state space environments. In this specific frame-
work, finding an optimal control can be cast into minimising a criterion, namely
the OBR, which appears to be a DC function (Piot et al, 2014c). More precisely, we
focus on two existing methods called Reward-regularised Classification for Appren-
ticeship Learning (RCAL) (Piot et al, 2014a) and Reinforcement Learning with
Expert Demonstrations (RLED) (Piot et al, 2014b). RCAL is an LfD method
which consists in constraining a classification method to using the dynamics of
the underlying MDP so as to obtain better generalisation properties. RLED is an
RL method using expert demonstrations together with OBR minimisation so as
to boost learning speed. Those two algorithms consist in minimising a regularised
classification criterion where the regularisation term, which is an empirical ver-
sion of the OBR, is DC. In their original form, these algorithms where based on
standard (sub-)gradient descent, but here we show how using DC techniques can
improve the optimisation result.

The remaining of the paper is organised as follows. First, Sec. 2 provides the
notations and the background. It introduces the concepts of MDP, RL, IL, RLED
and DC functions. Then, in Sec. 3, we show how RCAL and RLED can be decom-
posed in DC problems. Finally, in Sec .4), we show experimental results.

2 Background

Here, we introduce concepts such as MDP (Sec. 2.1) and RL (Sec. 2.2) which are
prerequisites to understanding LfD (Sec.2.3) and RLED (Sec.2.4) frameworks. We
also briefly introduce the few basic notions of DC programming (Sec 2.5) required
to decompose RCAL and RLED into DC problems.
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Let us start with the general notations used throughout this paper. Let (R, |.|)
be the real space with its canonical norm and X a finite set, RX is the set of
functions from X to R. The set of probability distributions over X is noted ∆X .
Let Y be a finite set, ∆YX is the set of functions from Y to ∆X . Let α ∈ RX ,
p ≥ 1 and ν ∈ ∆X , we define the Lp,ν-semi-norm of α, noted ‖α‖p,ν , by: ‖α‖p,ν =

(
∑
x∈X ν(x)|α(x)|p)

1
p . In addition, the infinite norm is noted ‖α‖∞ and defined as

‖α‖∞ = maxx∈X |α(x)|. Let v be a random variable which takes its values in X,
v ∼ ν means that the probability that v = x is ν(x).

2.1 Markov Decision Process

The MDP paradigm is a state-of-the-art framework to learn optimal control in a
stochastic, discrete-time and finite action-state space environment (Howard, 1960;
Bellman and Kalaba, 1965). Via the definition of a reward function representing
the local information on the benefit of doing an action in a given state, it allows to
find an optimal behaviour w.r.t. a predefined criterion. Here, we consider infinite-
horizon γ-discounted MDPs where the chosen criterion is the γ-discounted and
expected cumulative reward collected by an agent (a formal definition is given
below). An optimal behaviour thus maximises the previous criterion and can be
exactly found through Dynamic Programming (DP) (Bertsekas, 1995; Puterman,
1994) techniques such as Value Iteration (VI), Policy Iteration (PI) or Linear
Programming (LP).

Here, the agent is supposed to act in a finite MDP represented by a tuple
M = {S,A,R, P, γ} where S = {si}1≤i≤NS

is the finite state space (NS ∈ N∗),
A = {ai}1≤i≤NA

is the finite action space (NA ∈ N∗), R ∈ RS×A is the reward
function (R(s, a) represents the local benefit of doing action a in state s), γ ∈]0, 1[ is
a discount factor and P ∈ ∆S×AS is the Markovian dynamics which gives the proba-
bility, P (s′|s, a), to reach s′ by choosing action a in state s. It has been shown (Put-
erman, 1994) for finite MDPs that it is sufficient to consider deterministic policies
in order to obtain an optimal behaviour with respect to the γ-discounted and ex-
pected cumulative reward criterion. A deterministic policy π is an element of AS ,
it maps each state to a unique action and thus defines the behaviour of an agent.
The quality of a policy π is defined by the action-value function. For a given policy
π, the action-value function Qπ ∈ RS×A is defined as:

Qπ(s, a) = Eπ[
+∞∑
t=0

γtR(st, at)],

where Eπ is the expectation over the distribution of the admissible trajectories
(s0, a0, s1, π(s1), . . . ) obtained by executing the policy π starting from s0 = s and
a0 = a. Therefore, the quantity Qπ(s, a) represents the γ-discounted and expected
cumulative reward collected by executing the policy π starting from s0 = s and
a0 = a. Often, the concept of value function V π is used and corresponds to:

∀s ∈ S, V π(s) = Qπ(s, π(s)),

which represents the γ-discounted and expected cumulative reward collected by
executing the policy π starting from s0 = s and a0 = π(s). So, the aim, when
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optimising an MDP, is to find a policy π, called an optimal policy, such that:

∀π′ ∈ AS , ∀s ∈ S, V π(s) ≥ V π
′
(s).

To do so, an important tool is the optimal action-value function Q∗ ∈ RS×A
defined as Q∗ = maxπ∈AS Qπ. It has been shown by Puterman (1994) that a
policy π is optimal if and only if ∀s ∈ S, V π(s) = V ∗(s), where ∀s ∈ S, V ∗(s) =
maxa∈AQ

∗(s, a). In addition, an important concept, that we will use throughout
the paper, is greediness. A policy π is said greedy with respect to a function
Q ∈ RS×A if:

∀s ∈ S, π(s) ∈ argmax
a∈A

Q(s, a).

Greedy policies are important because a policy π greedy with respect to Q∗ is
optimal (Puterman, 1994). Thus, if we manage to find Q∗, we automatically found
an optimal policy by taking a greedy policy with respect to Q∗. Moreover, Qπ and
Q∗ are known to be the unique fixed points of the contracting operators Tπ and
T ∗ (also called Bellman operators) respectively:

∀Q ∈ RS×A, ∀(s, a) ∈ S ×A, TπQ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Q(s, π(s′)),

∀Q ∈ RS×A, ∀(s, a) ∈ S ×A, T ∗Q(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
b∈A

Q(s, b).

This means, by uniqueness of the fixed points Qπ and Q∗, that:

Qπ = argmin
Q∈RS×A

‖TπQ−Q‖p,µ = argmin
Q∈RS×A

‖TπQ−Q‖∞,

Q∗ = argmin
Q∈RS×A

‖T ∗Q−Q‖p,µ = argmin
Q∈RS×A

‖T ∗Q−Q‖∞, (1)

where µ ∈ ∆S×A is such that ∀(s, a) ∈ S ×A,µ(s, a) > 0 and p ≥ 1. Thus, Eq (2.1)
shows that optimising an MDP can be seen as the minimisation of the criterion
Jp,µ(Q) = ‖T ∗Q−Q‖p,µ where T ∗Q−Q is the OBR. Moreover, Piot et al (2014c)
showed that the function Jp,µ is DC and they provided an explicit decomposition
for p = 1 and p = 2. However, minimising directly Jp,µ via a DC programming
technique, such as DC Algorithm (DCA), when the MDP is perfectly known is
not useful as there exists DP techniques (VI, PI and LP) which efficiently and
exactly compute optimal policies. They rely on nice properties of the Bellman
operators such as being a contraction and monotonicity. However, when the state
space becomes large, two important problems arise and DP programming is not
an option anymore. The first one, called the representation problem, relate to the
fact that each value Qπ(s, a) of the action-value functions cannot be stored as the
number of values grows too much. So these functions need to be approximated
with a moderate number of coefficients. The second problem, called the sampling

problem, arises because only samples from the Bellman operators are observed
(there is thus only a partial knowledge of the dynamics P and the reward function
R). One solution for the representation problem is to use a linear approximation of
the action-value functions thanks to a basis of d ∈ N∗ functions φ = (φi)

d
i=1 where

φi ∈ RS×A. In addition, we define for each state-action couple (s, a) the vector
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φ(s, a) ∈ Rd such that φ(s, a) = (φi(s, a))di=1. Thus, the action-value functions are
characterised by a vector θ ∈ Rd and noted Qθ:

∀θ ∈ Rd,∀(s, a) ∈ S ×A,Qθ(s, a) =
d∑
i=1

θiφi(s, a) = 〈θ, φ(s, a)〉,

where 〈., .〉 is the canonical dot product of Rd. In order to tackle the sampling prob-
lem, RL techniques have been proposed and rely principally on Approximate DP
(ADP) methods. One notable exception, developed by Piot et al (2014c), consists
in directly minimising an empirical norm of the OBR via DCA (see Sec. 2.2).

2.2 Reinforcement Learning

RL is a vast domain with different settings (Sutton and Barto, 1998; Lange et al,
2012) sharing the property that the model (the dynamics P and the reward R) of
the MDP is only known through data (sampling problem). Data can be collected
on-line by an agent acting in the MDP, via a simulator or via previous interactions.
Here, we focus on the last setting called the batch setting. More precisely, the
machine is provided with a set of traces of interactions with the MDP:

DRL = (sj , aj , rj , s
′
j)
NRL
j=1 ,

where sj ∈ S, aj ∈ A, rj = R(sj , aj), s
′
j ∼ P (.|sj , aj) and NRL ∈ N∗. Using only

that set, a batch RL technique must estimate an optimal policy. Several techniques
inspired by ADP such as Fitted-Q (Ernst et al, 2005) (Approximate VI technique),
Least squares Policy Iteration (LSPI) (Lagoudakis and Parr, 2003) (Approximate
PI technique) and Locally Smoothed Regularised Approximate Linear Program-
ming (LSRALP)- (Taylor and Parr, 2012) exist. They rely on particular properties
of the optimal Bellman operator T ∗, such as monotonicity and contraction, to es-
timate the fixed-point Q∗. Here, we are interested in a new breed of RL techniques
consisting in directly minimising the empirical OBR:

JRL(Q) =
1

NRL

NRL∑
j=1

|T ∗Q(sj , aj)−Q(sj , aj)|,

=
1

NRL

NRL∑
j=1

|R(sj , aj) + γ
∑
s′∈S

P (s′|sj , aj) max
a∈A

Q(s′, a)−Q(sj , aj)|. (2)

Piot et al (2014c) showed that minimising directly the empirical optimal Bellman
residual (JRL) is a legit technique as:

‖Q∗ −Qπ‖p,ν ≤
C

1− γ JRL(Q),

where C is a constant depending on the dynamics P , ν ∈ ∆S×A and π is a greedy
policy with respect to Q. This bound shows that minimising JRL, leads to learn a
function close to the optimal quality function Q∗. A finite-sample analysis version
of the bound and a comparison to ADP techniques is also provided by Piot et al
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(2014c). In order to minimise JRL, they showed that this criterion is DC, gave an
explicit decomposition and proposed to use DCA.

In practice, T ∗Q(sj , aj) cannot be computed from DRL, as P is unknown,
unless the MDP is deterministic. Indeed, in that case, which is the one considered
in our experiments (see Sec. 4), we have:∑

s′∈S
P (s′|sj , aj) max

a∈A
Q(s′, a) = max

a∈A
Q(s′j , a).

So, T ∗Q(sj , aj) = R(sj , aj) + γmaxa∈AQ(s′j , a) can be obtained from DRL. In the
general case, only a unbiased estimate of T ∗Q(Si, Ai) can be computed via:

T̂ ∗Q(si, ai) = R(si, ai) + γmax
b∈A

Q(s′i, b).

The problem is that |T̂ ∗Q(sj , aj)−Q(sj , aj)|p is a biased estimator of |T ∗Q(sj , aj)−
Q(sj , aj)|p and the bias is uncontrolled (Antos et al, 2008). In order to allevi-

ate this typical problem, several better estimators |T̂ ∗Q(sj , aj) − Q(sj , aj)|p of
|T ∗Q(sj , aj) − Q(sj , aj)|p have been proposed, such as embeddings in Reproduc-
ing Kernel Hilbert Spaces (RKHS)(Lever et al, 2012) or locally weighted averager
such as Nadaraya-Watson estimators(Taylor and Parr, 2012). In both cases, the
unbiased estimate of T ∗Q(sj , aj) takes the form:

T̂ ∗Q(sj , aj) = R(sj , aj) + γ
1

NRL

NRL∑
j=k

βj(s
′
k) max

a∈A
Q(s′k, a),

where βj(s
′
k) is the weight of samples s′k in the T ∗Q(sj , aj) estimate.

2.3 LfD and RCAL

LfD consists in learning an policy πE from demonstrations of an expert (which can
be optimal or near-optimal) and without observing rewards. The aim is to gener-
alise the expert behaviour in states that where not observed in the demonstration
set. This setting is easily motivated as, in a lot of practical applications, it is easier
to provide expert demonstrations than a reward function. Here, we consider the
batch LfD setting where a set of expert demonstrations

DE = (si, ai)
NE
i=1,

with si ∈ S, ai = πE(si) and NE ∈ N∗, and a set of sampled transitions without
rewards

DNE = (sj , aj , s
′
j)
NNE
j=1 ,

with sj ∈ S, aj ∈ A, s′j ∼ P (.|sj , aj) and NNE ∈ N∗, are provided. The set
DNE gives a useful information on the dynamics of the underlying MDP and
the set DE gives examples of an optimal (or sub-optimal) behaviour. There are
several ways to tackle the LfD problem. The most well-known and studied are
Inverse Reinforcement Learning (IRL) (Ng et al, 2000; Ziebart et al, 2008; Syed
and Schapire, 2008; Klein et al, 2012, 2013) and Imitation Learning (IL) (Ratliff
et al, 2007; Syed and Schapire, 2010; Ross and Bagnell, 2010; Ross et al, 2011;
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Judah et al, 2012). IRL consists in estimating a reward function that explains
the expert behaviour. Once the reward is estimated, the resulting MDP has to
be solved to end up with an actual policy. The interested reader can refer to this
survey (Neu and Szepesvári, 2009). On the other hand. IL consists in directly
learning a mapping from states to actions to imitates the expert. This approach
can be cast to a pure Supervised Learning (SL) problem such as Multi-Class
Classification (MCC) (Pomerleau, 1989; Ratliff et al, 2007; Ross and Bagnell,
2010; Syed and Schapire, 2010). Indeed, to compare to the standard classification
notations, a state-action couple (si, ai = πE(si)) of the expert set DE could be seen
as an input-label (xi, yi) couple of a training set D = (xi ∈ X, yi ∈ Y )Ni=1, where X
is a compact set of inputs (in our particular case X is even finite) and Y a finite
set of labels. The goal of MCC is, given D, to find a decision rule g ∈ H ⊂ Y X ,
where H is an hypothesis space, that generalises the relation between inputs and
labels by minimising the empirical risk:

g = argmin
h∈H

1

N

N∑
i=1

1{yi=h(xi)}.

Properties of g and how well it generalises the data are notably studied by Vapnik
(1998). However, minimising directly the empirical risk is unrealistic and practi-
tioners use convex surrogates. Often, another approach, called score-based MCC,
where a score function Q ∈ RX×Y is learnt, is used (we intentionally decide to
use the same notation as action-value functions as there is a close link between
between score functions and action-value functions (Klein et al, 2013)). The score
Q(x, y) represents the correspondence between the input x and the label y. The
higher the score is, the more likely y will be chosen when x is the input. Thus,
the decision rule g corresponding to the score Q is g(x) = argmaxy∈Y Q(x, y). For
instance, Ratliff et al (2007) use a large margin approach which is a score-based
MCC for solving an IL problem. The large margin approach consists, given the
training set D, in minimising the following criterion:

J(Q) =
1

N

N∑
i=1

max
y∈Y
{Q(xi, y) + l(xi, yi, y)} −Q(xi, yi),

where l ∈ RX×Y×Y+ is called the margin function. If this function is zero, minimis-
ing J(Q) attempts to find a score function for which the example labels are scored
higher than all other labels. Choosing a non-zero margin function improves gener-
alisation (Ratliff et al, 2007) and instead of requiring only that the example label
is scored higher than all other labels, it requires it to be better than each label
y by an amount given by the margin function. In practice, one can use a margin
function equals 0 for the inputs (xi, yi, y = yi) and 1 otherwise (this is the margin
function we chose in our experiments). Applying the large margin approach to the
LfD problem gives the following minimisation criterion:

JE(Q) =
1

NE

NE∑
i=1

max
a∈A
{Q(si, a) + l(si, πE(si), a)} −Q(si, πE(si)).

However this approach does not take into account the underlying dynamics of the
MDP represented in the set DNE .
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To avoid that drawback, Piot et al (2014a) propose to see the score function
Q as an optimal quality function Q∗ of an MDP. To do so, they rely on the one-
to-one relation between optimal quality functions and rewards functions. Indeed,
for each function Q ∈ RS×A, there exists a reward function RQ ∈ RS×A such that
Q = Q∗ where Q∗ is the optimal quality function with respect to the reward RQ.
Moreover, there is an explicit formula for RQ depending only on Q and P (Piot
et al, 2014a):

RQ(s, a) = Q(s, a)− γ
∑
s′∈S

P (s′|s, a) max
b∈A

Q(s′, b).

Knowing that, Piot et al (2014a) propose to regularise the criterion JE by a term
controlling the sparsity of the reward associated to the score function. This regu-
larisation term is:

JNE(Q) =
1

NNE

NNE∑
j=1

|RQ(sj , aj)|,

=
1

NNE

NNE∑
j=1

|γ
∑
s′∈S

P (s′|sj , aj) max
a∈A

Q(s′, a)−Q(sj , aj)|. (3)

This helps to reduce the variance of the method as it considers as good candi-
dates only Q functions with sparse rewards RQ. The algorithm RCAL consists in
minimising by a gradient descent the following criterion:

JRCAL(Q) = JE(Q) + λRCALJNE(Q).

However, it is easy to see that JNE(Q) (see Eq. (2.3)) corresponds to JRL(Q) (see
Eq. (2.2)) when the reward function is null. Thus, JNE(Q) is also DC and as JE
is convex, then JRCAL is DC. So, we propose to use the DCA to minimise JRCAL
in Sec. 3.

2.4 Reinforcement Learning with Expert Demonstrations

RLED aims at finding an optimal control in a MDP where some expert data
are provided in addition to standard sampled transitions with rewards. Such a
paradigm is also easily motivated as in a lot of practical applications a goal (re-
ward function) is provided to an agent (a robot for instance) but it can be quite
difficult or risky to optimise from scratch (huge or dangerous environment to ex-
plore). Also a good control is often difficult to find as the reward function is very
sparse and the agent needs to explore a lot of possibilities before finding a reward
and retro-propagate it. Thus, an expert (a human for instance) can provide some
demonstrations in order to guide the agent through the good learning path and
accelerate the learning process (Clouse, 1996; Gil et al, 2009; Knox and Stone,
2012; Taylor et al, 2011; Griffith et al, 2013). This combination of reward and
expert data is somehow what we can experience in our daily life when we set
goals to achieve (reward functions) and we observe other human beings (experts)
achieving that same goals. Here, we consider the batch setting (Kim et al, 2013;
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Piot et al, 2014b). More precisely, the apprentice agent is given a set of expert
demonstrations (the same as the one in LfD)

DE = (si, ai)
NE
i=1,

where si ∈ S, ai = πE(si) and NE ∈ N∗, and a set of sampled transitions (the
same as the one in RL)

DRL = (sj , aj , rj , s
′
j)
NRL
j=1 ,

where sj ∈ S, aj ∈ A, rj = R(sj , aj), s
′
j ∼ P (.|sj , aj) and NRL ∈ N∗. Piot et al

(2014b) propose the RLED algorithm, minimising the following criterion:

JRLED(Q) = JE(Q) + λRLEDJRL(Q),

combining two criteria: JE and JRL (defined in Eq. (2.2)). The regularisation
factor λRLED weights the importance between the expert and RL data. If one
has a high confidence on the quality of the RL data, one will set λRLED to high
value and to a low value otherwise. The criterion JRLED can also be seen as
the minimisation of JRL guided by constraints provided by the expert data (Piot
et al, 2014b). Another explanation could be that RLED produces a score function
Q that is forced to be an action-value function. This accelerates the optimisation
of JRL and improves the performance of the method. In the original paper (Piot
et al, 2014b), the authors propose to minimise JRLED(Q) by a gradient descent.
However, as JRL is DC and JE is convex, then JRLED is DC. Thus, we propose
to use DCA to minimise this criterion in Sec. 3. But before, we give some basics
on DC programming which are sufficient to derive DC decompositions for RLED
and RCAL.

2.5 Basics on DC and DC programming

DC programming addresses non-convex (but DC) and non-differentiable (but sub-
differentiable) optimisation problems by transforming them into a series of inter-
mediary convex (thus simpler) optimisations problems. It allows leveraging the
knowledge on convex optimisation and for that reason as been adapted to differ-
ent domains such as Machine Learning (Le Thi et al, 2008, 2014b,a). It also gives
some guarantees when one of the function of the DC decomposition is polyhedral,
such as convergence in finite time to local minima. Thus, it seems a better solution
than a simple gradient descent when confronted to complex non-convex (but DC)
optimisation problems.

Let E be a finite dimensional Hilbert space, 〈., .〉E and ‖.‖E its dot product
and norm respectively. We say that a function J ∈ RE is DC if there exists f, g ∈
RE which are convex and lower semi-continuous such that J = f − g (Tao and
An, 2005). The set of DC functions is noted DC(E) and is stable to most of
the operations that can be encountered in optimisation, contrary to the set of
convex functions. Indeed, let (Ji)

K
i=1 be a sequence of K ∈ N∗ DC functions and

(αi)
K
i=1 ∈ RK then

∑K
i=1 αiJi,

∏K
i=1 Ji, min1≤i≤K Ji, max1≤i≤K Ji and |Ji| are DC

functions (Hiriart-Urruty, 1985). In order to minimise a DC function J = f−g, we
need to define a notion of differentiability for convex and lower semi-continuous
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functions. Let g be such a function and e ∈ E, we define the sub-gradient ∂eg of g
in e as:

∂eg = {δe ∈ E,∀e′ ∈ E, g(e′) ≥ g(e) + 〈e′ − e, δe〉E}.

For convenience, we make this little abuse of notations where ∂eg can refer to any
element of ∂eg. For a convex and lower semi-continuous g ∈ RE , the sub-gradient
∂eg is non empty for all e ∈ E (Hiriart-Urruty, 1985). This observation leads
to a minimisation method of a function J ∈ DC(E) called Difference of Convex
functions Algorithm (DCA). Indeed, as J is DC, we have:

∀(e, e′) ∈ E2, J(e′) = f(e′)− g(e′) ≤
(a)

f(e′)− g(e)− 〈e′ − e, ∂eg〉E ,

where inequality (a) is true by definition of the sub-gradient. Thus, for all e ∈ E,
the function J is upper bounded by a function Ie ∈ RE defined, ∀e′ ∈ E, by

Ie(e
′) = f(e′)− g(e)− 〈e′ − e, ∂eg〉E .

The function Ie is a convex and lower semi-continuous function (as it is the sum of
two convex and lower semi-continuous functions which are f and the linear function
∀e′ ∈ E, 〈e − e′, ∂eg〉E − g(e)). In addition, those functions have the particular
property that ∀e ∈ E, J(e) = Ie(e). The set of convex functions (Ie)e∈E that
upper-bound the function J plays a key role in DCA.

The algorithm DCA (Tao and An, 2005) consists in constructing a sequence
(en)n∈N such that the sequence (J(en))n∈N decreases. The first step is to choose a
starting point e0 ∈ E, then to minimise the convex function Ie0 that upper-bounds
the function J . We can remark that minimising Ie is equivalent to minimising I ′e
defined by ∀e′ ∈ E

I ′e(e
′) = f(e′)− 〈e′, ∂eg〉E .

We note e1 a minimiser of Ie0 , e1 ∈ argmine∈E Ie0 . This minimisation can be
realised by any convex optimisation solver. As J(e0) = Ie0(e0) ≥ Ie0(e1) and
Ie0(e1) ≥ J(e1), then J(e0) ≥ J(e1). Thus, if we construct the sequence (ek)k∈N
such that ∀k ∈ N, ek+1 ∈ argmine∈E Iek and e0 ∈ E, then we obtain a decreas-
ing sequence (J(ek))k∈N. Therefore, the algorithm DCA solves a sequence of con-
vex optimisation problems in order to solve a DC optimisation problem. Three
important choices can radically change the DCA performance: the first one is
the explicit choice of the decomposition of J , the second one is the choice of
the starting point e0 and finally the choice of the intermediate convex solver.
The DCA algorithm hardly guarantees convergence to the global optima, but
it usually provides good solutions. Moreover, it has some nice properties when
one of the functions f or g is polyhedral. A function g is said polyhedral when
∀e ∈ E, g(e) = max1≤i≤K [〈αi, e〉H + βi], where (αi)

K
i=1 ∈ E

K and (βi)
K
i=1 ∈ RK .

If one of the function f, g is polyhedral, J is under bounded, the DCA sequence
(ek)k∈N is bounded and the DCA algorithm converges in finite time to one of the
local minima. The finite time aspect is important in terms of implementation.
More details about DC programming and DCA are given by Tao and An (2005)
and even conditions for convergence to the global optima.

To summarise, once a DC decomposition is found, minimising the DC criterion
J = f − g via DCA corresponds to minimise the following intermediary convex
functions:

I ′k(e′) = f(e′)− 〈e′, ∂ekg〉E ,
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with e0 ∈ E and ek+1 ∈ argmine′∈E I
′
k(e′). In practice, DCA stops when ek+1 = ek

or when k = K (with K the maximal number of steps for DCA and this is the
stopping criterion chosen in our experiments) and the output of the algorithm is
ek. In addition, obtaining ek+1 can be done by linear programming (if I ′k can be
transformed into a linear program) or by gradient descent. In our experiments,
we choose gradient descent to solve the intermediary convex problems with the
following updates:

e′0 = ek, ∂e′pI
′
k = ∂e′pf − ∂ekg, e′p+1 = e′p − αp

∂e′pI
′
k

‖∂e′pI
′
k‖E

, (4)

where (αp)p∈N ∈ RN
+. Finally, we set ek+1 = e′p∗ where p∗ meets a stopping criterion

such as p∗ = N (with N is the maximal number of steps of the gradient descent
and this is the stopping criterion chosen in our experiments) or ∂e′pI

′
k = 0 for

instance. Thus, when the intermediary convex problems I ′k are determined, it is
necessary to be able to compute their gradient ∂e′pI

′
k in order to apply DCA. In

the next section, we give the decompositions of the criteria JRCAL and JRLED
and how to compute the different gradients.

3 DC Decompositions for RCAL and RLED

In this section, we derive a DC decomposition for the criteria JRLED (Sec. 3.3)
and JRCAL (Sec. 3.2) from the DC decompositions of JRL and JNE (Sec. 3.1).
Several decompositions are possible, we describe the one that we actually use
in experiments. Here, the DC decompositions is realised as if we could compute
γ
∑
s′∈S P (s′|sj , aj) maxa∈AQ(s′, a). In practice, in the deterministic case, we re-

place this quantity by γP (s′j |sj , aj) maxa∈AQ(s′j , a) which is easily computable

and in the general case by 1
N

∑N
k=1 βj(s

′
k) maxa∈AQ(s′k, a) which is obtained us-

ing RKHS embedding or Nadaraya-Watson estimators.

3.1 DC decomposition of JRL and JNE

Let us start with the criterion JRL(Q)

JRL(Q) =
1

NRL

NRL∑
j=1

|T ∗Q(sj , aj)−Q(sj , aj)|,

=
1

NRL

NRL∑
j=1

|R(sj , aj) + γ
∑
s′∈S

P (s′|sj , aj) max
a∈A

Q(s′, a)−Q(sj , aj)|.

As we have seen previously, in RL, the functions Q are characterised by a vector
θ ∈ Rd and noted Qθ(s, a) =

∑d
i=1 θiφi(s, a) = 〈θ, φ(s, a)〉. Thus, we consider the

criterion:

JRL(θ) =
1

NRL

NRL∑
j=1

|R(sj , aj) + γ
∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉 − 〈φ(sj , aj), θ〉|.
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Noticing that γ
∑
s′∈S P (s′|sj , aj) maxa∈A〈φ(s′, a), θ〉 is convex in θ as a sum of a

max of convex functions, that 〈φ(sj , aj), θ〉 is also convex in θ and that |f − g| =
2 max(f, g)− (f+g), we have the following DC decomposition for JRL (a complete
proof is given by Piot et al (2014c)):

fjRL(θ) = 2 max

(
R(sj , aj) + γ

∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉, 〈φ(sj , aj), θ〉

)
,

gjRL(θ) = R(sj , aj) + γ
∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉+ 〈φ(sj , aj), θ〉,

fRL(θ) =
1

NRL

NRL∑
j=1

fjRL(θ), gRL(θ) =
1

NRL

NRL∑
j=1

gjRL(θ),

JRL(θ) =
1

NRL

NRL∑
j=1

fjRL(θ)− gjRLθ = fRL(θ)− gRL(θ).

We can do exactly the same calculus for JNE as it is the same criterion than JRL
with a null reward. We have:

JNE(Q) =
1

NNE

NNE∑
j=1

|RQ(sj , aj)|,

JNE(Q) =
1

NNE

NNE∑
j=1

|γ
∑
s′∈S

P (s′|sj , aj) max
a∈A

Q(s′, a)−Q(sj , aj)|.

With the linear parametrisation, we obtain:

JNE(θ) =
1

NRL

NRL∑
i=j

|γ
∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉 − 〈φ(sj , aj), θ〉|,

fjNE(θ) = 2 max

(
γ
∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉, 〈φ(sj , aj), θ〉

)
,

gjNE(θ) = γ
∑
s′∈S

P (s′|sj , aj) max
a∈A
〈φ(s′, a), θ〉+ 〈φ(sj , aj), θ〉,

fNE(θ) =
1

NNE

NNE∑
j=1

fjNE(θ), gNE(θ) =
1

NNE

NNE∑
j=1

gjNE(θ),

JNE(θ) =
1

NNE

NNE∑
j=1

fjNE(θ)− gjNE(θ) = fNE(θ)− gNE(θ).

Now that we have the DC decompositions, it is sufficient to calculate the inter-
mediary convex problems (IkRL(θ) and IkNE(θ)). To do so, we need the gradients
∂θ′gRL and ∂θ′gNE :

∂θ′g
j
RL = γ

∑
s′∈S

P (s′|sj , aj)φ(s′, a∗θ′,s′) + φ(sj , aj), ∂θ′gRL =
1

NRL

NRL∑
j=1

∂θ′g
j
RL,
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∂θ′g
j
NE = γ

∑
s′∈S

P (s′|sj , aj)φ(s′, a∗θ′,s′) + φ(sj , aj), ∂θ′gNE =
1

NNE

NNE∑
j=1

∂θ′g
j
NE .

where a∗θ′,s′ = argmaxa∈A〈φ(s′, a), θ′〉. So the intermediary convex problems are:

IkRL(θ) = fRL(θ)− 〈∂θkRL
gRL, θ〉, IkNE(θ) = fNE(θ)− 〈∂θkNE

gNE , θ〉,

with θ0RL, θ0RL in Rd, θk+1
RL = argminθ∈Rd IkRL(θ) and θk+1

NE = argminθ∈Rd IkNE(θ).

To minimise IkRL(θ) and IkNE(θ), we have to compute their gradients and do the
update as in Eq .(2.5):

∂θ′f
j
RL =


γ
∑
s′∈S P (s′|sj , aj)φ(s′, a∗θ′,s′)

if R(sj , aj) + γ
∑
s′∈S P (s′|sj , aj) maxa∈A〈φ(s′, a), θ′〉 > 〈φ(sj , aj), θ

′〉,
φ(sj , aj) else

∂θ′fRL =
1

NRL

NRL∑
j=1

∂θ′f
j
RL, ∂θ′I

k
RL = ∂θ′fRL(θ)− ∂θkRL

gRL.

∂θ′f
j
NE =


γ
∑
s′∈S P (s′|sj , aj)φ(s′, a∗θ′,s′)

if γ
∑
s′∈S P (s′|sj , aj) maxa∈A〈φ(s′, a), θ′〉 > 〈φ(sj , aj), θ

′〉,
φ(sj , aj) else ,

∂θ′fNE =
1

NNE

NNE∑
j=1

∂θ′f
j
NE , ∂θ′I

k
NE = ∂θ′fNE(θ)− ∂θkRL

gNE .

The DC decompositions of JRCAL and JRLED follows directly from the ones of
JRL and JNE . In addition, one can easily notice that fRL, gRL, fNE and gNE are
polyhedral and that property will be directly transmitted to the decompositions
of JRCAL and JRLED.

3.2 DC decomposition of JRCAL

The criterion JRCAL is composed of two criterion JE and JNE :

JE(Q) =
1

NE

NE∑
i=1

max
a∈A

[Q(si, a) + l(si, ai, a)]−Q(si, ai),

JRCAL(Q) = JE(Q) + λRCALJNE(Q).

With a linear parametrisation, we have:

JE(θ) =
1

NE

NE∑
i=1

max
a∈A

[〈φ(si, a), θ〉+ l(si, ai, a)]− 〈φ(si, ai), θ〉,

JRCAL(θ) = JE(θ) + λRCALJNE(θ).
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Thus, the DC decomposition is quite trivial to obtain as JE is convex:

fRCAL(θ) = JE(θ) + λRCALfNE(θ),

gRCAL(θ) = λRCALgNE(θ),

JRCAL(θ) = fRCAL(θ)− gRCAL(θ).

To obtain the intermediary convex problems, we need to calculate the gradient of
gRCAL:

∂θ′gRCAL = λRCAL∂θ′gNE ,

=
λRCAL
NNE

NNE∑
j=1

∂θ′g
j
NE .

Thus, the convex intermediary problems have the following form:

IkRCAL(θ) = fRCAL(θ)− 〈∂θkRCAL
gRCAL, θ〉.

To minimise IkRCAL, we calculate its gradient:

∂θ′JE =
1

NE

NE∑
i=1

φ(si, a
∗
i,θ′)− φ(si, ai),

∂θ′fRCAL = ∂θ′JE + λRCAL∂θ′fNE ,

∂θ′I
k
RCAL = ∂θ′fRCAL − ∂θkRCAL

gRCAL.

where a∗i,θ′ = argmaxa∈A[〈φ(si, a), θ′〉+ l(si, ai, a)].

3.3 DC decomposition of JRLED

The decomposition of JRLED is quite similar as the one of JRCAL. We present it
briefly for sake of completeness. JRLED is composed by two terms:

JRLED(Q) = JE(Q) + λRLEDJRL(Q).

With a linear parametrisation, we have:

JRLED(θ) = JE(θ) + λRLEDJRL(θ).

As JE is convex, a DC decomposition is quite trivial to obtain:

fRLED(θ) = JE(θ) + λRLEDfRL(θ),

gRLED(θ) = λRLEDgRL(θ),

JRLED(θ) = fRLED(θ)− gRLED(θ).

Now, to minimise JRLED, we calculate the intermediary convex problems by ob-
taining the gradient of gRLED:

∂θ′gRLED = λRLED∂θ′gRL,

=
λRLED
NRL

NRL∑
j=1

∂θ′g
j
RL.
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Thus, the intermediary convex problems have the following form:

IkRLED(θ) = fRLED(θ)− 〈∂θkRLED
gRLED, θ〉.

Finally, in order to minimise IkRLED by gradient descent, we need to calculate
∂θ′I

k
RLED:

∂θ′fRLED = ∂θ′JE + λRLED∂θ′fRL,

∂θ′I
k
RLED = ∂θ′fRLED − ∂θkRLED

gRLED.

Now that we have the DC decompositions of JRCAL and JRLED, we can compare
the performance of those algorithms when the minimisation is realised via direct
gradient descent or via DCA. This comparison is realised, in Sec. 4, on an abstract
but representative class of MDPs called Garnets.

4 Experiments

This section is composed of three experiments which aim at showing that using
DC programming instead of gradient descent slightly improve the performance of
existing algorithms, namely RCAL and RLED. The first experiment consists in
showing the performance improvement of the RCAL algorithm when the set DNE
is fixed and the set DE is growing on different MDPs which are randomly generated
and called Garnets. The RCAL algorithm which consists in the minimisation of the
criterion JRCAL is done by two methods. The first one is by gradient descent and is
called RCAL in the remaining. The second one is by DCA and is called RCALDC.
We also compare RCAL to a classical classification algorithm (Ratliff et al, 2007),
called Classif and which corresponds to the minimisation of JRCAL by gradient
descent when λRCAL = 0. The second experiments focuses on the performance
improvement of RLED when the set DRL is fixed and the set DE is growing. We
compare the algorithm RLED when the minimisation is done by gradient descent,
called RLED, and when the minimisation is done by DCA, called RLEDDC. Those
algorithms are compared to LSPI which uses only the set DRL as input and Classif
which uses only the set DE as input. Finally, the last experiment focuses on the
performance improvement of RLED when the set DE is fixed and the set DRL is
growing. But first, to realise those experiments, we need to introduce the notion
of Garnets, explain how we construct the sets DE , DNE and DRL and give the
value of the different parameters of DCA and the gradient descent algorithms.

Garnets (Archibald et al, 1995) are an abstract class of finite MDPs and easy
to build. Here, we consider a special case of Garnets specified by three parame-
ters: (NS , NA, NB). Parameters NS and NA are respectively the number of states
and actions. Thus, S = (si)

NS
i=1 and A = (ai)

NA
i=1 are, respectively, the state and

action spaces. The parameter NB (NB ≤ NS), called the branching factor, defines
for each state-action couple (s, a) the number of next states. Here, we consider
deterministic MDPs with NB = 1. The next state for each (s, a), noted s′s,a, is
drawn uniformly from the set of states. In addition the discount factor is set to
γ = 0.9 or γ = 0.99. Finally, we need to define the reward function R. To do so,
we draw uniformly and without replacement dNS/10c (where dxc represents the
nearest integer form x) states from S. Then, for those states, the reward R(s) is
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drawn randomly and uniformly in [0, 1] and for the other states R(s) = 0. Thus,
we obtain a sparse reward function depending only on the states which is the kind
of rewards encountered in practice. As we choose finite MDPs, a canonical choice
of features φ is the tabular basis φ : S → RNS where φ(s) ∈ RNS is a vector which
is null excepted in s where it is equal to 1.

A Garnet is a finite MDP where the dynamics P and the reward R is perfectly
known. Thus, an optimal policy (playing the role of the expert) can be easily
computed by DP (PI in our case). This policy is a key element to build the expert
set DE that fed RCAL and RLED. In our experiments DE has the following form:

DE = (ωj){1≤j≤LE},

where ωj = (si,j , ai,j){1≤i≤HE} is a trajectory obtained by starting from a random
state s1,j (chosen uniformly in S) and applying the expert policy (πE) HE times
such that ai,j = πE(si,j) and si+1,j = s′si,j ,ai,j . So, DE is composed by LE trajec-
tories of πE of length HE and we have LEHE = NE . In addition the data set DRL
has the following form:

DRL = (τj){1≤j≤LRL},

where τj = (si,j , ai,j , ri,j , s
′
i,j = s′si,j ,ai,j ){1≤i≤HRL} is a trajectory obtained by

starting from a random state s1,j (chosen uniformly) and applying the the random
policy (ai,j is chosen uniformly from A ) HRL times such that s′i,j = si+1,j and
ri,j = R(si,j). So, DRL is composed by LRL trajectories of πR of length HRL and
we have LRLHRL = NRL. The set DNE corresponds to the set DRL where the
reward ri,j is dropped:

DNE = (τj){1≤j≤LNE},

where τj = (si,j , ai,j , s
′
i,j = s′si,j ,ai,j ){1≤i≤HNE} is a trajectory obtained by starting

from a random state s1,j (chosen uniformly) and applying the the random policy
HRL times such that s′i,j = si+1,j .

Finally, as we want to compare gradient descent to DCA for the minimisation
of the criteria JRLED and JRCAL, it is important to give the parameters of those
methods. First, the two methods start form the same starting point which is
specified for each experiment. The updates for the gradient descent have the same
form as in Eq. (2.5). And the number of updates is 100. To make DCA comparable
to gradient descent, we set the number of intermediary convex problems K to 10
and the number of updates N for the gradient descent of the intermediary problems
to 10. Thus, we have a total of KN = 100 updates for DCA. In addition, for each
gradient descent (it can be the global gradient descent or the one used in the
intermediary problems), we set the coefficients ∀p ∈ N∗, αp = 1.

4.1 RCAL experiment

Our first experiment shows the performance improvement of RCAL when γ = 0.9,
λRCAL = 0.1, HE is increasing and (LE , HNE , LNE) are fixed. It aims at showing
that the algorithms perform better when more expert information is available and
a fixed amount of knowledge of the dynamics known through DNE is given. It
consists in generating 10 Garnets with (NS = 100, NA = 5, NB = 1) which gives
us the set of Garnet problems G = (Gp)

10
p=1. On each problem p of the set G, we
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compute an optimal and expert policy, πpE . The parameter LE takes its values in

the set (LkE)10k=1 = (2, 4, 6, .., 20) and HE = 5, HNE = 5, LNE = 20. Then, for each
set of parameters (LkE , HE , LNE , HNE) and each Gp, we compute 20 expert policy

sets (Di,p,kE )20i=1 and 20 random policy sets (Di,p,kNE )20i=1 which fed the algorithms
RCAL and Classif. Overall, we test RCAL on 2000 sets of data. The starting
point of the algorithm RCAL (gradient descent and DCA) and Classif is the null
function.

The criterion of performance chosen, for the algorithm A and for each couple
(Di,p,kE , Di,p,kNE ), is the following:

T i,p,kA =
Eρ[V π

p
E − V π

i,p,k
A ]

Eρ[V π
p
E ]

,

where πpE is the expert policy, πi,p,kA is the policy induced by the algorithm A fed

by the couple (Di,p,kE , Di,p,kNE ) and ρ is the uniform distribution over the state space

S. For RCAL and Classif, we have πi,p,kA (s) ∈ argmaxa∈AQθ∗(s, a) where θ∗ is the
output of those algorithms. This criterion of performance is the normalised abso-
lute difference of value-functions between the expert policy and the one induced
by the algorithm. Thus, the lesser this criterion is the better. The mean criterion
of performance T kA for each set of parameters (LkE , HE , LNE , HNE) is:

T kA =
1

200

10∑
p=1

20∑
i=1

T i,p,k.

For each algorithm A, we plot (LkE , T
k
A)10k=1 in Fig. 1(a). The colored shadows on the

figures represent the variance of the algorithms. In order to verify that RCALDC
has a better performance than RCAL, we calculate the improvement which is the
following ratio:

Impk = 100
T kRCAL − T

k
RCALDC

T kRCAL
.

This ratio represents in percentage how much RCALDC is better than RCAL. In
Fig. 1(b), we plot (LkE , Imp

k)10k=1. In Fig. 1(a) and Fig. 1(b), we clearly observe that
RCALDC performs in average better than RCAL. In addition, we also compute
the number of times that T i,p,kRCALDC is lesser than T i,p,kRCAL over the 2000 runs of
this experiment and we obtain 1732. Thus, RCALDC is 100 × 1732

2000 = 86.6% of
the time better than RCAL. Those different elements tend to prove that using DC
programming for RCAL improves clearly the performance.

4.2 RLED experiments

The second experiment is quite similar to the first except that we use the RLED
algorithm. Here γ = 0.99, λRLED = 0.1, LE is increasing and (HE , HRL, LRL)
are fixed. Like the first experiment, it aims at showing that RLED performs bet-
ter when more expert information is available. It consists in generating a set of
Garnets G = (Gp)

10
p=1. The parameter LE takes its values in the set (LkE)10k=1 =

(1, 2, 3, .., 10) and HE = 5, HRL = 5, LRL = 100. Then, for each set of parameters
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Fig. 1 Garnet Experiment for RCAL.

(LkE , HE , LRL, HRL) and each Gp, we compute 20 expert policy sets (Di,p,kE )20i=1

and 20 random policy sets (Di,p,kRL )20i=1 which fed the algorithms RLED, Classif
and LSPI. Here, the starting point of RLED is the ouput of the LSPI algorithm.

The criterion of performance for the algorithm A and for each couple (Di,p,kE , Di,p,kRL )

is T i,p,kA which has the same definition as in the first experiment. The mean crite-

rion of performance for each set of parameters (LkE , HE , LRL, HRL) is T kA. For each
algorithm A, we plot (LkE , T

k
A)10k=1 in Fig. 2(a). In order to verify that RLEDDC

has a better performance than RLED, we calculate the improvement which is the
following ratio:

Impk = 100
T kRLED − T

k
RLEDDC

T kRLED
.

This ratio represents in percentage how much RLEDDC is better than RLED.
In Fig 2(b), we plot (LkE , Imp

k)10k=1. In Fig. 2(a), we can not distinguish which

(a) Performance.

Number of Trajectories
0 2 4 6 8 10

Im
p

ro
ve

m
en

t

-2

0

2

4

6

8

10

12
ImprovementRLED

(b) Improvement.

Fig. 2 Garnet Experiment for RLED with LE increasing.
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algorithm between RLED (with gradient descent) and RLEDDC is better. Thus,
we plot a zoom of this curve without the variance to have a better view in Fig. 4(a).
Even though, it seems that RLEDDC is slightly better, there is no clear difference
between the two algorithms. This is principally due to the fact that RLED performs
already well without DCA.

Finally, the third experiment aims at showing that RLED performs better when
the information on the model (dynamics and reward) is getting bigger. Here, γ =
0.99 and λRLED = 1. λRLED is set to a higher value as the set DRL is getting bigger
in this experiment and more weight needs to be put on the JRL criterion. The
experiment consists in generating a set of Garnets G = (Gp)

10
p=1. The parameter

LRL takes its values in the set (LkRL)10k=1 = (50, 100, 150, .., 500) and LE = 5,
HE = 5, HRL = 5. Then, for each set of parameters (LE , HE , L

k
RL, HRL) and

each Gp, we compute 20 expert policy sets (Di,p,kE )20i=1 and 20 random policy sets

(Di,p,kRL )20i=1 which fed the algorithms RLED, Classif and LSPI. Here, the starting
point of RLED is the ouput of the LSPI algorithm. Like the previous experiments,
for each algorithm A, we plot the mean performance (LkRL, T

k
A)10k=1 in Fig. 4(a) and

the improvement (LkRL, Imp
k)10k=1 in Fig. 4(b). In Fig. 2(b), we cannot distinguish
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Fig. 3 Garnet Experiment for RLED with LRL increasing.

between RLED and RLEDDC. A zoom of this plot is proposed in Fig .4(b) where
there is a slight advantage for RLEDDC. Thus for RLED and contrary to RCAL,
even tough there is a slight improvement using DCA, we can not conclude that
there is an advantage to use DC programming.

5 Conclusion and Perspectives

In this paper, we showed the implications of seeing the Optimal Bellman Residual
(OBR) as a Difference of Convex (DC) functions in the fields of Reinforcement
Learning with Expert Demonstrations (RLED) and Learning from Demonstra-
tions (LfD). More precisely, we gave one of the possible DC decompositions of two
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(a) Zoom of RLED performance with LE in-
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Fig. 4 Zoom for RLED experiments

algorithms, namely RCAL and RLED. In addition, we compared in generic ex-
periments, using randomly constructed Markov Decision Processes (MDPs) called
Garnets, the performances of RCAL and RLED using DC programming versus a
classical gradient descent. In order to make a fair comparison between the methods,
we imposed the same number of updates and the same starting point. Experiments
showed a clear advantage of using DC Algorithm (DCA) for the minimisation of
the RCAL criterion. However, there was only a slight advantage of DCA for the
RLED criterion which can be explained by the fact that RLED with gradient de-
scent already performs well, hence it is quite difficult to improve the method. In
conclusion, it seems a promising perspective to use DC programming in fields such
as RL and LfD where the goal is to minimise a norm of the OBR which is a DC
function. As perspectives, we would like to test several DC decompositions and
to start using non-parametric gradient descent in order to solve the intermediary
convex problems. Indeed, in RL and more generally in Machine Learning (ML),
the choice of features φ(s, a) = (φi(s, a))di=1 that represent our hypothesis space
is often problem-dependent and need a human expertise. To avoid that step and
to automatise even more the algorithm, we want to use non-parametric gradient
descent (Grubb and Bagnell, 2011) which automatically learn its own features. Fi-
nally, we would like to use those techniques on large scale and real-life applications
to prove their ability to scale-up.
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