
HAL Id: hal-01629651
https://hal.science/hal-01629651

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batch Policy Iteration Algorithms for Continuous
Domains

Bilal Piot, Matthieu Geist, Olivier Pietquin

To cite this version:
Bilal Piot, Matthieu Geist, Olivier Pietquin. Batch Policy Iteration Algorithms for Continuous Do-
mains. European Workshop on Reinforcement Learning (EWRL), 2016, Barcelone, Spain. �hal-
01629651�

https://hal.science/hal-01629651
https://hal.archives-ouvertes.fr

Batch Policy Iteration Algorithms for Continuous Domains

Batch Policy Iteration Algorithms for Continuous Domains

Bilal Piot bilal.piot@inria.fr
Univ. Lille, CNRS, Centrale Lille, INRIA,
UMR 9189 - CRIStAL, F-59000 Lille, France.

Matthieu Geist matthieu.geist@centralesupelec.fr
UMI 2958, GeorgiaTech-CNRS, CentraleSupélec
Université Paris-Saclay, Metz, France.

Olivier Pietquin olivier.pietquin@univ-lille1.fr
Univ. Lille, CNRS, Centrale Lille, INRIA,
UMR 9189 - CRIStAL, F-59000 Lille, France.
Now at Google DeepMind, London, United Kingdom

Editor: EWRL 2016

Abstract

This paper establishes the link between an adaptation of the policy iteration method for
Markov decision processes with continuous state and action spaces and the policy gradient
method when the differentiation of the mean value is directly done over the policy without
parameterization. This approach allows deriving sound and practical batch Reinforcement
Learning algorithms for continuous state and action spaces.

Keywords: Batch Reinforcement Learning, Policy gradient.

1. Introduction

Policy Search (PS) (Ng and Jordan, 2000; Fix and Geist, 2012) and more specifically Policy
Gradient (PG) methods (Sutton et al., 1999; Peters et al., 2005; Degris et al., 2012; Silver
et al., 2014) are well known to have a practical edge compared to value-based methods when
it comes to Reinforcement Learning (RL) for Markov Decisions Processes (MDPs) with
continuous state and action spaces. This principally comes from the fact that value-based
methods, either inspired by the Policy Iteration (PI) (Lagoudakis and Parr, 2003) or Value
Iteration (VI) algorithms (Ernst et al., 2005; Riedmiller, 2005), rely on the computation
of the maximum of the action-value function over the set of actions: maxa∈AQ(π, s, a)
(greedy step). If this set is infinite, then those methods become intractable. However, it
is possible to adapt Policy Iteration-based RL algorithms, such as Least Squares Policy
Iteration (LSPI) (Lagoudakis and Parr, 2003), by changing this global greedy step into a
local improvement of the policy made by a gradient step. Indeed, let us take a closer look
to the PI method for a finite action space. It consists in two steps, a first step of evaluation
of the current policy πk in order to obtain the action-value function Q(πk, s, a) followed by
a greedy step πk+1(s) = argmaxa∈AQ(πk, s, a) which improves the action-value function:

1

Discrete PI scheme

• Evaluation of Q(πk, ., .).

• Greedy step: πk+1(s) = argmaxa∈AQ(πk, s, a).

In practice, when faced with batch data, the evaluation step can be realized for instance
by the Least Square Temporal Difference (LSTD) algorithm (Bradtke and Barto, 1996)
if features for the action-value function are provided. When no features are provided, one
could easily adapt for instance the Fitted-Q algorithm (Ernst et al., 2005) that evaluates the
optimal action value function in order to evaluate the current value function by replacing
the optimality-operator by the evaluation operator.

Obviously, when the action space is continuous such a greedy step becomes cumbersome.
However, a local improvement is still possible if we are able to compute the gradient of the
actions-value function over the possible actions ∂Q(πk,s,πk(s))

∂a .1 Then, the global greedy step
can be replaced by a local gradient-like improvement step: πk+1(s) = πk(s)+αk ∂Q(πk,s,πk(s))

∂a ,
where αk ∈ R+. Thus, a canonical adaptation of the PI method in the continuous context
is:

Continuous PI scheme

• Evaluation of Q(πk, ., .).

• Local improvement step: πk+1(s) = πk(s) + αk
∂Q(πk,s,πk(s))

∂a .

Our main contribution (see Sec. 3) consists in showing, after introducing some notations
relative to MDPs and differentiation in Sec. 2, that this PI method for continuous states
and actions MDPs (called continuous PI) is in fact a sound algorithm. More precisely,
it is a direct derivation of the PG method when the differentiation of the mean value
Jν(π) =

∫
S V

π(s)ν(ds) is directly done over the policy without parameterizing it. This
establishes a strong link between PI and PG methods in the continuous setting. It should
be noted that this link between PI and PG methods have already been studied in the
finite action setting (Scherrer and Geist, 2014) where the relation between Conservative
Policy Iteration (CPI) (Kakade and Langford, 2002) and PG methods has been highlighted.
Finally, in Sec. 4 as a second contribution, we provide several practical instantiations of this
continuous PI method which can be either feature-based or no.

2. Background and notations

Before introducing notations specific to MDPs and differentiation of functions, we give some
general notations. Let B be a Borel space, ν a measure on B and f ∈ RB a real function,
the integral of f under ν, if it exists, is noted

∫
B f(b)ν(db). The set of probability measures

of the Borel space B is noted ∆B and we have Eν [f(X)] =
∫
B f(b)ν(db), where Eν [f(X)]

is the expectation of the function f under the probability measure ν.
Let (H, 〈., .〉H) (where 〈., .〉H is the dot product associated to H) and (G, 〈., .〉G) be

Hilbert spaces, f ∈ G → RH and ν ∈ ∆G, then the notation Eν [f(X)] =
∫
G f(g)ν(dg)

1. The notion of partial derivative and the notation associated is fully explained in appendix A.3.

2

Batch Policy Iteration Algorithms for Continuous Domains

means that
∫
G f(g)ν(dg) ∈ RH is a function such that ∀h ∈ H, (

∫
G f(g)ν(dg)) (h) =∫

G f(g)[h]ν(dg). In particular if f ∈ GH , then
∫
G 〈f(g), .〉H ν(dg) ∈ RH is a function

such that ∀h ∈ H, (
∫
G 〈f(g), .〉H ν(dg)) (h) =

∫
G 〈f(g), h〉H ν(dg).

2.1 MDP

We give some brief definitions relative to MDPs with continuous state and action spaces.
More precisely, we focus on MDPs where the state space S = Rp and the action space
A = Rq with (p, q) ∈ N∗2. In that particular case, S and A can be seen as both Hilbert
spaces (where the dot product is chosen to be the canonical dot product) and Borel spaces
with the canonical distance. A continuous MDP (a complete and more formal presentation
is done by Hernández-Lerma and Lasserre (1996)) is a tuple (S,A,R, P, γ) where the state
space S = Rp represents the states of the environment, the action space A = Rq represents
the possible actions the agent can take, the reward R ∈ RS×A is a bounded function that
represents the local benefit of doing action a in state s, the dynamics P (.|.) is a stochastic
kernel on S given S × A and γ ∈]0, 1[is a discount factor. More precisely, if B is a
measurable set of S and (s, a) ∈ S×A, then P (B|s, a) is the probability that the agent is in
the measurable set B after doing action a in state s. Here, we focus on deterministic policies
(π ∈ AS) which are mappings from states to actions. More precisely, we are interested in the
set of all equivalence classes of policies π ∈ AS such that the Lebesgue integral

∫
S ‖π(s)‖2Ads,

where ‖.‖A is the canonical norm in A, is finite. This space of policies will be noted L2(A,S)
or in short L2 and it is an Hilbert space with the following natural dot product

∀f, g ∈ L2, 〈f, g〉L2 =
∫
S
〈f(s), g(s)〉Ads,

where 〈., .〉A is the canonical dot product relative to A. To evaluate a policy, we use the
concepts of value function V ∈ RL2×S and action-value function Q ∈ RL2×S×A:

Q(π, s, a) = Eπs,a[
+∞∑
t=0

γtR(st, at)], V (π, s) = Q(π, s, π(s)),

where Eπs,a is the expectation over the distribution of the admissible trajectories (s0, a0, s1, ., . . .)
obtained by executing the policy π starting from s0 = s and a0 = a. These functions are
well-defined when the policies are deterministic and the reward bounded (Hernández-Lerma
and Lasserre, 1996). Moreover, V (π, s) follows the Bellman equation:

V (π, s) = R(s, π(s)) + γ

∫
S
V (π, s′)P (ds′, s, π(s)). (1)

One can show that verifying the Bellman equation is equivalent to the existence of a distri-
bution dν,π ∈ ∆S , called the γ-weighted occupancy distribution induced by policy π starting
with the distribution ν ∈ ∆S , such that:

∀ν ∈ ∆S ,

∫
S
V (π, s)ν(ds) = 1

1− γEdν,π [R(X,π(X))] = 1
1− γ

∫
S
R(s, π(s))dν,π(ds).

This result is important and will be used in one of our proofs. Explicit formulae (depending
on ν, P, γ, π) of dν,π exist (Peters et al., 2005; Scherrer and Geist, 2014) but require more
definitions and here the existence is sufficient to prove our results.

3

2.2 Differentiability

In this section, we give some brief definitions relative to differentiable functions. More
properties needed for some of our proofs are given in the appendix A. Let (X, ‖.‖X) and
(Y, ‖.‖Y) be two normed vector spaces and f ∈ Y X a function. We say that f is Fréchet-
differentiable at the point x ∈ X if there exists a linear and continuous function Df(x) ∈ Y X

and a function ε ∈ Y X such that:

∀h ∈ X, f(x+ h) = f(x) +Df(x)[h] + ‖h‖Xε(h),

where lim‖h‖X→0 ε(h) = 0. A function f is differentiable if it is differentiable for all x ∈ X.
If f is linear and continuous then ∀x ∈ X,Df(x) = f .

Let (H, 〈., .〉H) be an Hilbert space and f ∈ RH a real and differentiable function. Let
x ∈ H, Df(x) ∈ RH is a linear form and by the Riez theorem, there exists a vector noted
∂f(x)
∂h ∈ H such that Df(x) =

〈
∂f(x)
∂h , .

〉
H

. The function
〈
∂f(x)
∂h , .

〉
H
∈ RH is such that

∀y ∈ H,
〈
∂f(x)
∂h , .

〉
H

(y) =
〈
∂f(x)
∂h , y

〉
H

. The vector ∂f(x)
∂h is called the gradient of f at x

(where h is a dummy variable canonically associated to H).

3. Formal link between policy-gradient and continuous LSPI

In this section, we show that continuous PI is in fact an uphill method that maximizes the
mean value. Therefore, it is closely related to the PG method. For sake of simplicity, we
assume that all operations of integration and differentiation are licit.

The PG method, introduced by Sutton et al. (1999), consists in maximizing the mean
value Jν ∈ RL2 , where ν ∈ ∆S and ∀π ∈ L2, Jν(π) =

∫
S V (π, s)ν(ds), by a gradient ascent.

Thus, it consists in the following algorithm:

πk+1 = πk + αk
∂Jν(πk)
∂π

,

where αk ∈ R∗+ is the gradient step. For now, we do not consider the problem of the
evaluation of ∂Jν(πk)

∂π which is key in all PG methods. A more general uphill algorithm
which allows to maximize Jν (Nocedal and Wright, 2006) is:

πk+1 = πk + αkpk,

where pk is such that
〈
∂Jν(πk)
∂π , pk

〉
> 0. In practice, PG methods do not consider a general

set of policies such as L2 but a set of parameterized policies (Sutton et al., 1999; Peters
and Schaal, 2006; Silver et al., 2014). Therefore, the differentiation is not done over a
policy but over a vector of parameters. Here, we are going to keep this more general kind
of differentiation as it will highlight the link with continuous PI. With the more formal
notations described in Secs. 2.2 and A.3, the update of continuous PI can be written:

πk+1 = πk + αk
∂Q(πk, ., πk(.))

∂a
,

where ∀π ∈ L2, ∂Q(π,.,π(.))
∂a ∈ L2 is a function such that:

∀s ∈ S, ∂Q(π, ., π(.))
∂a

(s) = ∂Q(π, s, π(s))
∂a

.

4

Batch Policy Iteration Algorithms for Continuous Domains

Therefore, if we manage to show that
〈
∂Jν(π)
∂π , ∂Q(π,.,π(.))

∂a

〉
L2
> 0, it will imply that contin-

uous PI is an uphill algorithm for the mean value Jν . This will establish the link between
maximizing the mean value by gradient ascent (the PG method) and the continuous PI
approach.

To do so, we suppose that the mean value Jν(π) =
∫
S V (π, s)ν(ds) has the following

property:

∀(ν, π) ∈ ∆S × L2, DJν(π) =
〈
∂
∫
S V (π, s)ν(ds)

∂π
, .

〉
L2

=
∫
S

〈
∂V (π, s)
∂π

, .

〉
L2
ν(ds).

This property only implies that the permutation between the integral and differential op-
erations is licit and it can be seen as a generalization of the Liebniz integral rule (Flanders,
1973). Then, thanks to Th. 1, we find an expression of ∂Jν(π)

∂π and thanks to Th. 2 we
calculate

〈
∂Jν(π)
∂π , ∂Q(π,.,π(.))

∂a

〉
L2

. It is important to note that Th. 1 is just another variant of
the classical calculus of the gradient of the mean value with respect to the policy originally
done by Sutton et al. (1999) for parameterized stationary policies in the discrete scenario
and by Silver et al. (2014) for parameterized deterministic policies in the continuous sce-
nario. However, here this calculus is done over a non-parameterized deterministic policy
and a proof is given for sake of completeness.

Theorem 1 DJν(π) =
〈
∂Jν(π)
∂π , .

〉
L2

= 1
1−γ

∫
S

〈
∂Q(π,s,π(s))

∂a , .
〉
A
◦ δsdν,π(ds),

where ∀s ∈ S, δs ∈ AL
2 is a function such that ∀π ∈ L2, δs(π) = π(s).

Proof The proof is provided in the appendix B.

Theorem 2
〈
∂Jν(π)
∂π , ∂Q(π,.,π(.))

∂a

〉
L2

= DJν(π)
[
∂Q(π,.,π(.))

∂a

]
≥ 0,

where the equality happens when ∂Q(π,.,π(.))
∂a = 0 almost everywhere (relatively to the

measure dν,π).

Proof The proof is provided in the appendix C.

We conclude that the continuous PI method is indeed an uphill method to maximize the
mean value which makes it a sound algorithm. However, to make it a practical batch RL
algorithm, we still need to show how we can efficiently compute ∂Q(πk,.,πk(.))

∂a from a set of
batch data DRL = (si, ai, s′i, ri)

NRL
i=1 where s′i ∼ P (.|si, ai) which is done in the next section.

4. Toward practical algorithms

To provide a practical algorithm for the proposed continuous PI scheme, one has to estimate
state-action value functions and to differentiate them respectively to the actions.

A natural approach consists in considering a linearly parameterized state-action value
function Qθ(s, a) = θ>φ(s, a), for some feature vector φ : Rp+q → Rd. For a given policy πk,
the parameter vector θk can be estimated using the LSTD algorithm (Bradtke and Barto,
1996). Notice that considering continuous actions in LSTD causes no problem. Then, the
policy is updated with ∂Qθ(s,a)

∂a =
(
∂φ(s,a)
∂a

)>
θ. If the components of the feature vector are

5

radial basis functions, for example, this gradient can be easily analytically computed. The
computed policy afterK iterations is then πK(s) =

(
∂φ(s,a)
∂a

)> (∑K
k=1 αkθk

)
, each parameter

vector θk being computed thanks to LSTD.
This approach requires a linear parameterization. A nonlinearly parameterized state-

action value function could still be estimated by using an iterated projected fixed-point
approach. For example, if the Q-function is represented as a neural network, the neural
fitted-Q approach of Riedmiller (2005) could be easily adapted (this would amount to replace
the Bellman optimality operator by the Bellman evaluation operator). Moreover, with such
a neural network representation, the gradient respectively to the action can be efficiently
computed using backpropagation.

In some case, it might be more natural to encode directly a policy, for example πΘ(s) =
Θ>φ(s), with Θ ∈ Rd×q a parameter matrix. The proposed approach is critic-based, but
such a parameterization can be envisioned. Consider the advantage function A(π, s, a) =
Q(π, s, a) − V (π, s), it can be parameterized as AΘ(s, a) = 〈a − π(s), πΘ(s)〉A. From this,
we can parameterize a state-action value function by adding a linearly parameterized value
function: QΘ,w(s, a) = AΘ(s, a) + w>ϕ(s). This Q-function can be estimated with LSTD
and its gradient is simply ∂QΘ,w(s,a)

∂a = πΘ(s). The policy computed after K iterations is

then πK(s) =
(∑K

k=1 αkΘk

)>
φ(s), a linear mixture of the policies πΘk . This is reminiscent

of compatible function approximation for (natural) policy gradient with a critic and of the
related parameterization of the advantage function, see for example Peters et al. (2005).

Alternatively, this last approach can be motivated by a first-order Taylor expansion of
the state-action value function when the only varying parameter is the action a:

Q(π, s, a) = V (π, s) +
〈
∂Q(π, s, π(s))

∂a
, a− π(s)

〉
A

+ ‖a− π(s)‖Aε(a− π(s)),

where lim‖a−π(s)‖A→0 ε(a−π(s)) = 0. Therefore, the policy πΘ can alternatively be seen as a
parameterization of the partial derivative of the state-action value function ∂Q(π,s,π(s))

∂a . We
have considered a linear parameterization for πΘ, but as before, a nonlinear parameterization
could be envisioned, by using an iterated projected fixed point approach.

5. Conclusion

We have shown that the natural adaptation of the Policy Iteration (PI) to the continuous
scenario scheme, which consists in replacing the classical global greedy step by a local
gradient improvement step, can be motivated by the close link it has to the policy gradient
method. Indeed, continuous PI can be seen as an uphill method for the mean value as shown
in Sec. 3. In addition, we sketch practical related algorithms, that rely mainly on LSTD
or an iterated projected fixed point approach if no features are provides, which should
make continuous-PI algorithms as easy to use as their discrete counterparts. Finally, as
perspective, we would like to test those different algorithms on benchmark problems.

6

Batch Policy Iteration Algorithms for Continuous Domains

References

S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 1996.

T. Degris, P. M Pilarski, and R.S. Sutton. Model-free reinforcement learning with continuous
action in practice. In Proc. of ACC, pages 2177–2182, 2012.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. In
Journal of Machine Learning Research, 2005.

Jeremy Fix and Matthieu Geist. Monte-carlo swarm policy search. In Swarm and Evolu-
tionary Computation, pages 75–83. Springer, 2012.

H. Flanders. Differentiation under the integral sign. The American Mathematical Monthly,
80(6):615–627, 1973.

O. Hernández-Lerma and J.B. Lasserre. Discrete-time Markov control processes. Springer,
1996.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.
In Proc. of ICML, volume 2, pages 267–274, 2002.

M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 2003.

A.Y. Ng and M. Jordan. Pegasus: A policy search method for large mdps and pomdps. In
Proc. of UAI, pages 406–415. Morgan Kaufmann Publishers Inc., 2000.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 2219–2225. IEEE, 2006.

J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In Proc. of ECML, pages
280–291. Springer, 2005.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages
317–328. Springer, 2005.

B. Scherrer and M. Geist. Local policy search in a convex space and conservative policy
iteration as boosted policy search. In Proc. of ECML, pages 35–50. Springer, 2014.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In Proc. of ICML, 2014.

R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, et al. Policy gradient methods for
reinforcement learning with function approximation. In Proc. of NIPS, volume 99, pages
1057–1063, 1999.

7

Appendix A. Differential Calculus

In this section, we recall some important properties of differential calculus that are used in
our proofs.

A.1 Differential of a Composition

Let (X, ‖.‖X), (Y, ‖.‖Y), (Z, ‖.‖Z) be three normed vector spaces, f ∈ Y X and g ∈ ZY . If f
is differentiable at x and g is differentiable at y = f(x), then g ◦ f ∈ ZX is differentiable at
x and :

Dg ◦ f(x) = Dg(f(x)) ◦Df(x). (2)

A.2 Differential of a multidimensional output

Let ((Yi, ‖.‖Yi))
n
i be a family of n ∈ N∗ normed vector spaces, (X, ‖.‖X) a normed vector

space and (fi)ni=1 a family of functions such that fi ∈ Y X
i is differentiable at x, then the

function f = (f1, . . . , fn) ∈ Y X , where Y =
∏n
i=1 Yi, is differentiable at x and:

Df(x) = (Df1(x), . . . , Dfn(x)). (3)

A.3 Differential of a multidimensional input form

Let ((Hi, 〈., .〉Hi))
n
i=1 be a finite family of n ∈ N∗ Hilbert spaces. Let H =

∏n
i=1Hi the

cartesian product of the family ((Hi, 〈., .〉Hi))
n
i=1. If for x = (x1, . . . , xn) ∈ H and y =

(y1, . . . , yn) ∈ H we define 〈., .〉H such that

〈x, y〉 =
n∑
i=1
〈xi, yi〉Hi ,

then (H, 〈., .〉H) is an Hilbert space. Now, let consider f ∈ RH differentiable. For i ∈
(1, . . . , n), we use the notation x = (x1, . . . , xn) = (x−i, xi) where x−i = (x1, . . . , xi−1, xi+1, . . . , xn).
For a fixed x−i, we can define the function fx−i ∈ RHi such that:

∀xi ∈ Hi, f
x−i(xi) = f((x−i, xi)) = f(x).

As f is differentiable, fx−i is differentiable:

Dfx−i(xi) =
〈
∂fx−i(xi)

∂hi
, .

〉
Hi

.

To simplify the notations, we write ∂f(x)
∂hi

in lieu of ∂fx−i (xi)
∂hi

. ∂f(x)
∂hi

is the partial derivative
(or the partial gradient) of f evaluated in x with respect to the variable hi canonically
associated to the Hilbert space Hi. In addition, Df(x) is such that:

Df(x) =
n∑
i=1

〈
∂f(x)
∂hi

, .

〉
Hi

◦ δHi ,

where δHi ∈ RH is a function such that ∀x = (x1, . . . , xn), δHi(x) = xi.

8

Batch Policy Iteration Algorithms for Continuous Domains

Appendix B. Proof of Th. 1

Proof We recall that:
DV s(π) =

〈
∂V (π, s)
∂π

, .

〉
L2
,

where ∀s ∈ S, V s ∈ SL2 such that ∀π ∈ L2, V s(π) = V (π, s). As, for all s ∈ S, we have
V (π, s) = Q(π, s, π(s)) then:

V s = Q ◦ (IL2 , Is, δs),

where Is ∈ SL
2 is such that Is(π) = s and IL2 ∈ L2L2

is such that IL2(π) = π.
Using Eq. (2) and Eq. (3), we have:

DV s(π) = DQ(π, s, π(s)) ◦ (DIL2(π), DIs(π), Dδs(π)).

As Is is a constant and IL2 and δs are linear and continuous, then:

DV s(π) = DQ(π, s, π(s)) ◦ (IL2 , 0, δs).

We also recall that:

DQ(π, s, π(s)) =
〈
∂Q(π, s, π(s))

∂π
, .

〉
L2
◦δL2+

〈
∂Q(π, s, π(s))

∂s
, .

〉
S
◦δS+

〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦δA.

Thus, we have:

DV s(π) =
〈
∂Q(π, s, π(s))

∂π
, .

〉
L2

+
〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦ δs.

We recall that:
DQ(s,π(s))(π) =

〈
∂Q(π, s, π(s))

∂π
, .

〉
L2
,

where ∀(s, a) ∈ S × A,Qs,a ∈ RL2 is a function such that ∀π ∈ L2, Q(s,a)(π) = Q(π, s, a).
Moreover:

Q(s,π(s)) = R ◦ (Is, Ia) + γJP (.|s,π(s)),

where ∀a ∈ A, Ia ∈ AL
2 is such that ∀π ∈ L2, Ia(π) = a. Using Eq. (2), Eq. (3) and the fact

that Ia and Is are constant, we have:

DQ(s,π(s))(π) = DR(s, π(s)) ◦ (0, 0) + γ

∫
S

〈
∂V (π, s)
∂π

, .

〉
L2
P (ds′|s, π(s)),

= γ

∫
S

〈
∂V (π, s′)

∂π
, .

〉
L2
P (ds′|s, π(s)).

Thus:

DV s(π) =
〈
∂V (π, s)
∂π

, .

〉
L2

=
〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦ δs + γ

∫
S

〈
∂V (π, s′)

∂π
, .

〉
L2
P (ds′|s, π(s)),

=
〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦ δs + EP (.|s,π(s))

[
DV X(π)

]
.

9

So, DV s(π) verifies a Bellman equation (1) which implies that:

∀ν ∈ ∆S ,Eν [DV X(π)] =
∫
S
DV s(π)ν(ds) = 1

1− γ

∫
S

〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦ δsdν,π(ds).

And as :

DJν(π) =
〈
∂
∫
S V (π, s)ν(ds)

∂π
, .

〉
L2

=
∫
S

〈
∂V (π, s)
∂π

, .

〉
L2
ν(ds),

=
∫
S
DV s(π)ν(ds) = Eν [DV X(π)],

We have the final result:

DJν(π) = 1
1− γ

∫
S

〈
∂Q(π, s, π(s))

∂a
, .

〉
A
◦δsdν,π(ds) = 1

1− γEdν,π
[〈
∂Q(π,X, π(X))

∂a
, .

〉
A
◦ δX

]
.

Appendix C. Proof of Th. 2

Proof It follows directly from Th. 1. Indeed :

DJν(π)
[
∂Q(π, ., π(.))

∂a

]
= 1

1− γ

∫
S

〈
∂Q(π, s, π(s))

∂a
,
∂Q(π, s, π(s))

∂a

〉
A
dν,π(ds),

= 1
1− γ

∫
S

∥∥∥∥∂Q(π, s, π(s))
∂a

∥∥∥∥2

A
dν,π(ds),

= 1
1− γEdν,π

[∥∥∥∥∂Q(π,X, π(X))
∂a

∥∥∥∥2

A

]
≥ 0.

Clearly, the equality case happens when ∂Q(π,.,π(.))
∂a is almost everywhere null (relatively to

dν,π).

10

	Introduction
	Background and notations
	MDP
	Differentiability

	Formal link between policy-gradient and continuous LSPI
	Toward practical algorithms

	Conclusion
	Differential Calculus
	Differential of a Composition
	Differential of a multidimensional output
	Differential of a multidimensional input form

	Proof of Th. 1
	Proof of Th. 2

