
HAL Id: hal-01629626
https://hal.science/hal-01629626v1

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Non-negative sub-tensor ensemble factorization
(NsTEF) algorithm. A new incremental tensor

factorization for large data sets.
Vincent Vigneron, Andreas Kodewitz, Michele Nazareth da Costa, Ana Maria

Tome, Elmar Langlang

To cite this version:
Vincent Vigneron, Andreas Kodewitz, Michele Nazareth da Costa, Ana Maria Tome, Elmar Langlang.
Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor fac-
torization for large data sets.. Signal Processing, 2018, 144, pp.77-86. �10.1016/j.sigpro.2017.09.012�.
�hal-01629626�

https://hal.science/hal-01629626v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Non-negative sub-tensor ensemble factorization (NsTEF) algorithm.
A new incremental tensor factorization for large data sets.

Vincent Vigneron
a , ∗, Andreas Kodewitz a , Michele Nazareth da Costa b , Ana Maria Tome

c ,
Elmar Langlang

d

a IBISC, Univ Evry, Université Paris-Saclay, 91025, Evry, France
b DSPCom Laboratory, University of Campinas (UNICAMP), PO Box 6101, 13083-852, Campinas/SP, Brazil
c Departamento de Electronica, Telecomunicacoes e Informática, Universidade de Aveiro, Portugal
d Institut für Biophysik und physikalische Biochemie, University of Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany

In this work we present a novel algorithm for nonnegative tensor factorization (NTF). Standard NTF algorithms are very restricted in the size of

tensors that can be decomposed. Our algorithm overcomes this size restriction by interpreting the tensor as a set of sub-tensors and by proceeding
the decomposition of sub-tensor by sub-tensor. This approach requires only one sub-tensor at once to be available in memory.

1. Introduction

Since the pioneering works [42,52] , non-negative matrix factor-
ization (NMF) has attracted much interest in the context of several
applications such as image and signal processing, computer vision,
data analysis, blind source separation [12,22,27,30,32,42,45,53,69] .
Particularly in image processing, the associated constraints are de-
sirable to retain the non-negative characteristics of the original
data, since the pixel values of the basis images essentially share
this feature, leading to a natural meaning regarding the underly-
ing components. As a result, we can, for instance, better represent
a face as a linear combination of basis images by NMF in contrast
with classical methods such as principal component analysis (PCA)
[42,45] .

Furthermore, NMF can be viewed as an implicit sparse rep-
resentation of the input data [27,30,42] , which allows represent-
ing local features of distributed parts over a human face such
as eyes, nose and mouth, and, consequently, learning features of

∗ Corresponding author.

E-mail addresses: vincent.vigneron@ibisc.univ-evry.fr (V. Vigneron),

andreas.kodewitz@ibisc.univ-evry.fr (A. Kodewitz), nazareth@decom.fee.unicamp.br

(M.N. da Costa), ana@ua.pt (A.M. Tome), Elmar.Lang@biologie.uni-regensburg.de (E.

Langlang).

images in face recognition applications. Broadly speaking, a sub-
space representation by non-negative factorizations makes possi-
ble to determinate hidden structures and characteristics inherent
to an object class of the input data set, which is helpful in object
recognition, detection of semantic features of text documents and
of spectral characteristics of hyperspectral images, among others
[1,12,22,27,42,46,53,62,69] .

Tensorial approaches naturally arise from multilinear structures
or multidimensional data, and NMF has been extended to higher-
order tensors by the non-negative tensor factorizations (NTFs).
The NTF was firstly introduced [6] by imposing non-negative con-
straints over the matrix factors of the well-known decomposition
called CANDECOMP/PARAFAC (or, shortly CP) [5,24] . Analogously,
a non-negative version of the Tucker decomposition [61] has also
been presented and is referred to here as non-negative Tucker de-
composition (NTD) [3] , representing a more complex model, as the
core tensor could be dense and the matrix factors not necessarily
have the same number of columns. An interesting advantage of the
NTF/NTD is that, in general, tensor decompositions are essentially
unique under mild conditions, as opposed to NMF. More precisely,
the uniqueness issue associated with the NTD/NTF happens when
the factors are not sufficiently sparse [70] .

Almost all NMF algorithms can be generalized or extended to
non-negative tensor factorizations by the use of unfolding matri-

1

ces of the higher-order tensor or by a multi-layer strategy (multi-
factor model) [12,17] . A very popular multiplicative update (MU)
method [42] can be derived, regarding gradient descent methods,
by solving the following optimization problem

(A
∗, B

∗) = arg max
A,B

f (A , B) = arg max
A,B

1

2
‖ Y − AB ‖

2
F . (1)

The MU rule with a simple projection to the non-negative space at
each updating step is given by

b n,p ← b n,p

[

A T Y

A T AB

]

n,p, +

, a m,n ← a m,n

[

YB T

ABB T

]

m,n, +

, (2)

which has a simple and easy implementation despite presenting
slow convergence [49] .

A basic approach to NMF, called alternating non-negative least
squares (ANLS), is driven by alternating least squares (ALS) tech-
niques [12] based on the alternating minimization of the cost func-
tion (1) with respect to the nonnegativity-constrained matrices A

and B separately. However, it does not necessarily lead to global
minimization. Several algorithms have been proposed based on
the ANLS framework with the purpose of accelerating and over-
coming the unstable convergence properties of the standard ANLS
and, also, becoming more robust to noise [12] by including penalty
terms on the cost function (1) to add supplementary or to preserve
constraints on A and B as nonnegativity, sparsity and smoothness,
leading to generalized NMF methods [11,29,30,53,64] .

The hierarchical AL S (HAL S) algorithm [11] is an alternative
method to ALS based on an optimization of a set of local cost func-
tions, which updates each column of A and B instead of directly
computing the whole matrices at each iterative step. This method
is simple and often used for multi-layer models to improve perfor-
mance; furthermore, it is efficient for large-scale NMF [12,17] . An-
other fast algorithm in the ANLS framework, referred to as ANLS-
BPP, was proposed in [35] , and employs the block principal pivot-
ing (BPP) and active set methods [41] . The ANLS-BPP technique can
outperform the HALS mainly when the matrix factors are sparse.

It is interesting to remark that the optimization problem given
by (1) can also be formulated in terms of the Kullback–Leibler
divergence [43,45] or other divergences [8,10,67] instead of the
Frobenius norm. A problem that arises from the processing of
large-scale or ill-conditioned data is the slow convergence, mainly
for the MU methods, and the increase of computational complex-
ity and memory requirements. An efficient way to reduce the com-
plexity and to improve the performance of the NTF/NTD is to in-
clude a pre-processing step based on low-rank approximation tech-
niques, as proposed in [69,70] .

We present in this paper a novel algorithm for NTF and sparse
NTF adapted to higher-order tensor decomposition with one large
dimension. Algorithms for NTF presented in the past were often re-
stricted in the size of tensors that can be decomposed. Algorithms
designed to overcome this size restriction, for example based on
block wise decomposition , require a frequent access to partitions
of the whole data of the tensor. The presented algorithm in con-
trary requires only a minimum of data access and is even capa-
ble to start a decomposition before the whole tensor is known.
In comparative tests the algorithm has proved to be competitive
with state of the art algorithms. NsTEF is an incremental algorithm

as incremental PCA [65] or INMF proposed by Bucak and Gunsel
[4] but it deals with tensors, not with matrices. An important ad-
vantage of tensor decompositions over standard matrix approach is
the model uniqueness; if it exists, is unique [9] , which leads to an
interesting benefit of our method.

The rest of the paper is organized as follows: related works are
presented in Section 2 where problems encountered using stan-
dard NTF algorithms are detailed; Section 3 introduces the pro-

posed algorithm, named NsTEF; we present the experimental re-
sults in Section 4 ; finally, we conclude this paper in Section 6 .

Notation

N -th order tensors (for N ≥3), matrices (second-order tensors),
vectors (first-order tensors), and scalars (zero-order tensors) are
respectively denoted by calligraphic (A , B , . . .), boldface upper-
case (A , B , . . .), boldface lower-case (a , b , . . .), and lower-case let-
ters (a, b, . . .). Each element of an N -order tensor A is denoted
by a i 1 ,i 2 , ··· ,i N . A tensor A is called non-negative if all its elements
are non-negative, i.e. a i 1 ,i 2 , ··· ,i N ≥ 0 . For non-negative real tensors

we use the short hand notation A ≥ 0 and A ∈ R + . A i 1 ··
∈ R I 2 ×I 3 ,

A ·i 2 ·
∈ R I 1 ×I 3 , A ··i 3

∈ R I 1 ×I 2 represent the slices of a third-order ten-
sor A constructed by fixing the mode 1, 2, and 3, respectively.
Any higher-order tensor can be represented by matrix unfoldings

from the rearrangement of its elements into a matrix from the
matrix slicings by fixing one mode. Consider for example a third-
order tensor A ∈ R I 1 ×I 2 ×I 3 , we can define three different matrix

unfoldings: A I 1 ×I 2 I 3
�
=

[

A ·1 · . . . A ·I 2 ·

]

, A I 2 ×I 3 I 1
�
=

[

A T
··1 . . . A T

··I 3

]

and

A I 3 ×I 1 I 2
�
=

[

A T 1 ·· . . . A T I 1 ··

]

to represent the same tensor A . By con-

vention, the indexes placed more to the left vary slower and the
ones placed more to the right vary faster. The Kronecker, Khatri–
Rao, Hadamard and outer products are denoted by �, �, • and ◦
respectively. The trace of A is denoted by Tr(A).

Definition 1. The n -mode product of a tensor G ∈ R I 1 ×···×I n ×···×I N

and a matrix A ∈ R J n ×I n is an (I 1 × · · · × I n −1 × J n × I n +1 × · · · × I N)-
tensor given by

[G ×n A] i 1 , ... ,i n −1 , j n ,i n +1 , ... ,i N

�
=

I n
∑

i n =1

g i 1 , ... ,i n , ... ,i N a j n ,i n , for all index values.

(3)

The n -mode product is a compact form to represent linear
transformations involving tensors and (3) can be rewritten in
terms of matrix unfoldings by fixing the n -th mode as follows

X = G ×n A ⇔ X (n) = A G (n) , (4)

where X (n) and G (n) denote the matrix unfolding of X and G asso-
ciated with the n -th mode.

2. Tensor models

Tensor decompositions were first discussed in 1927 by Hitch-
cock [28] . In the late 1960s tensor decompositions were rediscov-
ered by Tucker [61] , Carroll and Chang [5] , and Harshman [24] re-
spectively named Tucker decomposition, canonical decomposition
(CANDECOMP), and parallel factors analysis (PARAFAC). The two
last models, referred to herein as CP, were independently devel-
oped in psychometrics and phonetics, however both correspond to
the same decomposition and the names report to different features
of this model. Tucker model is a general version of the well-known
CP model and was also applied in psychometrics. A particular case
of this decomposition can be viewed as a multilinear generaliza-
tion of the singular value decomposition (SVD) for higher-order
tensors later introduced by Lathauwer [40] . Tensor decompositions
appear today in various fields including image and signal process-
ing, clustering analysis, data compression, blind source separation,
direction of arrival estimation, hyperspectral imaging and others
[2,51,55,62] .

2.1. CANDECOMP/PARAFAC (CP) model

The CP model decomposes a tensor as a minimal sum of rank-
one tensors, which can be defined in a concise form and denoted

2

by a sum of outer products of vectors or by the n -mode product
according to

Y
�
=

[

[A
(1) , A

(2) , . . . , A
(N)

]

] ∈ R
I 1 ×I 2 ×···×I N

=

R
∑

r=1

a (1)
·r ◦ a (2)

·r ◦ · · · ◦ a (N)
·r = I ×1 A

(1) ×2 A
(2) · · · ×N A

(N) , (5)

where a (n) ·r denotes the r -th column of A (n) ∈ R I n ×R for all n ∈
{ 1 , 2 , . . . , N} and the tensor core I is the identity tensor with ones
on the superdiagonal and zeros elsewhere. Despite the usual def-
inition of tensor rank [38] being a generalization of the definition
of matrix rank, the best rank- R approximation problem is ill-posed
[20] and can only be achieved in some special cases [15,16,19] .
From the matrix representation in (4) , the N -th order tensor Y
in (5) can be rewritten regarding the matrix unfolding associated
with the n -th mode and using the Khatri–Rao product as

Y (n) = A
(n)

(

A
(N) ⋄ · · · ⋄ A

(n +1) ⋄ A
(n −1) ⋄ · · · ⋄ A

(1)
)T

∈ R
I n ×I N ... I n +1 I n −1 ... I 1 . (6)

2.2. Tucker model

In contrast to CP, Tucker decomposition incorporates interacting
dimensions and does not require the same number of columns for
the factor matrices { A (1) , . . . , A (N) } . It can be expressed analogously
to (5) and (6) as follows

Y
�
=

[

[G;A
(1) , . . . , A

(N)
]

] ∈ R
I 1 ×···×I N

=

R 1
∑

r 1 =1

· · ·

R N
∑

r N =1

g r 1 , ... ,r N a
(1)
·r 1 ◦ · · · ◦ a (N)

·r N = G ×1 A
(1) · · · ×N A

(N) (7)

and

Y (n) = A
(n) G (n)

(

A
(N)

� · · · � A
(n +1)

� A
(n −1)

� · · · � A
(1)

)T

∈ R
I n ×I N ... I n +1 I n −1 ... I 1 , (8)

where a (n) ·r n denotes the r n -th column of A (n) ∈ R I n ×R n for all n ∈
{ 1 , . . . , N} , and G (n) represents a matrix unfolding of G. Notice that

the core tensor I ∈ R R ×···×R in (5) is replaced by a general core ten-
sor G ∈ R R 1 ×···×R N . This allows every interaction between the factor
matrices.

2.3. Advantages of tensor models

To understand the motivation for a tensor decomposition model
let us first recall the linear mixing model widely-used in inde-
pendent component analysis (ICA) [17] , a successful spin-off of
PCA. The task of ICA is to learn the basis (mixing) matrix A =

[a 1 a 2 . . . a J] ∈ R m ×J and the encoding variable matrix S ∈ R J×p

which minimizes the Frobenious norm ‖ Y − AS ‖ 2 F , given a data
matrix Y = [y 1 y 2 . . . y p] ∈ R m ×p . The linear data model X = AS is
learned such that row vectors of the encoding variable matrix are
as statistically independent as possible.

This model is adapted to one-dimensional signals, e.g. a time
series signal. But if we intend to search for underlying sources of
a two-dimensional image, a three-dimensional brain scan or a set
of images or of measurements for this kind of data model is no
longer directly applicable. To make the data fit into the model, a
common practice is to vectorize the measured data, which means
to concatenate the data into a vector. This vectorization is justified
by the assumption that the x i are independent which might not be
strictly true.

Consider for example a human face image, the calculation of
Eigen-faces is a quite common application of ICA, PCA, and other
subspace analysis techniques, or scan brain images acquired by

positron emission tomography (PET). By evidence the pixels of the
images are related to their neighboring pixels, thus the pixels are
not independent as required to justify vectorization. Nevertheless,
many real data applications show good results using vectoriza-
tion on face decomposition, brain imaging and other applications
[33,34,37,66] . Literature provides to our knowledge no insight why
the vectorization approach is successful even with the pixels be-
ing dependent. In a tensor model, on the contrary, it is possible to
maintain the data in its natural shape [9] . The vectorization is not
necessary and in the case of image data, pixel neighborhoods re-
main intact as in a tensorial representation since we can associate
one index with each dimension or measurement. In the case of a
series of images, for example, we can reserve two indices for the
image dimensions and one index for the different images which
naturally leads to a third-order tensor. A time-series of PET for dif-
ferent patients would form a fifth-order tensor.

In addition, there is also an interesting advantage of tensor de-
compositions over the standard matrix approach: the decomposi-
tion, if it exists, is unique [9] . The uniqueness issues for the CP
model have been extensively investigated [18,20,23,25,38,39,47,58–
60] , but the most general sufficient condition and well-known re-
sult on uniqueness is attributed to Kruskal [38] . Lim and Comon
[47] have recently recovered the uniqueness results given in
[38] providing a more practical solution in terms of the coherence
measure instead of Kruskal rank, which was employed in array
processing context.

Standard NTF algorithms, like presented in [13,35,56] , usually
require considerable time to decompose a tensor, especially if the
tensor to be decomposed presents a large size. The processing time
especially rises if the dimensions of the input tensor are imbal-

anced, i.e. one dimension of the tensor is much larger than the
other dimensions.

2.4. Non-negative factorization in the tensor domain

non-negative CP decomposition, also known as NTF, is a gen-
eralization of NMF to higher-order tensors. A nonnegativity con-
straint is incorporated to the CP model in (5) , i.e. the input ten-
sor is decomposed into a sum of outer products of non-negative
vectors, which leads to a constrained CP model [70] . In several ap-
plication problems [26,27,36,62,63] , this non-negativity constraint
facilitates the interpretation of the decomposition of input data as
well as all components are constrained to be non-negative. The de-
composition is therefore strictly additive and a graphical display of
non-negative data is more convenient.

But even more important, the nonnegativity constraint guar-
antees the existence of a rank reducing solution to the non-
negative CP approximation problem as proven by Lim and Comon
in [46] and for this reason, the minimum value of R in (5) is called
non-negative rank . This proof holds as well for the matrix case
(second-order, i.e. N = 2) as for the higher-order tensor case (i.e.
for N ≥3). Additionally, a recent result [54] establishes that a best
non-negative rank- R approximation is almost always unique.

Analogously to NTF, NTD adds to the Tucker model, given in
(7) , a nonnegativity constraint. Implementations of NTF as direct
multi-way generalization to the Lee and Seung NMF algorithm

were presented by Kim and Choi [36] , Lee et al. [44] , Mørup et al.
[50] , Welling and Weber [63] . These implementations use the same
MU rule and the Euclidean norm or Kulback-Leibler divergence as
cost-function as Lee and Seung. More specifically, an alternating
minimization of the set of nonnegativity constrained least squares
(ANLS) [12] can be expressed in terms of the Euclidean norm as

A
(n) = arg min

A (n)

∥

∥Y (n) − A
(n) Z (n)

∥

∥

2

2
s.t. A

(n) ≥ 0 (9)

3

or, in case of the Kulback–Leibler divergence [43,45] , as

A
(n) = arg min

A (n)

∑

i 1 , ... ,i N

y i 1 , ... ,i N log
y i 1 , ... ,i N
x i 1 , ... ,i N

s.t. A
(n) ≥ 0 (10)

where

X (n) = A
(n) Z (n) , Z (n)

= G (n)

(

A
(N)

� . . . � A
(n +1)

� A
(n −1)

� . . . � A
(1)

)T

⇐⇒ X = G ×1 A
(1) . . . ×N A

(N) ∈ R
I 1 ×I 2 ×... ×I N (11)

and Y (n) , X (n) , and G (n) denoting the n -th matrix unfolding of Y, X ,

and G respectively, is performed using the MU rule proposed by
Lee and Seung [43] .

Several other approaches were proposed to perform NTF:
gradient-based descent [27,49] , fixed point ALS and alternating
interior-point gradient [44] , ALS [21] , HALS [11,13] , pre-conditioned
nonlinear conjugate gradient [56] and a block principal pivoting
method (ANLS-BPP) [35] .

3. A fast NTF algorithm with additional non-negativity

constraints

3.1. The principle

In the search for faster NTF algorithms, various optimization
strategies have been pursued. In this paper we consider the non-
negative CP model (see Section 2.4). Then we develop MU algo-
rithms for learning a non-negative CP decomposition of a non-
negative input tensor. The MU algorithms is iteratively applied to
a matrix representation of the input tensor associated with each
mode and then solve the related NMF problem.

In the tensor decomposition for very large-scale problems,
memory becomes a major factor. Block wise processing of the data
is a common approach to implement parallel processing, but it has
the drawback that the blocks of data have to be accessed multiple
times. This creates a memory overhead and we want to avoid with
our novel algorithm designed for the decomposition of large-scale
tensors with imbalanced dimensions.

Consider an N -th order tensor, Y ∈ R
I 1 ×···×I n ×···×I N
+ and an

ensemble of (N − 1) -th order sub-tensors, defined as Y (i n) ∈

R
I 1 ×···×I n −1 ×I n +1 ×···×I N
+ and constructed by fixing the index associated

with the n -th mode. Our proposal is to approach the tensor de-
composition for large-scale problems by decomposing each sub-
tensor at a time and by proceeding until to obtain a decomposi-
tion for the entire set of sub-tensors. We introduce our algorithm,
named as non-negative sub-tensor ensemble factorization (NsTEF),
and especially derived by considering the input tensor with unbal-
anced dimensions, which means that one dimension is much larger
than the others i.e. I n ≫ I 1 , . . . , I n −1 , I n +1 , . . . , I N . The proposed algo-
rithm aims to circumvent the memory problems encountered with
standard NTF algorithms.

For simplicity, we consider a third-order input tensor Y ∈

R
I 1×I 2 ×I 3
+ assuming that the third mode is the largest dimension,

i.e. I 3 ≫ I 1 , I 2 , and the identity tensor with unitary elements, i.e.
λr = 1 . In this way, we treat the input tensor from a set of its

matrix slicings Y (i 3)
�
= Y ··i 3 ∈ R

I 1 ×I 2
+ i.e. { Y (1) , . . . , Y (I 3) } . Each matrix

Y (i 3) is decomposed as the non-negative CP model obtaining a set
of cost-functions given by

D (Y (i 3) , ̂
 Y (i 3)) =

∥

∥Y (i 3) −
[

[A
(1) , A

(2) , a (3)
i 3 ·

]

]
∥

∥

2

F
s.t. A

(1) ,

A
(2) , a (3)

i 3 ·
≥ 0 , (12)

where a (3)
i 3 ·

denotes the i 3 -th row of A (3) ∈ R
I 3 ×R
+ . Fig. 1 depicts this

procedure associated with each row i 3 .

Fig. 1. Scheme of the sub-tensor decomposition for a third-order input tensor as

described in (12) .

The optimization of each cost function in (12) will lead to the

optimization of
∑ I 3

i 3 =1
D (Y (i 3) , ̂

 Y (i 3)) i.e.

D (Y, ˆ Y) =

∥

∥Y −
[

[A
(1) , A

(2) , A
(3)

]

]
∥

∥

2

F
s.t. A

(1) , A
(2) , A

(3) ≥ 0 .

(13)

We perform the optimization of the set of cost-functions
D (Y (i 3) , ̂

 Y (i 3)) , for i 3 = { 1 , . . . , I 3 } , by converting the nonlinear
problem (13) into three independent linear least squares problems.
So we can update each row of the third factor, a (3)

i 3 ·
, and both

matrix factors A (1) and A (2) in an alternating way. These updat-
ing steps are repeated until all sub-tensors are treated, i.e. for all
i 3 ∈ { 1 , . . . , I 3 } . Our proposed algorithm is depicted in Algorithm 1 .
In the following, we will describe the details of each of these
steps.

Algorithm 1: NsTEF algorithm.

Input : stream of matrix slicings { Y (1) . . . , Y (I 3) }

Randomly initialize A
(1)
0 , A

(2)
0 , and set Ŵ(n)

0 = 0 , �(n)
0 = 0

(n = { 1 , 2 }), λ ∈ R ;
for t = 1 to I 3 do

Load Y (t) ;

while �error < 10 −5 do

Update : a (3)
t · (it)

Z (3)
(t)

=
(

A
(2)
(it−1)

⋄ A
(1)
(it−1)

)T
, y (3)

t· = vec
(

Y (t)

)

a (3)
t · (it)

← a (3)
t · (it)

•

y (3)
t· Z (3)

(t)

T

a (3)
t · (it)

Z (3)
(t)

Z (3)
(t)

T
+ λ‖ a (3)

t · (it)
‖ 1

(14)

Update : A
(1)
(it)

A
(1)
(it)

← A
(1)
(it)

•

�
(1)
(t)

T

A
(1)
(it)

Ŵ
(1)
(t)

⎧

⎪
⎨

⎪

⎩

Z (1)
(t)

=
(

a (3)
t · (it)

⋄ A
(2)
(it−1)

)T

Ŵ
(1)
(t)

= Ŵ
(1)
(t−1)

+ Z (1)
(t)

Z (1)
(t)

T

�
(1)
(t)

= �
(1)
(t−1)

+ Z (1)
(t)

Y T
(t)

(15)

Update : A
(2)
(it)

A
(2)
(it)

← A
(2)
(it)

•

�
(2)
(t)

T

A
(2)
(it)

Ŵ
(2)
(t)

⎧

⎪
⎨

⎪

⎩

Z (2)
(t)

=
(

a (3)
t · (it)

⋄ A
(1)
(it)

)T

Ŵ
(2)
(t)

= Ŵ
(2)
(t−1)

+ Z (2)
(t)

Z (2)
(t)

T

�
(2)
(t)

= �
(2)
(t−1)

+ Z (2)
(t)

Y T
(t)

(16)

it ← it + 1

4

3.2. Update of the matrix factors

In the first step, each row of the third factor a (3)
i 3 ·

is updated by

fixing the matrix factors A (1) and A (2) . From the matrix representa-
tion (6) , the optimization problem takes the form

a (3)
i 3 ·

= arg min
a (3)

i 3 ·

1

2

∥

∥

∥
y (3)
i 3 ·

− a (3)
i 3 ·

(

A
(2) ⋄ A

(1)
)T

∥

∥

∥

2

F

+ λ‖ a (3)
i 3 ·

‖ 1 s.t. a (3)
i 3 ·

≥ 0 , (17)

where y (3)
i 3 ·

= vec
(

Y (i 3)
)

∈ R
1 ×I 2 I 1
+ denotes the i 3 -th row of the ma-

trix unfolding of Y associated with the third mode i.e. Y (3) ∈

R
I3 ×I 2 I 1
+ . The expression (17) can be optimized by various methods

but, for sake of simplicity, we will implement this step using the
MU rule given in [43] .

Using the regularization term λ‖ a (3)
i 3 ·

‖ 1 = λ
∑

r | a
(3)
i 3 ,r

| in (17) , a

sparse coding is enforced by λ, which λ ∈ R is the regularization
parameter controlling the amount of sparseness. This means that a
solution with many small or zero entries is favored over a dense
solution. The sparse coding vector, a (3)

i 3 ·
, will influence the update

of the basis factor, A (1) and A (2) , insofar as the changes in the factor
matrices will be concentrated on the part of the factors that was
relevant in the coding of the corresponding example.

So far we have only updated a (3)
i 3 ·

, it remains to update the basis

factors A (1) and A (2) . In order to perform these updates, knowing
only one sub-tensor Y (i 3) at a time, we will load the information

from the already considered sub-tensors. As both matrices A (1) and
A (2) are treated in exactly the same way, we will derive the method
to store this information on the example of A (1) . Assuming that we
store the information of the already treated sub-tensors, we are
able to calculate the cost-function for the decomposition of the set
of sub-tensors { Y (i 3) ; i 3 = 1 , . . . , t} , where t is associated with the
t -th slice of Y being treated in the current moment. Thus, the cost-
function of the decomposition can be written as

D (Y, ˆ Y)

I 3
≈

1

2 t

t
∑

i 3 =1

D (Y (i 3) , ̂
 Y (i 3))

=
1

2 t

t
∑

i 3 =1

∥

∥Y (i 3) −
[

[A
(1) , A

(2) , a (3)
i 3 ·

]

]
∥

∥

2

F
. (18)

A direct calculation of the sum in this cost function at each iter-
ation for the known { a (3)

1 · , . . . , a (3)
t· } , A (1) and A (2) would be too ex-

pensive to create a fast algorithm. Therefore let us rewrite (18) us-
ing (6) with n = 1 as

D (Y, ˆ Y)

I 3
≈

1

2 t

t
∑

i 3 =1

∥

∥

∥
Y (i 3) − A(1)

(

a (3)
i 3 ·

⋄ A
(2)

)T
∥

∥

∥

2

F
. (19)

From (19) and by fixing { a (3)
1 · , . . . , a (3)

t· } and A (2) , we can obtain an

estimate of A (1)

A
(1) = arg min

A (1)

1

2 t

t
∑

i 3 =1

[

Tr
(

Y (i 3) Y
T
(i 3)

)

−

− 2 Tr
(

A
(1)

(

a (3)
i 3 ·

⋄ A
(2)

)T
Y
T
(i 3)

)

+ Tr
(

A
(1)

(

a (3)
i 3 ·

⋄ A
(2)

)T (
a (3)
i 3 ·

⋄ A
(2)

)

A
(1) T

)]

(20)

for t ∈ { 1 , . . . , I 3 } .
After rewriting the optimization problem in this way, we can

now replace the sum over i 3 in (20) by the following recursion
relations

Ŵ
(1)
(t)

= Ŵ
(1)
(t−1)

+ Z (1)
(t)

Z (1)
(t)

T
∈ R

R ×R
+ (21a)

�
(1)
(t)

= �
(1)
(t−1)

+ Z (1)
(t)

Y
T
(t) ∈ R

R ×I 1
+ (21b)

�
(1)
(t)

= �
(1)
(t−1)

+ Y (t) Y
T
(t) ∈ R

I 1 ×I 1
+ (21c)

with

Z (1)
(t)

=
(

a (3)
t· ⋄ A

(2)
)T

∈ R
R ×I 2
+ . (22)

Thus the optimization problem given by (20) is simplified to the
form

A
(1) = arg min

A (1)

1

2 t

[

Tr
(

�
(1)
(t)

)

− 2 Tr
(

A
(1)

�
(1)
(t)

)

+ Tr
(

A
(1)

Ŵ
(1)
(t)

A
(1) T

)]

.

s.t. A
(1) ≥ 0 (23)

Updating them at each step for t = 1 , . . . , I 3 we can save the in-
formation of the past sub-tensors and avoid the calculation of the
sum in (20) . However the recursive estimation of these variables
(21a) –(21b) leads to an approximation to the cost-function since
Z (1)

(t)
depends on the knowledge of A (2) and a (3)

t· .

3.3. Implementation

To implement our algorithm, we use a MU for positivity pre-
serving as proposed by Lee and Seung [43] with additional sparse-
ness constraint and factor normalization. We chose this kind of im-
plementation for its simplicity in order to obtain quickly a proof-
of-concept of our approach.

Considering a cost function C (θ) of non-negative variables θ i ,
the MU has the form

θi ← θi •

(

∂C −(θ)

∂θi

/
∂C + (θ)

∂θi

)

, (24)

with ∂C −(θ)
∂θi

the positive and ∂C(θ) +

∂θi
the negative part of the deriva-

tive with respect to θ i . The complete derivative of the cost function

C (θ) is ∂C(θ)
∂θi

=
∂C(θ) +

∂θi
+

∂C(θ) −

∂θi
. This MU rule can be explained as

follows: In the case that the gradient is zero, i.e. ∂C(θ) +

∂θi
=

∂C(θ) −

∂θi
,

θ i remains unchanged. In the case that the gradient is positive the
update rule will decrease the entries of θ i and vice versa in the
case of a negative gradient. For an interpretation in terms of a vari-
ational Bayes approach see [57] .

From (17) with i 3 = t, the resulting update rule for the coding
factors a (3)

t· (the first step) is given by

a (3)
t· ← a (3)

t· •
y (3)
t· Z (3) T

a (3)
t· Z (3) Z (3) T + λ‖ a (3)

t· ‖ 1

, (25)

with

Z (3) =
(

A
(2) ⋄ A

(1)
)T

∈ R
R ×I 2 I 1
+ . (26)

The sparse non-negative updating of the coding vector has to re-
spect a stopping criterion that is adjusted to the factors’ needed
precision of the sparse coding vs. avoidance of over-fitting and time
needed for the sparse coding. For simplicity, it was chosen to stop
the updates when the change of the cost function is such that
�error < 10 −5 . This value was empirically obtained to perform well
for various input tensors.

The derivatives of (23) for n ∈ {1, 2} are

∂

∂A (n)
Tr
(

A
(n)

Ŵ
(n)
(t)

A
(n) T

)

= 2 A
(n)

Ŵ
(n)
(t)

(27)

5

∂

∂A (n)
Tr
(

A
(n)

�
(n)
(t)

)

= �
(n)
(t)

(28)

and the update rule for the basis factor matrices A (n) results in

A
(n) ← A

(n) •

�
(n)
(t)

T

A (n) Ŵ
(n)
(t)

, for n ∈ { 1 , 2 } . (29)

The factor matrices A (1) and A (2) are randomly initialized with each
entry in the range [0, 1]. The iterative variables Ŵ(n)

(t)
and �(n)

(t)
are

initialized with 0 . We also require all entries of the input tensor to
be in the same range [0, 1].

3.4. Factor normalization

Applying a sparseness constraint to only one factor matrix but
not all, the normalization of the remaining factors is essential to
avoid growing of the non constrained factors. A cost function of
the form

D (Y, ˆ Y) =

∥

∥Y −
[[

A
(1) , A

(2) , A
(3)

]]∥

∥

2

F
+ λ‖ A

(3) ‖ 1 (30)

could be decreased by simply shrinking the entries of A (3) and
growing the factors A (1) and A (2) that do not obey the sparseness
constraint. To avoid this effect different kinds of normalization can
be applied to the remaining factors. Using a MU rule like Lee and
Seung [43] , a simple min-max normalization, i.e. re-normalization

which maps the maximum value to 1 and the minimum value to
0, would create values that are exactly zero. These values would
not change any more in consequence of the multiplicative nature
of the update. Common solutions are normalization of all columns
of the factors to a sum of one

A
(n) ← A

(n) •

⎛

⎝

�
(n)
(t)

T

A (n) Ŵ
(n)
(t)

⎞

⎠ • 1

⎛

⎝
1

A (n) Ŵ
(n)
(t)

•

⎛

⎝

A (n) Ŵ
(n)
(t)

�
(n)
(t)

T

⎞

⎠

⎞

⎠ (31)

These are the normalizing update rules to be applied in the coding
step.

4. Numerical experiments with two image databases

The usefulness of the NTF algorithm in the extraction of fa-
cial features for classification has been demonstrated in [26,50] .
In [26] the NTF has been applied for feature extraction for face
detection. The feature vector representing an image was the inner-
product between the factors. Those measurement vectors over pos-
itive (faces) and negative (non-faces) examples were fed into var-
ious classifiers, such as Support Vector Machines (SVM) and Ad-
aboost. The MIT CBCL face repository has been used and it has
been shown that the features extracted by the NTF factors gen-
erated the higher classification accuracy when compared to NMF
and PCA.

To examine the convergence behavior of the algorithm and the
achieved decomposition accuracy, we performed decompositions of
a set of example tensors. In order to allow the comparison of de-
composition errors achieved in decompositions of different tensors,
we use the relative error given by

C rel. =

∥

∥Y − ˆ Y

∥

∥

F

‖ Y ‖ F

, (32)

where ˆ Y is the reconstruction tensor of Y from the estimated ma-
trix factors A (1) , A (2) ,and A (3) .

For comparison a selection of four algorithms will be employed:
The original NMF algorithm by [43] , the direct extension of the

same algorithm to NTD by [50] i.e. higher-order nonnegative ma-
trix factorization (HONMF), a conjugate gradient (cgP) algorithm

[56] and an ANLS algorithm with BPP [35] (referred to as ANLS-
BPP). All algorithms are used in a pure Matlab®implementation.
NMF is a 2-way method, i.e. designed for second-order tensors
(matrices), therefore the input tensors have to be vectorized. The
preconditioned nonlinear cgP is an implementation specialized to
third-order tensors, consequently a vectorization becomes neces-
sary if the order of the input tensor exceeds 3. For the evalua-
tion and comparison of these algorithms, we use two sets of face
images: The MIT center for biological and computational learning
(CBCL) face database and IV 2 face database [14] .

The MIT CBCL face database contains 2429 gray scale face im-
ages with a resolution of 19 ×19 pixels. Forming a tensor of di-
mensions 19 ×19 ×2429 it is a good example of an input tensor
of moderate size and heavily imbalanced dimensions. The face im-
ages of the CBCL database present a typical decomposition task
and have been used in the evaluation of several publications deal-
ing with matrix and tensor factorizations [21,27,31,42] . As the data
set contains several images of the same person we have to assure
by shuffling their order that they are not grouped together in the
data tensor. To also perform tests on a fourth order tensor we se-
lected 211 persons with at least 6 images available and formed a
fourth order tensor of dimensions 19 ×19 ×6 ×211,where the first
two ways correspond to the pixels, the third indexes the different
images of one person and the fourth way corresponds to the dif-
ferent persons.

The IV 2 face database contains 4721 face gray scale face images
with a resolution of 128 ×128 pixels. These images form a ten-
sor of dimensions 128 ×128 ×4721 which presents an example of
much larger size. On the machine with 4 Gigabytes of RAM which
we used to perform our experiments, this tensor uses up almost
half of the available memory.

In Fig. 2 we display examples of reconstructed CBCL face im-
ages, as well as processing time and relative error, obtained with
our algorithm and the 4 algorithms to compare with. The cgP is
only used with 3D arrays and HONMF is the tensor extension of
NMF. Both visual inspection as well as the reconstruction error and
the processing time show that the NMF algorithm is superior to
all NTF algorithms. This is due to the fact that NMF is especially
designed for 2D-way arrays. From all NTF algorithms, NsTEF per-
forms best. Both HONMF and cgP show poorer reconstruction and
a slower processing time. ANLS-BPP is adapted to 3 way arrays but
it is very slow (10 times as much as NsTEF) and can not reason-
ably be used in its actual form in the case of very large data set
such as in big data context. The three algorithms converges simi-
larly fast toward nearly the same relative error level.

In Fig. 3 we plotted the relative decomposition error over time.
These plots show that NsTEF algorithm exhibits a good conver-
gence behaviour, the latter having being recently analyzed in more
details in, e.g. [7,48] . These plots also show that the stopping cri-
terion of the ANLS-BPP algorithm has stopped quite late, and that
the processing time is much longer than with NsTEF.

In Fig. 4 we show the basis images obtained by the decompo-
sition with the NsTEF algorithm. These images build the basis for
the reconstruction. As can be seen, the basis images are sparse, i.e.
a large number of entries is zero, because of the purely additive
nature of non-negative decompositions. The obtained basis images
show a similarity to the basis images obtained by other NTF and
NMF algorithms, see [21,31,68] .

The tensor decomposition formed from IV 2 image database of
dimensions 128 ×128 ×4721 is much more demanding. In fact,
the HONMF and the cgP algorithms did not converge within 24
hours. However, the NMF, NsTEF and ANLS-BPP algorithms con-
verged within 1 h. The exact processing time as well as the relative
error achieved with each of the algorithms and the reconstructed

6

Fig. 2. Reconstruction after decomposition into 32 basis images; relative error is given as error ± standard deviation. Computation time raising from left to right.

Fig. 3. Evolution of relative error over time for several NTF algorithms when de-

composing in third-order CBCL face image tensor. Basis images R = 32 . Time in sec-

onds.

images are shown in Fig. 5 . NMF achieved by far the best decom-
position. The reconstruction error is almost one magnitude lower,
and the reconstructed image shows much more similarity with the
original than with both other algorithms. With almost identical
processing time, NsTEF and ANLS-BPP have achieved a decomposi-
tion that lacks detail. Recognizing the person in the original image
is still possible, and the reconstruction error is not higher than for
the CBCL face images.

4.1. Discussion

One shortcoming of our algorithm is that an approximation is
necessary to derive the basis update step. The numeric examples
showed that our algorithm is comparable with the state-of-the-art

algorithms in terms of the error reconstruction and also the pro-
cessing time. We ascribe this to the coding step which does not
need an approximation and thus can equilibrate the committed er-
ror. Another way to approach large-scale decompositions are block
wise approaches, e.g. Kim and Park [35] and Cichocki et al. [13,
see. 1.3.1] . In these approaches parts of the input tensor are se-
lected randomly to be processed. NsTEF, on the contrary, does pro-
cess parts of the tensor in a regular way. One might suspect that
this leads to a better representation of the information processed
in later steps in the decomposition but as the past information is
stored in the basis update step we did not observe any dependence
of the reconstruction error on the location of the data in the in-
put tensor whatsoever. Additionally, the NsTEF avoids the need to
access the same part of the tensor multiple times, which consid-
erably reduces memory overhead and contributes to the algorithm

speed. Furthermore, block wise algorithms require that parts of the
tensor be selected according to an uniform distribution in order
to obtain a decomposition with uniform reconstruction error over
the whole tensor. In consequence, additional precautions are nec-
essary to be able to start the decomposition of a tensor before all
entries of the tensor are known. With our NsTEF algorithm, it is
possible to add new examples at any time, and the algorithm will
incorporate the new information available. After finishing the pre-
sented implementation, we also investigated whether it is possible
to transfer our decomposition approach directly to an implemen-
tation using the Kullback-Leibler divergence as cost criterion. The
use of this divergence, however, did not allow us to derive the it-
erative variables �t

(n)
and Ŵt

(n)
, which are essential to circumvent

the complete re-calculation of the sum in the cost function (18) in
every update.

5. Algorithm cost

The approach to decompose an N -dimensional data tensor as
a series of (N − 1) -dimensional data tensors allows to keep less
data in memory. Intending to decompose a set of tensors {Y (t) ∈

R
I 1 ×... ×I N−1
+ , t = 1 , . . . , I N } which is equivalent to the decomposi-

tion of a tensor Y ∈ R
I 1×···×I N
+ with I N ≥ I N−1 ≥ . . . ≥ I 1 ≥ R ≥ N ≥ 2 ,

7

Fig. 4. 32 basis faces obtained by nonnegative sub-tensor ensemble factorization (NsTEF) decomposing 2429 CBCL face images. Images corresponding to nose (3rd row, 7th

column), mouth (1st row, 4th column), chin (3rd row, 1st column), cheeks (3rd row, 5th column), eyes, eye-brows or combinations can be found. Others are harder to

interpret.

Fig. 5. Reconstruction after decomposition into 32 basis images.

where R is the reduced dimension, the proposed algorithm has a
memory usage of

M = 2
N−1
∏

i =1

I i + R
N−2
∏

i =1

I i +

N−1
∑

i =1

I i + (N − 1) R 2 (33)

matrix entries. The first summand is the space required to keep
the example Y (t) and its reconstruction in memory, the second for
a Z t

(n)
, n � = N, the third for the �t

(n)
and the last for the Ŵt

(n)
.

In the case of a third-order tensor, i.e. N = 3 , this is: M =

2 R 2 + R (I 1 I 2 + 2 I 1 + 2 I 2 + I 3) + 2 I 1 I 2 . The memory consumption of
the NsTEF algorithm is quadratic in R . Supposing cubic tensors to
be decomposed, i.e. I n = I m = I, ∀ n, m, we can also determine the
memory consumption of the algorithm to be proportional to I (N−1)

and exponential in N .
The numerical complexity can help to compare the performance

of different algorithms. For the proposed algorithm, the computa-
tional cost for the two steps are different. The coding step, i.e. for
updating each row of A (3) ,has a computational cost of

O

(

(2 R + 1)

N−1
∏

i =1

I i + R

)

(34)

and the basis update steps, i.e. for updating A (1) and A (2) ,

O

(

R
N−1
∑

i =1

I i + (N − 1)(2 R + 1)

N−1
∏

i =1

I i

)

. (35)

For a third-order tensor, this cost is: O((2 R + 1) I 1 I 2 + J) for the
coding step and O(2(2 R + 1) I 1 I 2 + R (I 1 + I 2)) for the basis update
step.

The cost of the ordinary matrix product AB ,with A ∈ R I×J and
B ∈ R J×K is assumed to be O(IJK) , i.e. in the case of a dense ma-
trix. The computational cost of the element-wise product A •B is

O(IJ) . The algorithmic cost of both basis update and coding step
are linear in R . Supposing the tensor to decompose be cubic, the
algorithmic cost of both steps is of the order I (N−1) in I and expo-
nential in N .

With this decomposition approach we have the possibility to
start the decomposition of a tensor before all of its sub-tensors Y (t)

are known. In cases where the whole tensor, which we want to
decompose, is known from the beginning we can present the sub-
tensors in arbitrary order. This simple change of the order makes
the algorithm more robust to decomposition problems originating
from a strong order in the sub-tensors, e.g. the sub-tensors belong
to several different classes of examples.

Our algorithm decomposes the data tensor along the largest di-
mension. By re-indexing the tensor we can decompose also along
every other direction using our algorithm. In terms of computa-
tional cost and memory consumption it might be of no advan-
tage to decompose along any other dimension but the largest one.
There might be circumstances that make it necessary to choose
this route.

6. Conclusion

We have presented a novel approach for fast decomposition
of large non-negative tensors with imbalanced dimensions. We
avoided the slowdown due to excessive memory use encountered
with standard algorithms by accessing parts of the tensor, sub-
tensors in a sequential way and storing the information obtained
by already accessed sub-tensors. Tests of the proposed algorithm

on examples of moderate to large size data repositories demon-
strated a highly competitive convergence speed and comparable
decomposition quality of the NsTEF algorithm. Because of the spe-
cial structure, tensor factorization always contains, implicitly or ex-
plicitly, a core tensor, which does not exist in matrix factorization.

8

How to efficiently and effectively deal with it is one key problem

in NTF. We can either fix it as an identity, or incorporate it into
the optimization procedure. The latter one is computationally very
expensive, which makes it unsuitable for large tensor data.

Acknowledgment

This work was supported by Fundação do Estado de São Paulo
(FAPESP), Brazil, under Grant 2014/23936-4 .

References

[1] M.W. Berry , M. Browne , A.N. Langville , V.P. Pauca , R.J. Plemmons , Algorithms
and applications for approximate nonnegative matrix factorization, Comput.
Stat. Data Anal. 52 (1) (2007) 155–173 .

[2] M. Boussé, O. Debals , L. De Lathauwer , A tensor-based method for large-scale
blind system identification using segmentation, in: Proc. 24th European Signal
Processing Conference, 2016 . accepted

[3] R. Bro , Multi-way analysis in the food industry. Models, algorithms and appli-
cations., University of Amsterdam, Netherlands, 1998 Ph.D. thesis .

[4] S.S. Bucak , B. Gunsel , Incremental subspace learning via non-negative matrix
factorization, Pattern Recognit. 42 (5) (2009) 788–797 .

[5] J.D. Carroll , J.J. Chang , Analysis of individual differences in multidimensional
scaling via an N-way generalization of Eckart-Young decomposition, Psychome-
trika (35) (1970) 283–319 .

[6] J.D. Carroll, G. De Soete, S. Pruzansky, Multiway data analysis (1989) 463–472.
[7] J. Chen , C. Richard , J.-C.M. Bermudezz , P. Honeine , Variants of non-negative

least means square algorihtm and convergence analysis, IEEE Trans. Signal Pro-
cess. 62 (15) (2014) .

[8] A. Cichocki , S. Amari , R. Zdunek , R. Kompass , G. Hori , Z. He , Extended smart
algorithms for nonnegative matrix factorization, in: Artificial Intelligence and
Soft Computing - ICAISC 2006, volume 4029 of Lecture Notes in Computer Sci-
ence, 2006, pp. 548–562 .

[9] A. Cichocki , D. Mandic , A.-H. Phan , C. Caiafa , G. Zhou , Q. Zhao , L.D. Lathauwer ,
Tensor decompositions for signal processing applications from two-way to
multiway component analysis, IEEE Signal Process. Mag. 32 (2) (2014) 145–163 .

[10] A. Cichocki , R. Zdunek , S.-I. Amari , Csiszar’s divergences for nonnegative ma-
trix factorization: family of new algorithms, in: Independent Component Anal-
ysis and Blind Signal Separation, Vol. 3889, Springer Berlin / Heidelberg, 2006,
pp. 32–39 .

[11] A. Cichocki , R. Zdunek , S.-I. Amari , Hierarchical ALS algorithms for nonnegative
matrix and 3D tensor factorization, in: Independent Component Analysis and
Signal Separation, Vol. 4666, Springer Berlin / Heidelberg, 2007, pp. 169–176 .
ICA 2007

[12] A. Cichocki , R. Zdunek , A.-H. Phan , S. Amari , Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation, John Wiley & Sons, Ltd, 2009 .

[13] A . Cichocki , A .-H. Phan , Fast local algorithms for large scale nonnegative ma-
trix and tensor factorizations, IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. E92-A (3) (2009) 1–14 .

[14] J. Colineau , J. D’Hose , B. Ben Amor , M. Ardabilian , L. Chen , B. Dorizzi , 3D face
recognition evaluation on expressive faces using the IV 2 database, in: J. Blanc–
Talon, S. Bourennane, W. Philips, D. Popescu, P. Scheunders (Eds.), Advanced
Concepts for Intelligent Vision Systems, Lecture Notes in Computer Science,
Vol. 5259, Springer Berlin Heidelberg, 2008, pp. 1050–1061 .

[15] P. Comon , B. Mourrain , Decomposition of quantics in sums of powers of linear
forms, Signal Process. 53 (1996) 93–108 . Special Issue on Higher Order Statis-
tics.

[16] P. Comon , J.M.F. Ten Berge , L. de Lathauwer , J. Castaing , Generic and typical
ranks of multi-way arrays, Linear Algebra Appl. 430 (11) (2009) 2997–3007 .

[17] P. Comon , C. Jutten , Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications, 1st, Academic Press, 2010 .

[18] L. de Lathauwer , A link between the canonical decomposition in multilinear
algebra and simultaneous matrix diagonalization, SIAM J. Matrix Analy. Appl.
28 (3) (2006) 642–666 .

[19] L. de Lathauwer , B. de Moor , J. Vandewalle , Computation of the canonical de-
composition by means of a simultaneous generalized Schur decomposition,
SIAM J. Matrix Anal. Appl. 26 (2) (2004) 295–327 .

[20] V. de Silva , L. Lim , Tensor rank and the ill-posedness of the best low-rank ap-
proximation problem, SIAM J. Matrix Anal. Appl. 30 (3) (2008) 1084–1127 .

[21] M. Friedlander , K. Hatz , Computing non-negative tensor factorizations, Optim.
Methods Softw. 23 (4) (2008) 631–647 .

[22] D. Guillamet , B. Schiele , J. Vitriá, Analyzing nonnegative Matrix factorization
for image classification, in: Proceedings of the 16th International Conference
on Pattern Recognition, Volume 2, IEEE Computer Society, 2002, pp. 116–119 .

[23] X. Guo , S. Miron , D. Brie , A. Stegeman , Uni-mode and partial uniquennes con-
ditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent
loadings., IEEE Trans. Signal Process. 33 (1) (2012) 111–129 .

[24] R.A. Harshman , Foundations of the PARAFAC procedure: models and conditions
for an “explanatory” multi-modal factor analysis, UCLA Work. Pap. Phonetics
16 (1970) 1–84 .

[25] R.A. Harshman , Determination and proof of minimum uniqueness conditions
for PARAFAC1, UCLA Work. Pap. Phonetics 22 (1972) 111–117 .

[26] T. Hazan , S. Polak , A. Shashua , Non-negative tensor factorization with applica-
tions to statistics and computer vision, in: International Conference of Machine
Learning, Bonn, Germany, 2005 .

[27] T. Hazan , S. Polak , A. Shashua , Sparse image coding using a 3D nonnegative
tensor factorization, in: Tenth IEEE International Conference on Computer Vi-
sion (ICCV’05), Vol. 1, 2005, pp. 50–57 .

[28] F.L. Hitchcock , The expression of a tensor or a polyadic as a sum of products,
J. Math. Phys. 6 (1) (1927) 164–189 .

[29] P.O. Hoyer , Nonnegative sparse coding, in: Proceedings of IEEE Workshop Neu-
ral networks for signal processing, 2002, pp. 557–565 .

[30] P.O. Hoyer , Nonnegative matrix factorization with sparseness constraints, J.
Mach. Learn. Res. (2004) 1457–1469 .

[31] P.O. Hoyer , P. Dayan , Non-negative matrix factorization with sparseness con-
straints, J. Mach. Learn. Res. 5 (2004) 1457–1469 .

[32] L.-Y. Hu , G.-D. Guo , C.-F. Ma , Image processing using Newton-based algorithm
of nonnegative matrix factorization, Appl. Math. Comput. 269 (2015) 956–964 .

[33] I.A. Illán , Análisis en Componentes de Imágenes Funcionales para la Ayuda al
Diagnástico de la Enfermedad de Alzheimer, Departamento de Arquitectura y
Tecnología de Computadores, 2009 Ph.D. thesis .

[34] I.A. Illán , J.M. Górriz , J. Ramírez , D. Salas-Gonzalez , M. López , F. Segovia ,
C.G. Puntonet , M. Gómez-Rio , 18 F-FDG PET imaging for computer aided
Alzheimer’s diagnosis 181 (4) (2011) 903–916 .

[35] J. Kim , H. Park , Fast nonnegative matrix factorization: an active-set-like
method and comparisons, SIAM J. Sci. Comput. 33 (6) (2011) 3261–3281 .

[36] Y.-D. Kim , A. Cichocki , S. Choi , Nonnegative Tucker decomposition with alpha–
divergence, in: Proceedings of International Conference on Acoustics, Speech
and Signal Processing, 2008, pp. 1829–1832 .

[37] A. Kodewitz , S. Lelandais , C. Montagne , V. Vigneron , Learning and using brain
maps for Alzheimer’s disease detection, Electron. Lett. Comput. Vision Image
Anal. 12 (1) (2013) 42–56 .

[38] J.B. Kruskal , Three-way arrays: rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics, Linear Algebra
Appl. 18 (1977) 111–117 .

[39] J.B. Kruskal, Multiway Data Analysis, vol. 33 of Biometrial Journal, chapter
Rank, decomposition, and uniqueness for 3-way and N-way arrays, Elsevier
Science Publishers B.V., North-Holland, 1989.

[40] L.D. Lathauwer , Signal processing based on multilinear algebra., Université
Catholique de Leuven, Netherlands, 1997 Ph.D. thesis .

[41] C. Lawson , R. Hanson , Solving Least Squares Problems, Society for Industrial
and Applied Mathematics, 1995 .

[42] D.D. Lee , H.S. Seung , Learning the parts of objects by nonnegative matrix fac-
torization, Nature 401 (1999) 788–791 .

[43] D.D. Lee , H.S. Seung , Algorithms for nonnegative matrix factorization, in:
T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Pro-
cessing Systems 13, MIT Press, 2001, pp. 556–562 .

[44] H. Lee , Y.-D. Kim , A. Cichocki , S. Choi , Non-negative tensor factorization for
continuous eeg classification, Int. J. Neural Syst. 17 (4) (2007) 305–317 .

[45] S.Z. Li , X. Hou , H. Zhang , Q. Cheng , Learning spatially localized, parts-based
representation, in: Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), Hawaii, USA, Vol. I, 2001, pp. 207–212 .

[46] L.-H. Lim , P. Comon , Nonnegative approximations of nonnegative tensors, J.
Chemom. 23 (7–8) (2009) 432–441 .

[47] L.-H. Lim , P. Comon , Blind multilinear identification, IEEE Trans. Inf. Theory 60
(2) (2014) 1260–1280 .

[48] C.-J. Lin , On the convergence of multiplicative update algorithms for non neg-
ative matrix factorization, IEEE Trans. on Neural Networks 16 (6) (2007) .

[49] C.-J. Lin , Projected gradient methods for nonnegative matrix factorization, Neu-
ral Comput. 19 (10) (2007) 2756–2779 .

[50] M. Mørup , L.K. Hansen , S.M. Arnfred , Algorithms for sparse non-negative
Tucker decompositions, Neural Comput. 20 (8) (2008) 2112–2131 .

[51] M. N. da Costa , R. R. Lopes , J.M. T. Romano , Randomized methods for high-
er-order subspace speration, in: Proc. 24th European Signal Processing Confer-
ence, 2016 . accepted.

[52] P. Paatero , U. Tapper , Positive matrix factorization: a nonnegative factor model
with optimal utilization of error estimates of data values, Environmetrics 5 (2)
(1994) 111–126 .

[53] V.P. Pauca , J. Piper , R.J. Plemmons , Nonnegative matrix factorization for spec-
tral data analysis, Linear Algebra Appl. 416 (1) (2006) 29–47 .

[54] Y. Qi , P. Comon , L.-H. Lim , Uniqueness of nonnegative tensor approximations,
IEEE Trans. Inf. Theory 62 (4) (2016) 2170–2183 .

[55] F. Raimondi , P. Comon , O. Michel , S. Sahnoun , A. Helmstetter , Tensor decompo-
sition exploiting diversity of propagation velocities; application to localization
of icequake events, Signal Process. 118 (2016) 75–88 .

[56] J.-P. Royer , N. Thirion-Moreau , P. Comon , Computing the polyadic decom-
position of nonnegative third order tensors, Signal Process. 91 (9) (2011)
2159–2171 .

[57] R. Schachtner , G. Pöppel , A.M. Tomé, E.W. Lang , A Bayesian approach to the
Lee–Seung update rules for NMF, Pattern Recognit. Lett. 45 (2014) 251–256 .

[58] A. Stegeman , On uniqueness of the n -th order tensor decomposition into
rank-1 terms with linear independence in one mode, SIAM J. Matrix Anal.
Appl. 31 (5) (2010) 2498–2516 .

[59] A. Stegeman , N.D. Sidiropoulos , On Kruskal’s uniqueness condition for
the CANDECOMP/PARAFAC decomposition, Linear Algebra Appl. 420 (2007)
540–552 .

[60] J.M.F. Ten Berge , N.D. Sidiropoulos , On uniqueness in CANDECOMP/PARAFAC,
Psychometrika 67 (3) (2002) 399–409 .

9

[61] L. Tucker , Some mathematical notes of three-mode factor analysis, Psychome-
trika 31 (3) (1966) 279–311 .

[62] M.A. Veganzones , J.E. Cohen , R.C. Farias , J. Chanussot , P. Comon , Nonnegative
tensor CP decomposition of hyperspectral data, IEEE Trans. Geosci. Remote
Sens. 54 (5) (2016) 2577–2588 .

[63] M. Welling , M. Weber , Positive tensor factorization, Pattern Recognit. Lett. 22
(2001) 1255–1261 .

[64] T. Yokota , R. Zdunek , A. Cichocki , Y. Yamashita , Smooth non-negative matrix
and tensor factorizations for robust multi-way data analysis, Signal Process.
113 (2015) 234–249 .

[65] L. Yongmin , On incremental and robust subspace learning, Pattern Recognit. 37
(2004) 1509–1518 .

[66] S. Zafeiriou, Tensors in Image Processing and Computer Vision, Advances in
Pattern Recognition, Springer, 2009, pp. 105–124.

[67] R. Zdunek , Trust-region algorithm for nonnegative matrix factorization with al-
pha- and beta-divergences, in: Proc. Joint 34th DAGM and 36th OAGM Sympo-
sium on Pattern Recognition (DAGM/OAGM), Vol. 7476, Springer Berlin / Hei-
delberg, 2012, pp. 226–235 .

[68] D. Zhang , S. Chen , Z.-H. Zhou , Two-dimensional non-negative matrix factoriza-
tion for face representation and recognition, in: in Proc. ICCV’05 Workshop on
Analysis and Modeling of Faces and Gestures (AMFG’05), Vol. 3723, Springer,
2005, pp. 350–363 .

[69] G. Zhou , A. Cichocki , S. Xie , Fast nonnegative matrix/tensor factorization
based on low-Rank approximation, IEEE Trans. Signal Process. 60 (6) (2012)
2928–2940 .

[70] G. Zhou , A. Cichocki , Q. Zhao , S. Xie , Nonnegative matrix and tensor factor-
izations: an algorithmic perspective, IEEE Signal Process. Mag. 31 (3) (2014)
54–65 .

10

	Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets.
	1 Introduction
	 Notation

	2 Tensor models
	2.1 CANDECOMP/PARAFAC (CP) model
	2.2 Tucker model
	2.3 Advantages of tensor models
	2.4 Non-negative factorization in the tensor domain

	3 A fast NTF algorithm with additional non-negativity constraints
	3.1 The principle
	3.2 Update of the matrix factors
	3.3 Implementation
	3.4 Factor normalization

	4 Numerical experiments with two image databases
	4.1 Discussion

	5 Algorithm cost
	6 Conclusion
	 Acknowledgment
	 References

