Self-Organizing Maps with supervised layer - Archive ouverte HAL Access content directly
Conference Papers Year : 2017

Self-Organizing Maps with supervised layer

Abstract

We present in this paper a new approach of supervised self organizing map (SOM). We added a supervised perceptron layer to the classical SOM approach. This combination allows the classification of new patterns by taking into account all the map prototypes without changing the SOM organization. We also propose to associate two reject options to our supervised SOM. This allows to improve the results reliability and to discover new classes in applications where some classes are unknown. We obtain two variants of supervised SOM with rejection that have been evaluated on different datasets. The results indicate that our approaches are competitive with most popular supervised leaning algorithms like support vector machines and random forest.
No file

Dates and versions

hal-01629610 , version 1 (06-11-2017)

Identifiers

Cite

Ludovic Platon, Farida Zehraoui, Fariza Tahi. Self-Organizing Maps with supervised layer. 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM 2017), Jun 2017, Nancy, France. pp.161--168, ⟨10.1109/WSOM.2017.8020022⟩. ⟨hal-01629610⟩
120 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More