Aurélien Garivier 
email: aurelien.garivier@math.univ-toulouse.fr
  
Pierre Ménard 
email: pierre.menard@math.univ-toulouse.fr
  
Laurent Rossi 
email: laurent.rossi@math.univ-toulouse.fr
  
  
  
  
  
  
  
Thresholding Bandit for Dose-ranging: The Impact of Monotonicity

Keywords: thresholding bandits, multi-armed bandits, best arm identification, unimodal regression, isotonic regression

published or not. The documents may come    

Introduction

The phase 1 of clinical trials is devoted to the testing of a drug on healthy volunteers for dose-ranging. The first goal is to determine the maximum tolerable dose (MTD), that is the maximum amount of the drug that can be given to a person before adverse effects become intolerable or dangerous. A target tolerance level is chosen (typically 33%), and the trials aim at identifying quickly which is the dose entailing the toxicity coming closest to this level. Classical approaches are based on dose escalation, and the most well-known is the "traditional 3+3 Design": see Le [START_REF] Le Tourneau | Dose escalation methods in phase i cancer clinical trials[END_REF]; [START_REF] Mark C Genovese | Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase ii, dose-finding, double-blind, randomised, placebo controlled study[END_REF] for and references therein for an introduction.

We propose in this chapter a complexity analysis for a simple model of phase 1 trials, which captures the essence of this problem. We assume that the possible doses are x 1 < . . . < x K , for some positive integer K. The patients are treated in sequential order, and identified by their rank. When the patient number t is assigned a dose x k , we observe a measure of toxicity X k,t which is assumed to be an independent random variable. Its distribution ν k characterizes the toxicity level of dose x k . To avoid obfuscating technicalities, we treat here the case of Gaussian laws with known variance and unknown mean, but some results can easily be extended to other one-parameter exponential families such as Bernoulli distributions. The goal of the experiment is to identify as soon as possible the dose x k which has the toxicity level µ k closest to the target admissibility level S, with a controlled risk δ to make an error.

Content. This setting is an instance of the thresholding bandit problem: we refer to [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF] for an important contribution and a nice introduction in the fixed budget setting. Contrary to previous work, we focus here on identifying the exact sample complexity of the problem: we want to understand precisely (with the correct multiplicative constant) how many samples are necessary to take a decision at risk δ. We prove a lower bound which holds for all possible algorithms, and we propose an algorithm which matches this bound asymptotically when the risk δ tends to 0.

But the classical thresholding bandit problem does not catch a key feature of phase 1 clinical trials: the fact that the toxicity is known in hindsight to be increasing with the assigned dose. In other words, we investigate how many samples can be spared by algorithms using the fact that µ 1 < µ 2 < . . . < µ K . Under this assumption, we prove another lower bound on the sample complexity, and provide an algorithm matching it. The sample complexity does not take a simple form (like a sum of inverse squares), but identifying it exactly is essential even in practice, since it is the only way known so far to construct an algorithm which reaches the lower bound.

We are thus able to quantify, for each problem, how many samples can be spared when means are sorted, at the cost of a slight increase in the computation cost of the algorithm.

Connections to the State of the Art. Phase 1 clinical trials have been an intense field of research in the statistical community (see Le [START_REF] Le Tourneau | Dose escalation methods in phase i cancer clinical trials[END_REF] and references therein), but not considered as a sequential decision problem using the tools of the bandit literature. The important progress made in the recent years in the understanding of bandit models has made it possible to shed a new light on this issue, and to suggest very innovative solutions. The closest contribution are the works of [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF] and Chen et al. (2014), which provides a general framework for combinatorial pure exploration bandit problems. This work tackles the more specific issue of phase 1 trials. It aims at providing strong foundations for such solutions: it does not yet tackle all the ethical and practical constraints. Observe that it might also be relevant to look for the highest dose with toxicity below the target level: we discuss this variant in Section 4; however, it seems that practitioners do not consider this alternative goal in priority.

From a technical point the view, the approach followed here extends the theory of Best-Arm Identification initiated by [START_REF] Kaufmann | On the complexity of best-arm identification in multi-armed bandit models[END_REF] to a different setting. Building on the mathematical tools of that paper, we analyze the characteristic time of a thresholding bandit problem with and without the assumptions that the means are increasing. Computing the complexity with such a structural constraint on the means is a challenging task that had never been done before. It induces significant difficulties in the theory, but (by using isotonic regression) we are still able to provide a simple algorithm for computing the complexity term, which is of fundamental importance in the implementation of the algorithm. The computational complexity of the resulting algorithm is discussed in Section 3.1.

Organization. These lower bounds are presented in Section 2. We compare the complexities of the non-monotonic case versus the increasing case. This comparison is particularly simple and enlightening when K = 2, a setting often referred to as A/B testing. We discuss this case in Section 2.1, which furnishes a gentle introduction to the general case. We present in Section 3 an algorithm and show that it is asymptotically optimal when the risk δ goes to 0. The implementation of this algorithm requires, in the increasing case, an involved optimization which relies on constraint sub-gradient ascent and unimodal regression: this is detailed in Section 3.1. Section 3.2 shows the results of some numerical experiments for different strategies with high level of risk that complement the theoretical results. Section 4 discusses the interesting, but simpler variant of the problem where the goal is to identify the arm with mean closest, but also below the threshold. Section 5 summarizes further possible developments, and precedes most of the technical proofs which are given in appendix.

Notation and Setting

For K 2, we consider a Gaussian bandit model N (µ 1 , 1), . . . , N (µ K , 1) , which we unambiguously refer to by the vector of means µ = µ 1 , . . . , µ K . Let P µ and E µ be respectively the probability and the expectation under the Gaussian bandit model µ. A threshold S ∈ R is given, and we denote by a * µ ∈ arg min 1 a K |µ a -S| any optimal arm. Let M be the set of Gaussian bandit models with an unique optimal arm and I = {µ ∈ M : µ 1 < ... < µ K } be the subset of models with increasing means.

Definition of a δ-correct algorithm.

A risk level δ ∈ (0, 1) is fixed. At each step t ∈ N * an agent chooses an arm A t ∈ {1, . . . , K} and receives a conditionally independent reward Y t ∼ N (µ At , 1). Let F t = σ(A 1 , Y 1 , . . . , A t , Y t ) be the information available to the player at step t. Her goal is to identify the optimal arm a * µ while minimizing the number of draws τ . To this aim, the agent needs:

• a sampling rule

(A t ) t 1 , where A t is F t-1 -measurable,
• a stopping rule τ δ , which is a stopping time with respect to the filtration (F t ) t 1 ,

• a F τ δ -measurable decision rule a τ δ .

For any setting S ∈ {M, I} (the non-monotonic or the increasing case), an algorithm is said to be δ-correct on S if for all µ ∈ S it holds that P µ (τ δ < +∞) = 1 and P µ ( a τ δ = a * µ ) δ.

Lower Bounds

For S ∈ {M, I}, we define the set of alternative bandit problems of the bandit problem µ ∈ M by Alt(µ, S) := {λ ∈ S :

a * λ = a * µ } , ( 1 
)
and the probability simplex of dimension K -1 by Σ K . The first result of this chapter is a lower bound on the sample complexity of the thresholding bandit problem, which we show in the sequel to be tight when δ is small enough.

Theorem 1 Let S ∈ {M, I} and δ ∈ (0, 1/2]. For all δ-correct algorithm on S and for all bandit models µ ∈ S,

E µ [τ δ ] T * S (µ) kl(δ, 1 -δ) , ( 2 
)
where the characteristic time T * S (µ) is given by

T * S (µ) -1 = sup ω∈Σ K inf λ∈Alt(µ,S) K a=1 ω a (µ a -λ a ) 2 2 . ( 3 
)
In particular, this implies that

lim inf δ→0 E µ [τ δ ] log(1/δ) T * S (µ) .
This result is a generalization of Theorem 1 of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]: the classical Best Arm Identification problem is a particular case of our non-monotonic setting S = M with an infinite threshold S = +∞. It is proved along the same lines. As [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF], one proves that the supremum and the infimum are reached at a unique value, and in the sequel we denote by ω * (µ) the optimal weights ω * (µ) := arg max

ω∈Σ K inf λ∈Alt(µ,S) K a=1 ω a (µ a -λ a ) 2 2 . ( 4 
)

The Two-armed Bandit Case

As a warm-up, we treat in the section the case K = 2. Here (only), one can find an explicit formula for the characteristic times.

Proposition 2 When K = 2,

T * I (µ) -1 = (2S -µ 1 -µ 2 ) 2 8 , ( 5 
)
T * M (µ) -1 = min (2S -µ 1 -µ 2 ) 2 , (µ 1 -µ 2 ) 2 8 . ( 6 
)
Proof The Equality ( 6) is a simple consequence of Lemma 3 proved in Section A.2. It remains to treat the first Equality (5). Let µ ∈ I and suppose, without loss of generality, that arm 2 is optimal. Let m = (µ 1 + µ 2 )/2 be the mean of two arms and ∆ = µ 2 -µ 1 be the gap. Noting that

{arm 1 is optimal} ⇔ m > S and {arm 2 optimal} ⇔ m < S ,
we obtain

T * I (µ) -1 = sup ω∈[0,1] inf µ 1 <µ 2 , |S-µ 1 |<|S-µ 2 | ω 2 (µ 1 -µ 1 ) 2 + 1 -ω 2 (µ 2 -µ 2 ) 2 = sup ω∈[0,1] A(ω) ,
where m = (µ 1 + µ 2 )/2, ∆ = µ 2 -µ 1 and we denote by A(ω) the function

A(ω) := inf {∆ >0, m >S} ω 2 m -m -(∆ -∆ )/2 2 + 1 -ω 2 m -m + (∆ -∆ )/2 2 .
Writing χ = S -m, easy computations lead to

A(ω) = 2ω(1 -ω)χ 2 if ∆ + 2(2ω -1)χ > 0 , χ 2 + (∆/2) 2 + (2ω -1)χ∆ /2 else.
Thus, since the maximum of A is attained at ω = 1/2, we just proved that T * I (µ) -1 = χ 2 /2.

Note that for both alternative sets the optimal weights defined in Equation ( 4) are uniform:

ω * = [1/2, 1/2].
If the alternative set is I, the optimal alternative, i.e. the element λ of Alt(µ, I) (the closure of Alt(µ, I)) which reaches the infimum in (3) for the optimal weights ω * , is λ = [S -(µ 2 -µ 1 )/2, S + (µ 2 -µ 1 )/2]. In words, in the optimal alternative the arms are translated in such a way that the mean of the two mean values is moved to the threshold S. If the alternative set is M and µ ∈ I, the optimal alternatives can be of two different forms. If the threshold is between the two mean values, then the optimal alternative is the same as for the increasing case. Otherwise, the optimal alternative is identical to the one of Best Arm Identification (see [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]): λ = [(µ 1 + µ 2 )/2, (µ 1 + µ 2 )/2]. Thus, if µ 1 S µ 2 , the two characteristic times coincide, as can be seen in Figure 2. (6,8,11,14). Top: inverse of the characteristic time as a function of the threshold S; red solid line: non-monotonic case S = M; blue dotted line: increasing case S = I. Middle: how to move the means to get from the initial bandit model to the optimal alternative in M.

Bottom: the optimal weights in function of the threshold S. 
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On the Characteristic Time and the Optimal Proportions

We now illustrate, compare and comment the different complexities for a general bandit model µ ∈ I with K 2 (see Figure 1). Since I ⊂ M, it is obvious that

T * I (µ) T * M (µ). The difference T * M (µ) -T * I (µ)
is almost everywhere positive, and can be very large. Both T * I (µ) and T * M (µ) tend to +∞ as S tends to middle of two consecutive arms. On the structure of the optimal weights in the non-monotonic case.

Lemma 3 For all µ ∈ M,

T * M (µ) -1 = max ω∈Σ K min b =a * ω a * µ ω b 2(ω a * µ + ω b ) min (µ a * µ -µ b ) 2 , (2S -µ a * µ -µ b ) 2 .
In the non-monotonic case S = M, there are two types of optimal alternatives (as in Section 2.1). Indeed, the proof of Lemma 3 in Appendix A.2 shows that the best alternative takes one of the two following forms. Either the optimal arm µ a * µ and its challenger µ b are moved to a pondered mean (by the optimal weights ω * ) of the two arms (just like in the Best Arm Identification problem), leading to a constant (µ a * µ -µ b ) 2 in Equation ( 7). Or, as in the increasing case S = I (see the proof of Proposition 2), both arms µ a * µ and µ b are translated in the same direction, leading to the constant (2S -µ a * µ -µ b ) 2 . Figure 1 summarizes the different possibilities on a simple example with K = 4 arms, for different values of the threshold S. According to the value of S, the best alternative is shown in the second plot from the top.

On the structure of the optimal weights in the increasing case. In the increasing case S = I, one can show the remarkable property that the optimal weights ω * (µ) put mass only on the optimal arm and its two closest arms. This strongly contrasts with the non-monotonic case, as illustrated at the bottom of Figure 1. For simplicity we assume that 1 < a * µ < K. Let ω be some weights in Σ 3 . Let D + (θ, ω) be the cost, with weights ω, for moving from the initial bandit problem µ to a bandit problem λ + where arm a * µ has mean θ S and S is halfway between µ a * µ and µ a * µ +1 ,

λ + a =        µ a if a > a * µ + 1 , 2S -θ if a = a * µ + 1 , θ if a = a * µ , min(θ, µ a ) if a a * µ -1 .
The explicit formula for D + (θ, ω) is

D + (θ, ω) = ω -1 µ a * µ -1 -min(µ a * µ -1 , θ) 2 2 + ω 0 (µ a * µ -θ) 2 2 + ω 1 µ a * µ +1 -(2S -θ) 2 2 .
Similarly we can do the same with arm a * µ -1: moving from µ to a bandit problem λ -, defined for θ S by

λ - a =        µ a if a < a * µ -1 , 2S -θ if a = a * µ -1 , θ if a = a * µ , max(θ, µ a ) if a a * µ + 1
, where both arms a * µ -1 and a * µ are optimal. For this alternative the cost is

D -(θ, ω) = ω -1 µ a * µ -1 -(2S -θ) 2 2 + ω 0 (µ a * µ -θ) 2 2 + ω 1 µ a * µ +1 -max(µ a * µ +1 , θ) 2 2 .
It appears, see the proof of Proposition 4 in Appendix A.1, that these two types of alternative λ + and λ -are the optimal one. Note that they are also in Alt(µ, I), the closure of the set of alternatives of µ.

Proposition 4 For all µ ∈ I,

T * I (µ) -1 = sup ω∈Σ 3 min min {2S-µ a * µ +1 θ S} D + (θ, ω), min {S θ 2S-µ a * µ -1 } D -(θ, ω) . ( 7 
)
The intuition behind this proposition is that if we try to transform µ into an alternative λ with b > a * µ + 1 as optimal arm we have to pass by an alternative with optimal arm a * µ + 1 since we impose to the means to be increasing. It remains to see that this intermediate alternative has always a smaller cost. The cases with a * µ = 1 or K are similar considering only the the alternatives λ + if a * µ = 1 and λ -if a * µ = K. We can also derive bounds on the characteristic time to see that the dependence in K disappear. It is important to note that this property is really asymptotic when δ goes to zero and it is not clear at all that the dependence of the complexity in K would also disappear for moderate value of δ, we think it is not the case.

Proposition 5 For all µ ∈ I such that 1 < a * µ < K, considering the gaps:

∆ 2 -1 = (2S -µ a * µ -1 -µ a * µ ) 2 /8, ∆ 2 1 = (2S -µ a * µ +1 -µ a * µ ) 2 /8 and ∆ 2 0 = min(∆ 2 -1 , ∆ 2 1 ), 1 ∆ 2 0 T * I (µ) 1 k=-1 1 ∆ 2 k 3 ∆ 2 0 . ( 8 
)

An Asymptotically Optimal Algorithm

We present in this section an asymptotically optimal algorithm inspired by the Directtracking procedure of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] (which borrows the idea of tracking from GAFS-MAX algorithm of [START_REF] Antos | Active learning in multi-armed bandits[END_REF]). At any time t 1 let h(t) = ( √ t -K/2) + (where (x) + stands for the positive part of x) and U t = {a : N a (t) < h(t)} be the set of "abnormally rarely sampled" arms. After t rounds the empirical mean of arm a is

µ a (t) = µ a,Na(t) = 1 N a (t) t s=1 Y s 1 {As=a} ,
where N a (t) = t s=1 1 {As=a} denotes the number of draws of arm a up to and including time t.

Algorithm 1: Algorithme (Direct-tracking).

Sampling rule

A t+1 ∈    argmin a∈Ut N a (t) if U t = ∅ (forced exploration) argmax 1 a K t w * a ( µ(t)) -N a (t) (direct tracking)
Stopping rule

τ δ = inf t ∈ N * : µ(t) ∈ M and inf λ∈Alt µ(t),S K a=1 N a (t) ( µ a (t) -λ a ) 2 2 > β(t, δ) . ( 9 
)
Decision rule

a τ δ ∈ arg min 1 a K µ a (τ δ ) -S . When L := Card{arg min 1 a K | µ a (t)-S|} > 1, we adopt the convention that T * S µ(t) -1 = 0 and w * a ( µ(t)) = 1/L if a ∈ arg min 1 a K | µ a (t) -S| , 0 otherwise.

Theorem 6 (Asymptotic optimality)

For S ∈ {I, M}, for the constant

C = e K+1 2 K K 2(3K + 2) 3K 4
log(3) and for β(t, δ) = log(tC/δ)+(3K+2) loglog(tC/δ), Algorithm 1 is δ-correct on S and asymptotically optimal, in the sense that lim sup

δ→0 E µ [τ δ ] log(1/δ) T * S (µ) . ( 10 
)
The analysis of Algorithm 1 is the same in both the increasing case S = I and the nonmonotonic case S = M. It is deferred to Appendix B. However, the practical implementations are quite specific to each case, and we detail them in the next section.

On the Implementation of Algorithm 1

The implementation of Algorithm 1 requires to compute efficiently the optimal weights w * (µ) given by Equation (4). For the non-monotonic case S = M, one can follow the lines of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF], Section 2.2 and replace their Lemma 3 by Lemma 3 above.

In the increasing case S = I, however, implementing the algorithm is more involved. It is not sufficient to simply use Proposition 4, since µ(t) is not necessarily in I. Let I b := {λ ∈ I, a * λ = b} be the set of alternatives with b as optimal arm. Noting that the function

F : w → inf λ∈Alt(µ,I) K a=1 ω a (µ a -λ a ) 2 2 = min b =a * µ inf λ∈I b K a=1 ω a (µ a -λ a ) 2 2 (11)
is concave (since it is the infimum of linear functions), one may access to its maximum by a sub-gradient ascent on the probability simplex Σ K (see e.g. [START_REF] Boyd | Subgradient methods[END_REF]). Let I b denote the closure of I b , and let

λ b := arg min λ∈I b K a=1 ω a (µ a -λ a ) 2 2 (12)
be the argument of the second infimum in Equation ( 11). The sub-gradient of F at ω is

∂F (ω) = Conv b∈B Opt (µ a -λ b a ) 2 2 a∈{1,••• ,K}
, where Conv denotes the convex hull operator and where B Opt is the set of arms that reach the minimum in (11). Thus, performing the sub-gradient ascent simply requires to solve efficiently the minimization program (12). It appears that this problem boils down to unimodal regression (a problem closely related to isotonic regression, see for example [START_REF] Barlow | Statistical inference under order restrictions[END_REF] and Robertson et al. (1988)). Indeed, we can rewrite the set

{λ ∈ I : a * λ = b} = {λ ∈ M : λ 1 < . . . < λ b-1 < min(λ b , 2S -λ b ) max(λ b , 2S -λ b ) < λ b+1 < . . . < λ K } .
Assume that µ b S (the other case is similar). Then λ b b < S, since λ b and 2S -λ b play a symmetric role in the constraints. Thus, in this case, one may only consider the set

{λ ∈ M :λ 1 < . . . < λ b-1 < λ b , 2S -λ K < . . . < 2S -λ b+1 < λ b , λ b S} .
Let λ be the new variables such that

λ a = λ a if 1 a b , 2S -λ a else . ( 13 
)
Then λ b is the solution of the following minimization program

λ b = arg min λ 1 ... λ b λ K ... λ b λ b S K a=1 ω a (µ a -λ a ) 2 2 . ( 14 
)
Thanks to Lemma 12 in Appendix C, it holds that

λ b a = min( λ b a , S) for all a ∈ {1, . . . , K} ,
where

λ b := arg min λ 1 ... λ b λ K ... λ b K a=1 ω a (µ a -λ a ) 2 2 ,
is the unimodal regression of µ with weights ω and with a mode located at b. It is efficiently computed via isotonic regressions (e.g. [START_REF] Frisén | Unimodal regression[END_REF], [START_REF] Geng | Algorithm as 257: isotonic regression for umbrella orderings[END_REF], Mureika et al. ( 1992)) with a computational complexity proportional to the number of arms K. From λ b , one can go back to λ b by reversing Equation ( 13). Since we need to compute λ b for each b = a * µ , the overall cost of an evaluation of the sub-gradient is proportional to K 2 .

Numerical Experiments

Table 1 presents the results of a numerical experiment of an increasing thresholding bandit.

In addition to Algorithm 1 (DT), we tried the Best Challenger (BC) algorithm with the finely tuned stopping rule given by (9). We also tried the Racing algorithm (R), with the elimination criterion of (9). For a description of all those algorithms, see [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] and references therein. Finally, in order to allow comparison with the state of the art, we added the sampling rule of algorithm APT (Anytime Parameter-free Thresholding algorithm) from [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF] in combination with the stopping rule (9). We chose to set the parameter ε of APT to be roughly equal to a tenth of the gap. It appears that the exploration function β prescribed in Theorem 6 is overly pessimistic. On the basis of our experiments, we recommend the use of β(t, δ) = log log(t) + 1 /δ instead. It does, experimentally, satisfy the δ-correctness property. For each algorithm, the final letter in Table 1 indicates whether the algorithm is aware (I) or not (M) that the means are increasing. We consider two frameworks: in the first one, knowing that the means are increasing provides much information and gives a substantial edge: it permits to spare a large portion of the trials for the same level of risk. In the second, the complexities of the non-monotonic setting is very close to that of the increasing setting. We chose a value of the risk δ which is relatively high (10%), in order to illustrate that in this regime, the most important feature for efficiency is a finely tuned stopping rule. This shows that, even without an optimal sampling strategy, the stopping rule of ( 9) is a key feature of an efficient procedure. When the risk goes down to 0, however, optimality really requires a sampling rule which respects the proportions of Equation ( 4), as shown by Theorem 6. The poor performances of APT can be explained by the crude adaptation of this algorithm to the fixed confidence setting. This possibly comes from the fact that it was originally designed for the fixed budget setting and it appears that these two frameworks are fundamentally different, as argued by [START_REF] Carpentier | Tight (lower) bounds for the fixed budget best arm identification bandit problem[END_REF].

BC-M R-M DT-M APT-M T * M (µ)

Closest mean below the threshold

In this section we briefly discuss a variant of the previous problem: finding the arm with the closest mean below the threshold, i.e. a * µ ∈ arg min 1 a K : µa S |µ a -S|, still under the assumption that the means are increasing. Surprisingly this new problem is simpler than the previous one and it is possible to compute exactly, in this case, the optimal weights and the characteristic time.

Let µ ∈ I be a bandit problem such that the optimal arm a * µ for this new setting is unique (with 1 < a * µ < K for the sake of clarity). As in Section 2.2, we only need to consider alternative bandit problems such that arm a µ -1 or a µ + 1 is optimal. But only one arm needs to be moved: the optimal alternative λ -(resp. λ + ) where a µ -1 (resp. a µ + 1) is optimal are defined by

λ - a = S if a = a * µ , µ a else, and λ + a = S if a = a * µ + 1 , µ a else. ( 15 
)
With the same arguments used to prove Proposition 4, one obtains that

T * I (µ) -1 = sup ω∈Σ 2 min ω -(S -µ a * µ ) 2 2 , ω + (µ a * µ +1 -S) 2 2 = 1 2 (S -µ a * µ ) 2 + 2 (µ a * µ +1 -S) 2 , ( 16 
)
and that the associated optimal weights ω * (µ) are defined by

ω * (µ) a =            2 (S-µ a * µ ) 2 2 (S-µ a * µ ) 2 + 2 (µ a * µ +1 -S) 2 -1 if a = a * µ , 2 (µ a * µ +1 -S) 2 2 (S-µ a * µ ) 2 + 2 (µ a * µ +1 -S) 2 -1 if a = a * µ + 1 , 0 else.
In some way, this problem is closer to the classical threshold bandit problem [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF] with two arms since we are testing if the mean of arms a µ and a µ + 1 is below or above the threshold.

For an optimal strategy, Algorithm 1 can be adapted to this new setting, as well as the Theorem 6 and its asymptotic optimality proof. The only point that needs to be discussed is how to implement this algorithm in practice. One may follow the procedure described in Section 3.1: perform an gradient ascent on the simplex to compute the maximum of F defined in (11). The main difficulty is to compute the sub-gradient of F at ω ∈ Σ K and in particular the projection given by ( 12), that rewrites in this setting

λ b = arg min λ 1 ... λ b S S λ b+1 ... λ K K a=1 ω a (µ a -λ a ) 2 2 . ( 17 
)
But this projection can also be easily computed using two isotonic regressions under bound restrictions, see for example [START_REF] Hu | Maximum-likelihood estimation under bound restriction and order and uniform bound restrictions[END_REF].

Conclusion

We provided a tight complexity analysis of the dose-ranging problem considered as a thresholding bandit problem with, and without, the assumption that the means of the arms are increasing. We proved that, surprisingly, the complexity terms can be computed almost as easily as in the best-arm identification case, despite the important constraints of our setting. We proposed a lower bound on the expected number of draws for any δ-correct algorithm and adapted the Direct-Tracking algorithm to asymptotically reach this lower bound. We also compared the complexities of the non-monotonic and the increasing cases, both in theory and on an illustrative example. We showed in Section 3.1 how to compute the optimal weights thanks to a sub-gradient ascent in the increasing case, a new and non-trivial task relying on unimodal isotonic regression. In order to complement the theoretical results, we presented some numerical experiments involving different strategies in a regime of high risk. In fact, despite the asymptotic nature of the results presented here, the procedure proposed here appears to be the most efficient in practice even when the number of trials implied is rather low (which is often the case in clinical trials).

In the case where several arms are simultaneously closest to the threshold, the complexity of the problem is infinite. This suggests to extend the results presented here to the PAC setting, where the goal is to find any ε-closest arm with probability at least 1 -δ. This extension, and extensions to the non-Gaussian case, are left for future investigation since they induce significant technical difficulties.

As a possibility of improvement, we can also mention the possible use of the unimodal regression algorithm of Stout (2000) in order to compute directly (11) with a complexity of order O K). We treated here mostly the case of Gaussian distributions with known variance. While the general form of the lower bound may easily be extended to other settings (including Bernoulli observations), the computation of the complexity terms is more involved and requires further investigations (in particular due to heteroscedasticity effects). The asymptotic optimality of Algorithm 1, however, can be extended directly. It remains important but very challenging tasks to make a tight analysis for moderate values of δ, to measure precisely the sub-optimality of Racing and Best Challenger strategies, and to develop a more simple and yet asymptotically optimal algorithm.

2 + ω 0 (µ a * -θ) 2 2 .
Proof [of Proposition 4] We just treat here the case 1 < a * < K, the two other limit cases are very similar. We begin by proving that for all ω ∈ Σ K inf λ∈Alt(µ,S)

K a=1 ω a (µ a -λ a ) 2 2 = min b∈{a * -1,a * +1} inf {λ∈I : a * λ =b} K a=1 ω a (µ a -λ a ) 2 2 . ( 20 
)
Indeed, let λ ∈ I such that a * λ / ∈ {a * -1, a * + 1}. Suppose for example that a * λ < a * -1. Let λ α be the family of bandit problems defined for α ∈ [0, 1] by

λ α = αλ + (1 -α)µ .
For all α ∈ [0, 1], we have λ ∈ I. For ν ∈ I and a ∈ {0, .., K}, let m a (ν) = (ν a +ν a+1 )/2 be the average of two consecutive means with the convention m 0 (ν) = -∞ and m K (ν) = +∞. As in the case of two arms we have that a * ν = a is equivalent to m a (ν) > S and m a (ν) < S. Therefore we have the following inequalities

m a * λ -1 (µ) < m a * λ (µ) m a * -2 (µ) < m a * -1 (µ) < S < m a * (µ) and m a * λ -1 (λ) < S < m a * λ (λ) m a * -2 (λ) < m a * -1 (λ) < m a * (λ) .
Thus, by continuity of the applications α → m a (λ α ) there exits α 0 ∈ (0, 1) such that

m a * λ -1 (λ α 0 ) < m a * λ (λ α 0 ) m a * -2 (λ α 0 ) < S < m a * -1 (λ α 0 ) < m a * (λ α 0 ) , i.e. a * λ α 0 = a * -1. But α → K a=1 ω a (µa-λ α a ) 2 2
is an increasing function, and thus

K a=1 ω a (µ a -λ α 0 a ) 2 2 < K a=1 ω a (µ a -λ a ) 2 2 .
This holds for all λ, therefore inf λ∈Alt(µ,S)

K a=1 ω a (µ a -λ a ) 2 2 min b∈{a * -1,a * +1} inf {λ∈I : a * λ =b} K a=1 ω a (µ a -λ a ) 2 2 .
The reverse inequality follows from the inclusion

b∈{a * -1,a * +1} {λ ∈ I : a * λ = b} ⊂ Alt(µ, I) .
Fix ω ∈ Σ K and let λ ∈ I be such that, say, a * λ = a * +1 (the other case is similar). Then it implies λ a * S and we can suppose, without loss of generality, that

λ a * 2S -µ a * +1 since it holds inf {λ∈I : a * λ =a * +1} K a=1 ω a (µ a -λ a ) 2 2 = inf {λ∈I : a * λ =a * +1, λ a * 2S-µ a * +1 } K a=1 ω a (µ a -λ a ) 2 2 . ( 21 
)
Let λ be such that

λ a =        µ a if a > a * + 1 , 2S -λ a * if a = a * + 1 , λ a * if a = a * , min(λ a * , µ a ) if a a * -1 . By construction we have λ ∈ {λ ∈ I : a * λ = a * + 1}. As λ a * +1 2S -λ a * and µ a * +1 2S -λ a * hold, we get ( λ a * +1 -µ a * +1 ) 2 (λ a * +1 -µ a * +1 ) 2 .
Similarly, for a a * -1 we have thanks to the fact that λ a λ a * the inequality

( λ a * +1 -µ a * +1 ) 2 (λ a * +1 -µ a * +1 ) 2 .
Therefore, combining these two inequalities and using the definition of λ, one obtains

K a=1 ω a (µ a -λ a ) 2 2 K a=1 ω a (µ a -λ a ) 2 2 ,
and we can rewrite the infimum in Equation 21, indexing the alternative λ by θ the mean of arm a, as follows:

inf {λ∈I : a * λ =a * +1} K a=1 ω a (µ a -λ a ) 2 2 = min 2S-µ a * +1 θ S a a * -1 ω a (µ a -min θ, µ a ) 2 2 + ω a * (µ a * -θ) 2 2 + ω a * +1 (µ a * +1 -2S + θ) 2 2 = min 2S-µ a * +1 θ S a<a * -1 ω a (µ a -min θ, µ a ) 2 2 (22) + D + (θ, [ω a * -1 , ω a * , ω a * +1 ]) .
Similarly, if the optimal arm of the alternative is a * -1, we get inf

{λ∈I : a * λ =a * -1} K a=1 ω a (µ a -λ a ) 2 2 = min S θ 2S-µ a * -1 a>a * +1 ω a (µ a -max θ, µ a ) 2 2 (23) + D -(θ, [ω a * -1 , ω a * , ω a * +1 ]) .
Then, by noting that

(µ a -max θ, µ a ) 2 (µ a * +1 -max θ, µ a * +1 ) 2 ∀a a * + 1 (µ a -min θ, µ a ) 2 (µ a * -1 -min θ, µ a * -1 ) 2 ∀a a * -1
and by using the new weights ω defined by

ω a =        b a * -1 w b if a = a * -1 ω a if a = a * b a * +1 w b if a = a * + 1 0 else ,
we obtain thanks to Equation ( 20) and to the fact that ω depends only on ω:

inf λ∈Alt(µ,S) K a=1 ω a (µ a -λ a ) 2 2 min min {2S-µ a * +1 θ S} D + (θ, ω), min {S θ 2S-µ a * -1 } D -(θ, ω) , ( 24 
)
where we identified ω to an element of Σ 3 . Taking the supremum on each side of (24), one obtains:

T * I (µ) -1 sup ω∈Σ 3 min min {2S-µ a * +1 θ S} D + (θ, ω), min {S θ 2S-µ a * -1 } D -(θ, ω) .
In order to prove the reverse inequality and thus (7), we just need to use ( 23), ( 22) and restrict the weight ω to have a support included in {a * -1, a * , a * + 1}.

Proof [of Proposition 5] We recall the definitions of the gaps: ∆

2 -1 = (2S -µ a * -1 -µ a * ) 2 /8, ∆ 2 1 = (2S -µ a * +1 -µ a * ) 2 /8 and ∆ 2 0 = min(∆ 2 -1 , ∆ 2 1 )
. For the lower bound we consider the particular weights ω ∈ Σ 3 defined by

ω i = 1/∆ 2 i 1 k=-1 1/∆ 2 k for -1 i 1 .
Thanks to the Proposition 4, we know that

T * I (µ) -1 min min {2S-µ a * +1 θ S} D + (θ, ω), min {S θ 2S-µ a * -1 } D -(θ, ω) .
Then we can lower bound the two terms that appear in the minimum. Indeed, we have, denoting the mean

θ = ω 0 µ a * + ω 1 (2S -µ a * +1 ), min {2S-µ a * +1 θ S} D + (θ, ω) min {2S-µ a * +1 θ S} ω 0 (µ a * -θ) 2 2 + ω 1 (2S -µ a * +1 ) -θ) 2 2 = ω 0 (µ a * -θ) 2 2 + ω 1 (2S -µ a * +1 ) -θ) 2 2 min(ω 1 , ω 0 )∆ 2 1 1 1 k=-1 1/∆ 2 k ,
where we used the definition of the weights ω for the last inequality and the fact that either

(µ a * -θ) 2 /2 ∆ 2 1 or (2S -µ a * +1 ) -θ) 2 /2
∆ 2 1 since by definition θ belongs to the interval with bounds 2S -µ a * +1 and µ a * for the one before. Similarly one can prove the same inequality with the second term:

min {S θ 2S-µ a * -1 } D -(θ, ω) 1 1 k=-1 1/∆ 2 k ,
therefore we obtain the lower bound

T * I (µ) -1 1 1 k=-1 1/∆ 2 k .
For the upper bound we just need to choose a particular θ in order to bound one of the two terms that appears in the expression of T * I (µ) -1 . Thus, with the choice

θ 1 = (2S -µ a * +1 )/2 + µ a * /2, we get min {2S-µ a * +1 θ S} D + (θ, ω) D + (θ 1 , ω) ( ω -1 + ω 0 + ω 1 ) (2S -µ a * +1 -µ a * ) 2 8 = ∆ 2 1 ,
where we used that µ a * -1 -min(µ a * -1 , θ 1 ) 2 /2 (2S -µ a * +1 -µ a * ) 2 /8 since θ 1 is at the middle between 2S -µ a * +1 and µ a * . In the same way with θ -1 = (2S -µ a * -1 )/2 + µ a * /2 one can obtain min

{2S-µ a * +1 θ S} ∆ 2 -1 .
Combining these two inequalities with Proposition 4 leads to 

T * I (µ) -1 ∆ 2 0 .

A.2 Expression of the

K a=1 ω a (µ a -λ a ) 2 2 = min b =a * ω a * ω b 2(ω a * + ω b ) min (µ a * -µ b ) 2 , (2S -µ a * -µ b ) 2 . Using that Alt(µ, M) = b =a * {λ ∈ M : |λ b -S| < |λ a * -S|} , one has inf λ∈Alt(µ,S) K a=1 ω a (µ a -λ a ) 2 2 = min b =a * inf |λ b -S|<|λ a * -S| K a=1 ω a (µ a -λ a ) 2 2 = min b =a * inf |λ b -S|<|λ a * -S| ω a * (µ a * -λ a * ) 2 2 + ω b (µ b -λ b ) 2 2 .
Since at the infimum it holds

|λ b -S| = |λ a * -S|, denoting x = λ b -S, we have λ a * -S = x or -x. Therefore, one obtains inf |λ b -S|<|λ a * -S| ω a * (µ a * -λ a * ) 2 2 + ω b (µ b -λ b ) 2 2 = min inf x ω * a (µ a * -S -x) 2 2 + ω b (µ b -S -x) 2 2 , inf x ω a * (µ a * -S + x) 2 2 + ω b (µ b -S -x) 2 2 . Noting that inf x ω a * (µ a * -S -x) 2 2 + ω b (µ b -S -x) 2 2 = ω a * ω b 2(ω a * + ω b ) (µ a * -µ b ) 2 , inf x ω a * (µ a * -S -x) 2 2 + ω b (µ b -S + x) 2 2 = ω a * ω b 2(ω a * + ω b ) (2S -µ a * -µ b ) 2 ,
permits to conclude.

Appendix B. Correctness and Asymptotic Optimality of Algorithm 1

Proof [of Proposition 6] We follow and slightly adapt the proof of Theorem 14 of [START_REF] Kaufmann | On the complexity of best-arm identification in multi-armed bandit models[END_REF]. We fix a bandit problem µ ∈ S and the constant

C := e K+1 2 K K 2(3K + 2) 3K 4 log(3) . ( 25 
)
We begin by proving that Algorithm 1 is δ-correctness on S, then we show that it is asymptotically optimal. δ-correctness on S We will prove in the second part of proof that τ is almost surely finite, confer (28). By definition of τ , the probability that the predicted arm is the wrong one is upper-bounded by

P µ ( a τ = a * µ ) P µ ∃t ∈ N * , K a=1 N a (t) ( µ a (t) -µ a ) 2 2 > β(t, δ) , ( 26 
)
where we used that µ ∈ Alt µ(t), S since a τ = a * µ . Using the union bound then Theorem 11 (note that β(t, δ) K + 1 thanks to the choice of C ) we have

P µ ( a τ = a * µ ) +∞ t=1 P µ K a=1 N a (t) ( µ a (t) -µ a ) 2 2 > β(t, δ) +∞ t=1 e K+1 2 K K β(t, δ) log(t)β(t, δ) + 1 K e -β(t,δ) e K+1 2 K K +∞ t=1 2(3K + 2) 3K log(tC/δ) 2 δ tC e K+1 2 K K 2(3K + 2) 3K +∞ t=1 1 t log(3t) 2 δ C e K+1 2 K K 2(3K + 2) 3K 2 log(3) δ C δ ,
where in the third inequality we replaced β(t, δ) by its value and used in the fourth inequality, for C 3, the following upper-bound

+∞ t=1 1 t log(3t) 2 1 log(3) 2 + +∞ t=1 1 t log(3t) 2 dt 2 log(3)
.

Asymptotic Optimality

We begin by remarking that the function µ → ω * (µ) is continuous on the sets S b = {µ ∈ S : a * µ = b} for b ∈ {1, . . . , K}. Indeed it is a consequence of Lemma 3 if S = M and Proposition 4 if S = I and the Maximum theorem from [START_REF] Berge | Topological Spaces: including a treatment of multi-valued functions, vector spaces, and convexity[END_REF]. Let ε be a real in (0, 1). From the continuity of w * in µ, there exists α = α(ε) such that the neighbourhood of µ:

I ε := [µ 1 -α, µ 1 + α] × • • • × [µ K -α, µ K + α] is such that for all µ ∈ I ε , µ ∈ S, a * µ = a * µ and max a |w * a (µ ) -w * a (µ)| ε .
Let T ∈ N * and define the typical event where µ(t) is not too far from µ

E T (ε) = T t=T 1/4 ( µ(t) ∈ I ε ) .
The two following Lemmas are extracted from [START_REF] Kaufmann | On the complexity of best-arm identification in multi-armed bandit models[END_REF].

Lemma 7 There exists two constants B, C (that depend on µ and ε) such that

P µ (E c T ) BT exp(-CT 1/8 ) .
Lemma 8 There exists a constant T ε such that for T T ε , it holds that on E T ,

∀t √ T , max a N a (t) t -w * a (µ) 2(K -1)ε
We now assume that T T ε . Introducing the constant

C * ε (µ) = inf µ :||µ -µ|| α(ε) w :||w -w * (µ)|| 2(K-1)ε inf λ∈Alt µ ,S K a=1 w a (µ a (t) -λ a ) 2 2 ,
thanks to Lemma 8, on the event E T it holds that for every t √ T ,

t inf λ∈Alt µ(t),S K a=1 N a (t) t ( µ a (t) -λ a ) 2 2 tC * ε (µ) . ( 27 
)
Thus, combining ( 27) and the definition of the stopping rule (9), we have on the event

E T max(τ δ , T ) √ T + T t= √ T 1 (τ δ >t) √ T + T t= √ T 1 tC * ε (µ) β(T,δ) √ T + β(T, δ) C * ε (µ) . Introducing T 0 (δ) = inf T ∈ N : √ T + β(T, δ) C * ε (µ) T ,
for every T max(T 0 (δ), T ε ), one has E T ⊆ {τ δ T }, therefore thanks to Lemma 7

P µ (τ δ > T ) P(E c T ) BT exp(-CT 1/8 ) and E µ [τ δ ] T 0 (δ) + T ε + ∞ T =1
BT exp(-CT 1/8 ). ( 28)

We now provide an upper bound on T 0 (δ). Introducing the constant Using technical Lemma 10, for δ small enough to have C * ε (µ)δ / (1 + ε) 2 C e, we get

H(ε) = inf{T ∈ N : T - √ T T /(1 + ε)}
T 0 (δ) C(ε) + δ C max g C * ε (µ)δ (1 + ε) 2 C , exp g ε 3K + 2 C(ε) + max (1 + ε) 2 C * ε (µ) log e(1 + ε) 2 C C * ε (µ)δ log (1 + ε) 2 C C * ε (µ)δ , δ C exp g ε 3K + 2 .
This last upper bound yields, for every ε > 0, lim sup Proof Since log(x) g(ε/B) thanks to Lemma 9 we have B loglog(x) ε log(x). Therefore , still using Lemma 9 with x g A/(1 + ε) , log(x) + B loglog(x) (1 + ε) log(x)

Ax .

C.1.1 A Deviation Bound

We recall here for self-containment the Theorem 2 of [START_REF] Magureanu | Lipschitz bandits: Regret lower bound and optimal algorithms[END_REF].

Theorem 11 For all δ (K + 1) and t ∈ N * we have

P K a=1
N a (t) ( µ a (t) -µ a ) 2 2 δ e K+1 2δ(δ log(t) + 1)

K K e -δ . ( 32 
)
The factor 2 that differs from Theorem 2 of [START_REF] Magureanu | Lipschitz bandits: Regret lower bound and optimal algorithms[END_REF] comes from the fact that we consider deviation at the right and left of the mean. 

C.1.2 Unimodal Regression under Bound Restriction

) 36 
We have, as in the case of isotonic regression (see [START_REF] Hu | Maximum-likelihood estimation under bound restriction and order and uniform bound restrictions[END_REF]), the following simple relation between λ * and λ Lemma 12 It holds that λ * a = min( λ a , S) for all a ∈ {1, . . . , K} . To prove Lemma 12 we need the following properties on λ.

Lemma 13 Let c -k < . . . < c 0 > . . . > c l be real numbers and (A -k , . . . , A 0 , . . . , A k ) be integer intervals forming a partition of {1, . . . , K} be such that λ is constant on the sets A i equals to c i for all -k i l and b ∈ A 0 . Then, for all -k i l and λ ∈ U Fix λ ∈ U and -k i l and suppose, for example, that i < 0. The other cases i = 0 and i > 0 are similar. Introduce, for |ε| < min |c i -c i-1 |, |c i+1 -c i | , the vector λ ε such that

λ ε a = c i -ε if a ∈ A i , λ a else.
By construction λ ε ∈ U and thanks to (39) we have Taking ε positive or negative proves (37). Let x, y ∈ {1, . . . , K} be such that A i = {x, x + 1, . . . , y -1, y} and λ be such that

λ a =    λ a if a ∈ A i , λ x if a < x , λ y if a > y .
By construction λ ∈ U and thanks to (39) we have 

Figure 1 :

 1 Figure 1: The complexity terms in the bandit model µ =(6, 8, 11, 14). Top: inverse of the characteristic time as a function of the threshold S; red solid line: non-monotonic case S = M; blue dotted line: increasing case S = I. Middle: how to move the means to get from the initial bandit model to the optimal alternative in M. Bottom: the optimal weights in function of the threshold S.

Figure 2 :

 2 Figure 2: Inverse of the characteristic times as a function of the threshold S, for µ = [2, 4].Solid red: general thresholding case (S = M). Dotted blue: increasing case (S = I).

  Complexity in the Non-monotonic Case Proof [of Lemma 3] To simplify the notations we note a * µ = a * . Thanks to the definition of the characteristic time, we just have to prove that inf λ∈Alt(µ,M)

  ) + inf T ∈ N : log(T C/δ) + (3K + 2) loglog(T C/δ

For

  µ ∈ M, ω ∈ ΣK (where ΣK stands for the interior of Σ K ) and b ∈ {1, • • • , K}, let U be the set of unimodal vector with maximum localized at bU = {λ : λ 1 • • • λ b λ b+1 • • • λ K } , (33)and U S be the same set with an additional bound restriction on λ bU S = {λ : λ 1 • • • λ b λ b+1 • • • λ K , λ b S} .

  -λ a )ω a λ a 0 . (38)Proof Since λ is the projection of µ on the closed convex U we know that for all λ in U A∈{1,...,K} (µ a -λ a )( λ a -λ a )ω a 0 .(39)

  A∈{1,...,K} (µ a -λ a )( λ a -λ ε a )ω a = ε a∈A i (µ a -λ a )ω a 0 .

  A∈{1,...,K} (µ a -λ a )( λ a -λ a )ω a = a∈A i (µ a -λ a )(c i -λ a )ω a +λ x j<i a∈A j (µ a -λ a )ω a + λ y j>i a∈A j (µ a -λ a )ω a = -a∈A i (µ a -λ a )λ a ω a ,
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Appendix A. Proofs for the Lower Bounds

A.1 Expression of the Complexity in the Increasing Case

Fix µ ∈ I and let a * be the optimal arm a * := a * µ . We recall the definitions of D + (θ, ω) and D -(θ, ω) two functions defined over R × Σ 3 by

Appendix C. Some Technical Lemmas

We regroup in this Appendix some technical lemmas used in the asymptotic analysis of Algorithm 1.

C.1 An Inequality

For 0 < y 1/e let g be the function

Lemma 9 Let A > 0 such that 1/A > e, then for all x g(A)

Proof Since g(A)

1/A, the function x → A -1/x is non-decreasing, we just need to prove (30) for x = g(A). It remains to remark that log g(A)

as log(x) x/e.

Lemma 10 Let A, B > 0, then for all ε ∈ (0, 1) such that (1 + ε)/A < e and B/ε > e, for all x max g A/(1

where we used (37). Equation ( 39) allows us to prove (38).

We now adapt the proof of [START_REF] Hu | Maximum-likelihood estimation under bound restriction and order and uniform bound restrictions[END_REF] to the case of unimodal regression. Proof [of Lemma 12] Since U S is a closed convex we just need to check that for all λ ∈ U S a∈{1,...,K} µ a -min( λ a , S) min( λ a , S) -λ a ω a 0 .

We have, using the same notation of Lemma 13, a∈{1,...,K}

where we used the Lemma 13 for the two first sums and the fact that λ a < S for the last sum.