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Abstract
We analyze the sample complexity of the thresholding bandit problem, with and without the as-
sumption that the mean values of the arms are increasing. In each case, we provide a lower bound
valid for any risk δ and any δ-correct algorithm; in addition, we propose an algorithm whose sam-
ple complexity is of the same order of magnitude for small risks. This work is motivated by phase
1 clinical trials, a practically important setting where the arm means are increasing by nature, and
where no satisfactory solution is available so far.
Keywords: thresholding bandits, multi-armed bandits, best arm identification, unimodal regres-
sion.

1. Introduction

The phase 1 of clinical trials is devoted to the testing of a drug on healthy volunteers for dose-
ranging. The first goal is to determine the maximum tolerable dose (MTD), that is the maximum
amount of the drug that can be given to a person before adverse effects become intolerable or
dangerous. A tolerance level is chosen, and the trials aim at identifying quickly which is the dose
entailing the toxicity coming closest to this level. Classical approaches are based on dose escalation,
and the most well-known is the ”traditional 3+3 Design”: see Le Tourneau and Siu (2009); Genovese
et al. (2013) for and references therein for an introduction.

We propose in this article a complexity analysis for a simple model of phase 1 trials, which
captures the essence of this problem. We assume that the possible doses are x1 < . . . < xK , for
some positive integer K. The patients are treated in sequential order, and identified by their rank.
When the patient number t is assigned a dose xk, we observe a measure of toxicity Xk,t which is
assumed to be an independent random variable. Its distribution νk characterizes the toxicity level
of dose xk. We treat here mostly the case of Gaussian laws with known variance and unknown
mean, but some results can easily be extended to other one-parameter exponential families such as
Bernoulli distributions. The goal of the experiment is to identify as soon as possible the dose xk
which has the toxicity level µk closest to the target admissibility level S, with a controlled risk δ to
make an error.

Content. This setting is an instance of the thresholding bandit problem: we refer to Locatelli et al.
(2016) for an important contribution and a nice introduction. In this work, we focus on identifying
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the exact sample complexity of the problem: we want to understand precisely (with the correct
multiplicative constant) how many samples are necessary to take a decision at risk δ. We prove a
lower bound which holds for all possible algorithms, and we propose an algorithm which matches
this bound asymptotically when the risk δ tends to 0.

But the classical thresholding bandit problem does not catch a key feature of phase 1 clinical
trials: the fact that the toxicity is known in hindsight to be increasing with the assigned dose. In
other words, we investigate how many samples can be spared by algorithms using the fact that
µ1 < µ2 < . . . < µK . Under this assumption, we prove another lower bound on the sample
complexity, and provide an algorithm matching it.

Organization. These lower bounds are presented in Section 2. We compare the complexities of
the non-monotonous case versus the increasing case. This comparison is particularly simple and
enlightening when K = 2, a setting often referred to as A/B testing. We discuss this case in Sec-
tion 2.1, which furnishes a gentle introduction to the general case. We present in Section 3 an
algorithm and show that it is asymptotically optimal when the risk δ goes to 0. The implementation
of this algorithm requires, in the increasing case, an involved optimization which relies on constraint
sub-gradient ascent and unimodal regression: this is detailed in Section 3.1. Section 3.2 shows the
results of some numerical experiments for different strategies with high level of risk that comple-
ment the theoretical results. Section 4 summarizes further possible developments, and preceeds
most of the technical proofs which are given in appendix.

1.1. Notation and Setting

For K > 2, we consider a Gaussian bandit model
(
N (µ1, 1), . . . ,N (µK , 1)

)
, which we unam-

biguously refer to by the vector of means µ =
(
µ1, . . . , µK

)
. Let Pµ and Eµ be respectively the

probability and the expectation under the Gaussian bandit model µ. A threshold S ∈ R ∪ {±∞} is
given, and we denote by a∗µ ∈ argmin16a6K |µa − S| any optimal arm.

LetM be the set of Gaussian bandit models with an unique optimal arm and I = {µ ∈ M :
µ1 < ... < µK} be the subset of models with increasing means.

Definition of a δ-correct algorithm. A risk level δ ∈ (0, 1) is fixed. At each step t ∈ N∗ an
agent chooses an arm At ∈ {1, . . . ,K} and receives an independent reward Yt ∼ N (µAt , 1). Let
Ft = σ(A1, Y1, . . . , At, Yt) be the information available to the player at step t. Her goal is to
identify the optimal arm a∗µ while minimizing the number of draws τ . To this aim, the agent needs:
• a sampling rule (At)t>1, where At is Ft−1-measurable,
• a stopping rule τδ, which is a stopping time with respect to the filtration (Ft)t>1,
• a Fτδ -measurable decision rule âτδ .

For any setting S ∈ {M, I} (the non-monotonous or the increasing case), an algorithm is said to
be δ-correct on S if for all µ ∈ S it holds that Pµ(τδ < +∞) = 1 and Pµ(âτδ 6= a∗µ) 6 δ.

2. Lower Bounds

For S ∈ {M, I}, we define the set of alternative bandit problems of the bandit problem µ ∈M by

Alt(µ,S) := {λ ∈ S : a∗λ 6= a∗µ} , (1)
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and the simplex of dimension K − 1 by ΣK . The first result of this paper is a lower bound on
the sample complexity of the thresholding bandit problem, which we show in the sequel to be tight
when δ is small enough.

Theorem 1 Let S ∈ {M, I} and δ ∈ (0, 1/2]. For all δ-correct algorithm on S and for all bandit
models µ ∈ S,

Eµ[τδ] > T ∗S(µ) kl(δ, 1− δ) , (2)

where the characteristic time T ∗S(µ) is given by

T ∗S(µ)−1 = sup
ω∈ΣK

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
. (3)

In particular, this implies that

lim inf
δ→0

Eµ[τδ]

log(1/δ)
> T ∗S(µ) .

This result is an adaptation of Theorem 1 in Garivier and Kaufmann (Jun. 2016), and can be proved
along the same lines. In fact, our result is a generalization: the classical Best Arm Identification
problem is a particular case of our setting with the choices S = M and S = +∞. As in Garivier
and Kaufmann (Jun. 2016), one can prove that the supremum and the infimum are reached at a
unique value, and in the sequel we denote by ω∗(µ) the optimal weights

ω∗(µ) := argmax
ω∈ΣK

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
. (4)

2.1. The Two-armed Bandit Case

As a warm-up, we treat in the section the case K = 2. Here (only), one can find an explicit formula
for the characteristic times.

Proposition 2 When K = 2,

T ∗I (µ)−1 =
(2S − µ1 − µ2)2

8
and T ∗M(µ)−1 =

min
(
(2S − µ1 − µ2)2, (µ1 − µ2)2

)
8

. (5)

The proof of Proposition 2 is given in Appendix A.1.
Note that for both alternative sets the optimal weights defined in Equation (4) are uniform:

ω∗ = [1/2, 1/2]. If the alternative set is I, the optimal alternative, i.e. the element λ of Alt(µ, I)
(the closure of Alt(µ, I)) which reaches the infimum in (3) for the optimal weights ω∗, is λ =
[S − (µ2 − µ1)/2, S + (µ2 − µ1)/2]. In words, in the optimal alternative the arms are translated in
such a way that the mean of the two mean values is moved to the threshold S. If the alternative set
isM and µ ∈ I, the optimal alternatives can be of two different forms. If the threshold is between
the two mean values, then the optimal alternative is the same as for the increasing case. Otherwise,
the optimal alternative is identical to the one of Best Arm Identification (see Garivier and Kaufmann
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GARIVIER MÉNARD ROSSI

(Jun. 2016)): λ = [(µ1 + µ2)/2, (µ1 + µ2)/2]. Thus, if µ1 6 S 6 µ2, the two characteristic times
coincide, as can be seen in Figure 1 .

1 2 3 4 5
S

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T *

M( ) 1

T *
I ( ) 1

Figure 1: Inverse of the characteristic times as a function of the threshold S, for µ = [2, 4]. Solid
red: general thresholding case (S =M). Dotted blue: increasing case (S = I).

2.2. On the Characteristic Time and the Optimal Proportions

We now illustrate, compare and comment the different complexities for a general bandit model
µ ∈ I with K > 2. Since I ⊂ M, it holds trivially that T ∗I (µ) 6 T ∗M(µ). The difference
T ∗M(µ) − T ∗I (µ) is almost everywhere positive, and can be very large. Both T ∗I (µ) and T ∗M(µ)
tend to +∞ as S tends to middle of two consecutive arms.

In the non-monotonous case S = M, there are two types of optimal alternatives (as in Sec-
tion 2.1). Indeed, the proof of Lemma 5 in Appendix A shows that the best alternative takes one of
the two following forms. Either the optimal arm µ∗a and its challenger µb are moved to a pondered
mean (by the optimal weights ω∗) of the two arms (just like in the Best Arm Identification problem),
leading to a constant (µa∗ − µb)2 in Equation (19). Or, as in the increasing case S = I (see the
proof of Proposition 2), both arms µa∗ and µb are translated in the same direction, leading to the
constant (2S − µa∗ − µb)2. Figure 2 summarizes the different possibilities on a simple example
with K = 4 arms, for different values of the threshold S. According to the value of S, the best
alternative is shown in the second plot from the top.

On the structure of the optimal weights in the increasing case. In the increasing case S = I,
it is particularly remarkable that the optimal weights ω∗(µ) put mass only on the optimal arm and
its two closest arms. This property is shown in the proof of Proposition 4, see Appendix A.2. This
strongly contrasts with the non-monotonous case, as illustrated at the bottom of Figure 2.
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Figure 2: The complexity terms in the bandit model µ = (6, 8, 11, 14). Top: inverse of the char-
acteristic time as a function of the threshold S; red solid line: non-monotonous case S =M; blue
dotted line: increasing case S = I. Middle: how to move the means to get from the initial bandit
model to the optimal alternative inM. Bottom: the optimal weights in function of the threshold S.
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3. An Asymptotically Optimal Algorithm

We present in this section an asymptotically optimal algorithm inspired by the Direct-tracking pro-
cedure of Garivier and Kaufmann (Jun. 2016). At any time t > 1 let h(t) = (

√
t − K/2)+ and

Ut = {a : Na(t) < h(t)} be the set of ”abnormally rarely sampled” arms.

Algorithm 1: Algorithm for the general case (Direct-tracking).

Sampling rule

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
16a6K

t w∗a(µ̂(t))−Na(t) (direct tracking)

Stopping rule

τδ = inf

t ∈ N∗ : µ̂(t) ∈M and inf
λ∈Alt

(
µ̂(t),S

) K∑
a=1

Na(t)
(µ̂a(t)− λa)2

2
> β(t, δ)

 . (6)

Decision rule

âτδ ∈ argmin
16a6K

∣∣µ̂a(τδ)− S∣∣ .
When L := Card{argmin16a6K |µ̂a(t) − S|} > 1, we adopt the convention that T ∗S(µ̂(t)−1 = 0
and

w∗a(µ̂(t)) =

{
1/L if a ∈ argmin16a6K |µ̂a(t)− S| ,
0 otherwise.

Theorem 3 (Asymptotic optimality) For S ∈ {I,M}, for the constantC defined in Equation (20)
of Appendix B and for β(t, δ) = log(tC/δ) + (3K + 2) loglog(tC/δ), Algorithm 1 is δ-correct on
S and asymptotically optimal, i.e.

lim sup
δ→0

Eµ[τδ]

log(1/δ)
6 T ∗S(µ) . (7)

The analysis of Algorithm 1 is the same in both the increasing case S = I and the non-monotonous
case S =M. However, the practical implementations are quite specific to each case, and we detail
them in the next section.

3.1. On the Implementation of Algorithm 1

The implementation of Algorithm 1 requires to compute efficiently the optimal weightsw∗(µ) given
by Equation (4). For the non-monotonous case S = M, one can follow the lines of Garivier and
Kaufmann (Jun. 2016), Section 2.2 and replace their Lemma 3 by Lemma 5 below.
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In the increasing case S = I, however, implementing the algorithm is more involved. Let
Ib := {λ ∈ I, a∗λ = b}. Noting that the function

F : w 7→ inf
λ∈Alt(µ,I)

K∑
a=1

ωa
(µa − λa)2

2
= min

b 6=a∗µ
inf
λ∈Ib

K∑
a=1

ωa
(µa − λa)2

2
(8)

is concave (since it is the infimum of linear functions), one may access to its maximum by a sub-
gradient ascent on the simplex ΣK (see e.g. Boyd et al. (2003)). Let Ib denote the closure of Ib,
and let

λb := argmin
λ∈Ib

K∑
a=1

ωa
(µa − λa)2

2
(9)

be the argument of the second infimum in Equation (8). The sub-gradient of F at ω is

∂F (ω) = Conv
b∈BOpt

[
(µa − λba)2

2

]
a∈{1,··· ,K}

,

where Conv denotes the convex hull operator and where BOpt is the set of points that reach the
minimum in (8). Thus, performing the sub-gradient ascent simply requires to solve efficiently
the minimization program (9). It appears that this problem boils down to unimodal regression
(a problem closely related to isotonic regression, see R. E. Barlow (1973) and T. Robertson (1988)).
Indeed, we can write

{λ ∈ I : a∗λ = b} = {λ ∈M :

λ1 < . . . < λb−1 < min(λb, 2S − λb) 6 max(λb, 2S − λb) < λb+1 < . . . < λK} .

Assume that µb 6 S (the other case is similar). Then λbb < S, since λb and 2S−λb play a symmetric
role in the constraints. Thus, in this case, one may only consider the set

{λ ∈M :λ1 < . . . < λb−1 < λb,

2S − λK < . . . < 2S − λb+1 < λb,

λb 6 S} .

Let λ′ be the new variables such that

λ′a =

{
λa if 1 6 a 6 b ,
2S − λa else .

(10)

Then λb′ is the solution of

λb′ = argmin
λ′16...6λ

′
b

λ′K6...6λ′b
λ′b6S

K∑
a=1

ωa
(µ′a − λ′a)2

2
. (11)

Thanks to Lemma 11 in Appendix C, it is simply related to

λ̂b := argmin
λ′16...6λ

′
b

λ′K6...6λ′b

K∑
a=1

ωa
(µ′a − λ′a)2

2
,

7
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BC-M R-M DT-M T ∗M(µ) log 1
δ BC-I R-I DT-I T ∗I (µ) log 1

δ

µ1, S1 3913 3609 4119 2033 483 494 611 247
µ2, S2 3064 3164 3098 1861 2959 2906 3072 1842

Table 1: Monte-Carlo estimation (with 10000 repetitions) of the expected number of draws E[τδ]
for Algorithm 1 and Best Challenger Algorithm in the increasing and non-monotonous cases. Two
thresholding bandit problems are considered: µ1 = [0.5, 1.1, 1.2, 1.3, 1.4, 5] with S1 = 1, and
µ2 = [1, 2, 2.5] with S2 = 1.55. The target risk is δ = 0.1 (it is approximately reached in the first
scenario, while in the second the frequency of errors is of order 1%).

the unimodal regression of µ′ with weights ω and with a mode located at b. And it is efficiently
computed via isotonic regressions (e.g. Frisén (1986), Geng and Shi (1990), Mureika et al. (1992))
with a computational complexity proportional to the number of arms K. From λ̂b, one can go back
to λb by reversing Equation (10). Since we need to compute λb for each b 6= a∗, the overall cost of
an evaluation of the sub-gradient is proportional to K2.

3.2. Numerical Experiments

Table 1 presents the results of a numerical experiment of an increasing thresholding bandit. In
addition to Algorithm 1 (DT), we tried the Best Challenger (BC) algorithm with the finely tuned
stopping rule given by (6). We also tried the Racing algorithm (R), with the elimination criterion
of (6). For a description of all those algorithms, see Garivier and Kaufmann (Jun. 2016) and
references therein. It appears that the exploration function β prescribed in Theorem 3 is overly
pessimistic. On the basis of our experiments, we recommend the use of β(t, δ) = log

((
log(t) +

1
)
/δ
)

instead. It does, experimentally, satisfy the δ-correctness property. For each algorithm, the
final letter in Table 1 indicates whether the algorithm is aware (I) or not (M) that the means are
increasing.

We consider two frameworks: in the first one, knowing that the means are increasing provides
much information and gives a substantial edge: it permits to spare a large portion of the trials for the
same level of risk. In the second, the complexities of the non-monotonous setting is very close to
that of the increasing setting. We chose a value of the risk δ which is relatively high (10%), in order
to illustrate that in this regime, the most important feature for efficiency is a finely tuned stopping
rule. This shows that, even without an optimal sampling strategy, the stopping rule of (6) is a key
feature of an efficient procedure. When the risk goes down to 0, however, optimality really requires
a sampling rule which respects the proportions of Equation (4), as shown by Theorem 3.

4. Conclusion

We provided a tight complexity analysis of the dose-ranging problem considered as a thresholding
bandit problem with, and without, the assumption that the means of the arms are increasing. We
proposed a lower bound on the expected number of draws for any δ-correct algorithm and adapted
the Direct-Tracking algorithm to asymptotically reach this lower bound. We also compared the
complexities of the non-monotonous and the increasing cases, both in theory and on an illustrative
example. We showed in Section 3.1 how to compute the optimal weights thanks to a sub-gradient
ascent in the increasing case, a new and non-trivial task relying on unimodal isotonic regression.
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In order to complement the theoretical results, we presented some numerical experiments involving
different strategies in a regime of high risk.

As a possibility of improvement, we mention the possible use of the unimodal regression al-
gorithm of Stout (2000) in order to compute directly (8) with a complexity of order O

(
K). We

treated here mostly the case of Gaussian distributions with known variance. While the general form
of the lower bound may easily be extended to other settings (including Bernoulli observations), the
computation of the complexity terms is more involved and requires further investigations (in partic-
ular due to heteroscedasticity effects). The asymptotic optimality of Algorithm 1, however, can be
extended directly. It remains important but very challenging tasks to make a tight analysis for mod-
erate values of δ, to measure precisely the sub-optimality of Racing and Best Challenger strategies,
and to develop a more simple and yet asymptotically optimal algorithm.
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Appendix A. Proofs for the Lower Bounds

A.1. Proof of Proposition 2: Expression of the Complexities in the Two-armed Case

We treat here only the first equality: the expression of the characteristic time T ∗M(µ), if the alter-
native set isM, is a consequence of Lemma 5. Let µ ∈ I and suppose, without loss of generality,
that arm 2 is optimal. Let m = (µ1 + µ2)/2 be the mean of two arms and ∆ = µ2 − µ1 be the gap.
Noting that

{arm 1 is optimal} ⇔ m > S and {arm 2 optimal} ⇔ m < S ,

we obtain

T ∗I (µ)−1 = sup
ω∈[0,1]

inf{
µ′1<µ

′
2, |S−µ′1|<|S−µ′2|

} ω2 (µ1 − µ′1)2 +
1− ω

2
(µ2 − µ′2)2

= sup
ω∈[0,1]

inf
{∆′>0,m′>S}

ω

2

(
m−m′ − (∆−∆′)/2

)2
+

1− ω
2

(
m−m′ + (∆−∆′)/2

)2
︸ ︷︷ ︸

:=A(ω)

,

where m′ = (µ1 + µ2)/2 and ∆′ = µ′2 − µ′1. Writing χ = S −m, easy computations lead to

A(ω) =

{
2ω(1− ω)χ2 if ∆ + 2(2ω − 1)χ > 0 ,(
χ2 + (∆/2)2 + (2ω − 1)χ∆

)
/2 else.

Thus, since the maximum of A is attained at ω = 1/2, we just proved that T ∗I (µ)−1 = χ2/2.

9
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A.2. Expression of the complexity in the increasing case

Fix µ ∈ I and let a∗ be the optimal arm a∗ := a∗µ. Let D+(θ, ω̃) and D−(θ, ω̃) be two functions
defined over R× Σ3 by

D+(θ, ω̃) = ω̃−1

(
µa∗−1 −min(µa∗−1, θ)

)2
2

+ ω̃0
(µa∗ − θ)2

2
+ ω̃1

(
µa∗+1 − (2S − θ)

)2
2

(12)

D−(θ, ω̃) = ω̃−1

(
µa∗−1 − (2S − θ)

)2
2

+ ω̃0
(µa∗ − θ)2

2
+ ω̃1

(
µa∗+1 −max(µa∗+1, θ)

)2
2

(13)

with the convention D−(·, ω̃) = +∞ if a∗ = 1 and D+(·, ω̃) = +∞ if a∗ = K.

Proposition 4 For all µ ∈ I

T ∗I (µ)−1 = sup
ω̃∈Σ3

min

(
min

{2S−µa∗+16θ6S}
D+(θ, ω̃), min

{S6θ62S−µa∗−1}
D−(θ, ω̃)

)
. (14)

Proof We begin by proving that for all ω ∈ ΣK

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
= min

b∈{a∗−1,a∗+1}
inf

{λ∈I : a∗λ=b}

K∑
a=1

ωa
(µa − λa)2

2
. (15)

Indeed, let λ ∈ I such that a∗λ /∈ {a∗ − 1, a∗ + 1}. Suppose for example that a∗λ < a∗ − 1. Let λα

be the family of bandit problems defined for α ∈ [0, 1] by

λα = αλ + (1− α)µ .

For all α ∈ [0, 1], we have λ ∈ I. For ν ∈ I and a ∈ {0, ..,K}, let ma(ν) = (νa + νa+1)/2 be the
average of two consecutive means with the convention m0(ν) = −∞ and mK(ν) = +∞. As in
the case of two arms we have that a∗ν = a is equivalent to ma(ν) > S and ma(ν) < S. Therefore
we have the following inequalities

ma∗λ−1(µ) < ma∗λ
(µ) 6 ma∗−2(µ) < ma∗−1(µ) < S < ma∗(µ) and

ma∗λ−1(λ) < S < ma∗λ
(λ) 6 ma∗−2(λ) < ma∗−1(λ) < ma∗(λ) .

Thus, by continuity of the applications α 7→ ma(λ
α) there exits α0 ∈ (0, 1) such that

ma∗λ−1(λα0) < ma∗λ
(λα0) 6 ma∗−2(λα0) < S < ma∗−1(λα0) < ma∗(λ

α0) ,

i.e. a∗λα0 = a∗ − 1. But α 7→
∑K

a=1 ωa
(µa−λαa )2

2 is an increasing function, and thus

K∑
a=1

ωa
(µa − λα0

a )2

2
<

K∑
a=1

ωa
(µa − λa)2

2
.

This holds for all λ, therefore

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
> min

b∈{a∗−1,a∗+1}
inf

{λ∈I : a∗λ=b}

K∑
a=1

ωa
(µa − λa)2

2
.

10
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The reverse inequality follows simply from the inclusion⋃
b∈{a∗−1,a∗+1}

{λ ∈ I : a∗λ = b} ⊂ Alt(µ, I) .

Fix ω ∈ ΣK and let λ ∈ I be such that, say, a∗λ = a∗ + 1 (the other case is similar). Then
λa∗ 6 S and we can suppose, without loss of generality, that λa∗ > 2S − µa∗+1 since it holds

inf
{λ∈I : a∗λ=a∗+1}

K∑
a=1

ωa
(µa − λa)2

2
= inf
{λ∈I : a∗λ=a∗+1,λa∗>2S−µa∗+1}

K∑
a=1

ωa
(µa − λa)2

2
.

Let λ̃ be such that

λ̃a =


µa if a > a∗ + 1 ,
2S − λa∗ if a = a∗ + 1 ,
λa∗ if a = a∗ ,
min(λa∗ , µa) if a 6 a∗ − 1 .

By construction we have λ̃ ∈ {λ ∈ I : a∗λ = a∗ + 1}. As λa∗+1 6 2S−λa∗ and µa∗+1 > 2S−λa∗ ,
we have

(λ̃a∗+1 − µa∗+1)2 6 (λa∗+1 − µa∗+1)2 .

Similarly, for a 6 a∗ − 1 we have thanks to the fact that λa 6 λa∗ the inequality

(λ̃a∗+1 − µa∗+1)2 6 (λa∗+1 − µa∗+1)2 .

Therefore
K∑
a=1

ωa
(µa − λa)2

2
>

K∑
a=1

ωa
(µa − λ̃a)2

2
,

and we can rewrite the infimum as follows:

inf
{λ∈I : a∗λ=a∗+1}

K∑
a=1

ωa
(µa − λa)2

2
= min

2S−µa∗+16θ6S

∑
a6a∗−1

ωa
(µa −min

(
θ, µa)

)2
2

+ ωa∗
(µa∗ − θ)2

2
+ ωa∗+1

(µa∗+1 − 2S + θ)2

2

= min
2S−µa∗+16θ6S

∑
a<a∗−1

ωa
(µa −min

(
θ, µa)

)2
2

(16)

+D+(θ, [ωa∗−1, ωa∗ , ωa∗+1]) .

Similarly

inf
{λ∈I : a∗λ=a∗−1}

K∑
a=1

ωa
(µa − λa)2

2
= min

S6θ62S−µa∗−1

∑
a>a∗+1

ωa
(µa −max

(
θ, µa)

)2
2

(17)

+D−(θ, [ωa∗−1, ωa∗ , ωa∗+1]) .

11
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Then, by noting that

(µa −max
(
θ, µa)

)2
6 (µa∗+1 −max

(
θ, µa∗+1)

)2 ∀a 6 a∗ + 1

(µa −min
(
θ, µa)

)2
6 (µa∗−1 −min

(
θ, µa∗−1)

)2 ∀a 6 a∗ − 1

and by using the new weights ω̃ defined by

ω̃a =


∑

b6a∗−1wb if a = a∗ − 1

ωa if a = a∗∑
b>a∗+1wb if a = a∗ + 1

0 else ,

we obtain thanks to Equation (15) and to the fact that ω̃ depends only on ω:

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
6 min

(
min

{2S−µa∗+16θ6S}
D+(θ, ω̃), min

{S6θ62S−µa∗−1}
D−(θ, ω̃)

)
,

(18)

where we identified ω̃ to an element of Σ3. Taking the supremum on each side of (18), one obtains:

T ∗I (µ)−1 6 sup
ω̃∈Σ3

min

(
min

{2S−µa∗+16θ6S}
D+(θ, ω̃), min

{S6θ62S−µa∗−1}
D−(θ, ω̃)

)
.

In order to prove the reverse inequality and thus (14), we just need to use (17), (16) and restrict the
weight ω to have a support included in {a∗ − 1, a∗, a∗ + 1}.

A.3. Expression of the Complexity in the Non-monotonous Case

Lemma 5 For all µ ∈M with the notation a∗µ = a∗, all ω ∈ ΣK

inf
λ∈Alt(µ,M)

K∑
a=1

ωa
(µa − λa)2

2
= min

b6=a∗
ωa∗ωb

2(ωa∗ + ωb)
min

(
(µa∗ − µb)2, (2S − µa∗ − µb)2

)
. (19)

Proof Using that

Alt(µ,M) =
⋃
b 6=a∗
{λ ∈M : |λb − S| < |λa∗ − S|} ,

one has

inf
λ∈Alt(µ,S)

K∑
a=1

ωa
(µa − λa)2

2
= min

b 6=a∗
inf

|λb−S|<|λa∗−S|

K∑
a=1

ωa
(µa − λa)2

2

= min
b 6=a∗

inf
|λb−S|<|λa∗−S|

ωa∗
(µa∗ − λa∗)2

2
+ ωb

(µb − λb)2

2
.

12
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Since at the infimum |λb − S| = |λa∗ − S|, denoting x = λb − S, we have λa∗ − S = x or − x.
Therefore, one obtains

inf
|λb−S|<|λa∗−S|

ωa∗
(µa∗ − λa∗)2

2
+ ωb

(µb − λb)2

2
= min

(
inf
x
ω∗a

(µa∗ − S − x)2

2
+ ωb

(µb − S − x)2

2
,

inf
x
ωa∗

(µa∗ − S + x)2

2
+ ωb

(µb − S − x)2

2

)
.

Noting that

inf
x
ωa∗

(µa∗ − S − x)2

2
+ ωb

(µb − S − x)2

2
=

ωa∗ωb
2(ωa∗ + ωb)

(µa∗ − µb)2

inf
x
ωa∗

(µa∗ − S − x)2

2
+ ωb

(µb − S + x)2

2
=

ωa∗ωb
2(ωa∗ + ωb)

(2S − µa∗ − µb)2

permits to conclude.

Appendix B. Correctness and Asymptotic Optimality of Algorithm 1

Proof (of Proposition 3) We follow and slightly adapt the proof of Theorem 14 of Garivier and
Kaufmann (Jun. 2016). We fix a bandit problem µ ∈ S and the constant

C := eK+1

(
2

K

)K (
2(3K + 2)

)3K 4

log(3)
. (20)

δ-correctness on S
We will prove in the second part of proof that τ is almost surely finite, confer (23). Thus by
definition of τ , we have

P(âτ 6= a∗µ) 6 P

(
∃t ∈ N∗,

K∑
a=1

Na(t)
(µ̂a(t)− µa)2

2
> β(t, δ)

)
, (21)

13
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where we used that µ ∈ Alt
(
µ̂(t),S

)
since âτ 6= a∗µ . Using the union bound then Theorem 10

(note that β(t, δ) > K + 1 thanks to the choice of C ) we have

P(âτ 6= a∗µ) 6
+∞∑
t=1

P

(
K∑
a=1

Na(t)
(µ̂a(t)− µa)2

2
> β(t, δ)

)

6
+∞∑
t=1

eK+1

(
2

K

)K (
β(t, δ)

(
ln(t)β(t, δ) + 1

))K
e−(t,δ)

6 eK+1

(
2

K

)K +∞∑
t=1

(
2(3K + 2)

)3K
log(tC/δ)2

δ

tC

6 eK+1

(
2

K

)K (
2(3K + 2)

)3K +∞∑
t=1

1

t log(3t)2

δ

C

6 eK+1

(
2

K

)K (
2(3K + 2)

)3K 2

log(3)

δ

C
6 δ ,

where in the third inequality we replaced β(t, δ) by its value and used in the fourth inequality
(C > 3)

+∞∑
t=1

1

t log(t)2
6

1

log(3)2
+

∫ +∞

t=1

1

t log(3t)2
dt 6

2

log(3)
.

Asymptotic Optimality
Let ε ∈ (0, 1). From the continuity of w∗ in µ, there exists α = α(ε) such that

Iε := [µ1 − α, µ1 + α]× · · · × [µK − α, µK + α]

is such that for all µ′ ∈ Iε,

µ′ ∈ S a∗µ = a∗µ′ max
a
|w∗a(µ′)− w∗a(µ)| 6 ε .

Let T ∈ N∗ and define the event

ET (ε) =
T⋂

t=T 1/4

(µ̂(t) ∈ Iε) .

The two following Lemmas are extracted from Garivier and Kaufmann (Jun. 2016).

Lemma 6 There exists two constants B,C (that depend on µ and ε) such that

Pµ(EcT ) 6 BT exp(−CT 1/8) .

Lemma 7 There exists a constant Tε such that for T > Tε, it holds that on ET ,

∀t >
√
T , max

a

∣∣∣∣Na(t)

t
− w∗a(µ)

∣∣∣∣ 6 2(K − 1)ε

14
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Using Lemma 7, for T > Tε, introducing

C∗ε (µ) = inf
µ′:||µ′−µ||6α(ε)

w′:||w′−w∗(µ)||62(K−1)ε

inf
λ∈Alt

(
µ′,S
) K∑
a=1

wa
(µ′a(t)− λa)2

2
,

on the event ET it holds that for every t >
√
T ,

t inf
λ∈Alt

(
µ̂(t),S

) K∑
a=1

Na(t)

t

(µ̂a(t)− λa)2

2
> tC∗ε (µ) . (22)

Let T > Tε, thanks to (22), on ET , we have

max(τδ, T ) 6
√
T +

T∑
t=
√
T

I(τδ>t)

6
√
T +

T∑
t=
√
T

I(tC∗ε (µ)6β(T,δ)) 6
√
T +

β(T, δ)

C∗ε (µ)
.

Introducing

T0(δ) = inf

{
T ∈ N :

√
T +

β(T, δ)

C∗ε (µ)
6 T

}
,

for every T > max(T0(δ), Tε), one has ET ⊆ (τδ 6 T ), therefore

Pµ (τδ > T ) 6 P(EcT ) 6 BT exp(−CT 1/8)

and

Eµ[τδ] 6 T0(δ) + Tε +
∞∑
T=1

BT exp(−CT 1/8). (23)

We now provide an upper bound on T0(δ). Introducing the constant

H(ε) = inf{T ∈ N : T −
√
T > T/(1 + ε)}

one has

T0(δ) 6 H(ε) + inf

{
T ∈ N : β(T, δ) 6

C∗ε (µ)T

1 + ε

}
6 H(ε) + inf

{
T ∈ N : log(TC/δ) + (3K + 2) loglog(TC/δ) 6

C∗ε (µ)T

1 + ε

}
.

Using technical Lemma 9, for δ small enough to have
(
C∗ε (µ)δ

)
/
(
(1 + ε)2C

)
6 e, one obtains

T0(δ) 6 C(ε) +
δ

C
max

(
g

(
C∗ε (µ)δ

(1 + ε)2C

)
, exp

(
g

(
ε

3K + 2

)))
6 C(ε) + max

(
(1 + ε)2

C∗ε (µ)
log

(
e(1 + ε)2C

C∗ε (µ)δ
log

(
(1 + ε)2C

C∗ε (µ)δ

))
,
δ

C
exp

(
g

(
ε

3K + 2

)))
.

15
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This last upper bound yields, for every ε > 0,

lim sup
δ→0

Eµ[τδ]

log(1/δ)
6

(1 + ε)2

C∗ε (µ)
.

Letting ε tend to zero and by definition of w∗,

lim
ε→0

C∗ε (µ) = T ∗S(µ)−1 ,

yields

lim sup
δ→0

Eµ[τδ]

log(1/δ)
6 T ∗S(µ) .

Appendix C. Some Technical Lemmas

C.1. A Useful Inequality

For 0 < y 6 1/e let g be the function

g(y) =
1

y
ln

(
e

y
ln

(
1

y

))
. (24)

Lemma 8 Let A > 0 such that 1/A > e, then for all x > g(A)

log(x) 6 Ax . (25)

Proof Since g(A) > 1/A, the function x 7→ A− 1/x is non-decreasing, we just need to prove (25)
for x = g(A). It remains to remark that

log
(
g(A)

)
6 log

(
2

A
log

(
1

A

))
6 log

(
e

A
log

(
1

A

))
= Ag(A) ,

as log(x) 6 x/e.

Lemma 9 Let A, B > 0, then for all ε ∈ (0, 1) such that (1 + ε)/A < e and B/ε > e, for all
x > max

(
g
(
A/(1 + ε)

)
, exp

(
g(ε/B)

))
log(x) +B loglog(x) 6 Ax . (26)

16
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Proof Since log(x) > g(ε/B) thanks to Lemma 8 we have B loglog(x) 6 ε log(x). Therefore ,
still using Lemma 8 with x > g

(
A/(1 + ε)

)
,

log(x) +B loglog(x) 6 (1 + ε) log(x)

6 Ax .

C.2. A Deviation Bound

We recall here for self-containment the Theorem 2 of Magureanu et al. (2014).

Theorem 10 For all δ > (K + 1) and t ∈ N∗ we have

P

(
K∑
a=1

Na(t)
(µ̂a(t)− µa)2

2
> δ

)
6 eK+1

(
2δ(δ log(t) + 1)

K

)K
e−δ . (27)

The factor 2 that differs from Theorem 2 of Magureanu et al. (2014) comes from the fact that we
consider deviation at the right and left of the mean.

C.3. Unimodal Regression under Bound Restriction

For µ ∈ M, ω ∈ Σ̊K (where Σ̊K stands for the interior of ΣK) and b ∈ {1, · · · ,K}, let U be the
set of unimodal vector with maximum localized at b

U = {λ : λ1 6 · · · 6 λb > λb+1 > · · ·λK} , (28)

and US be the same set with an additional bound restriction on λb

US = {λ : λ1 6 · · · 6 λb > λb+1 > · · ·λK , λb 6 S} . (29)

Let λ̂ be the unimodal regression of µ

λ̂ := argmin
λ∈U

K∑
a=1

ωa
(µa − λa)2

2
, (30)

and λ∗ be the projection of µ on US

λ∗ := argmin
λ∈US

K∑
a=1

ωa
(µa − λa)2

2
. (31)

We have, as in the case of isotonic regression (see Hu (1997)), the following simple relation between
λ∗ and λ̂

Lemma 11 It holds that

λ∗a = min(λ̂a, S) for all a ∈ {1, . . . ,K} .

17
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To prove Lemma 11 we need the following properties on λ̂.

Lemma 12 Let c−k < . . . < c0 > . . . > cl be real numbers and (A−k, . . . , A0, . . . , Ak) be integer
intervals forming a partition of {1, . . . ,K} be such that λ̂ is constant on the sets Ai equals to ci for
all −k 6 i 6 l and b ∈ A0. Then, for all −k 6 i 6 l and λ ∈ U∑

a∈Ai

(µa − λ̂a)ωa = 0 (32)

∑
a∈Ai

(µa − λ̂a)ωaλa 6 0 . (33)

Proof Since λ̂ is the projection of µ on the closed convex U we know that for all λ in U∑
A∈{1,...,K}

(µa − λ̂a)(λ̂a − λa)ωa > 0 . (34)

Fix λ ∈ U and −k 6 i 6 l and suppose, for example, that i < 0. The other cases i = 0 and i > 0
are similar. Introduce, for |ε| < min

(
|ci − ci−1|, |ci+1 − ci|

)
, the vector λε such that

λεa =

{
ci − ε if a ∈ Ai ,
λ̂a else.

By construction λε ∈ U and thanks to (34) we have∑
A∈{1,...,K}

(µa − λ̂a)(λ̂a − λεa)ωa = ε
∑
a∈Ai

(µa − λ̂a)ωa > 0 .

Taking ε positive or negative proves (32). Let x, y ∈ {1, . . . ,K} be such that Ai = {x, x +
1, . . . , y − 1, y} and λ′ be such that

λ′a =


λa if a ∈ Ai ,
λx if a < x ,
λy if a > y .

By construction λ′ ∈ U and thanks to (34) we have∑
A∈{1,...,K}

(µa − λ̂a)(λ̂a − λa)ωa =
∑
a∈Ai

(µa − λ̂a)(ci − λ′a)ωa

+λx
∑
j<i

∑
a∈Aj

(µa − λ̂a)ωa + λy
∑
j>i

∑
a∈Aj

(µa − λ̂a)ωa

= −
∑
a∈Ai

(µa − λ̂a)λ′aωa ,

where we used (32). Equation (34) allows us to prove (33).

We now adapt the proof of Hu (1997) to the case of unimodal regression.

18
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Proof [of Lemma 11]
Since US is a closed convex we just need to check that for all λ ∈ US∑

a∈{1,...,K}

(
µa −min(λ̂a, S)

)(
min(λ̂a, S)− λa

)
ωa > 0 .

We have, using the same notation of Lemma 12,∑
a∈{1,...,K}

(
µa −min(λ̂a, S)

)(
min(λ̂a, S)− λa

)
ωa =

∑
i:ci6S

∑
a∈Ai

(µa − λ̂a)(λ̂a − λa)ωa

+
∑
i:ci>S

∑
a∈Ai

(µa − S)(S − λa)ωa

=
∑
i:ci6S

∑
a∈Ai

(µa − λ̂a)(λ̂a − λa)ωa

+
∑
i:ci>S

∑
a∈Ai

(µa − λ̂a)(S − λa)ωa +
∑
i:ci>S

∑
a∈Ai

(ci − S)(λa − S)ωa > 0 ,

where we used the Lemma 12 for the two first sums and the fact that λa < S for the last sum.
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