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Abstract

In order to give a formal treatment of differential equations in positive characteristic
p, it is necessary to use divided powers. One runs into an analog problem in the theory
of q-difference equations when q is a pth root of unity. We introduce here a notion
of twisted divided powers (relative to q) and show that one can recover the twisted
Weyl algebra and obtain a twisted p-curvature map that describes the center of the
twisted Weyl algebra. We also build a divided p-Frobenius that will give, by duality,
a formal Azumaya splitting of the twisted Weyl algebra as well as a twisted Simpson
correspondence.
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Introduction

Motivation

The classical Simpson correspondence establishes an equivalence between certain local
systems and certain Higgs bundles (see [Sim92]). It is purely topological in nature. There
exists also a Simpson correspondence in positive characteristic (see [OV07]) that we recall
now (local form):

Theorem 0.1 (Ogus-Vologodsky). Let S be scheme of positive characteristic p and X a
smooth scheme over S. Then, if the relative Frobenius F : X Ñ X 1 lifts modulo p2, it
induces an equivalence between modules with a quasi-nilpotent integrable connection on X

and quasi-nilpotent Higgs bundles on X 1.

In [GLQ10], we generalized this theorem to higher level with a strategy of proof that was

different from the original one. We want to recall it here. Let us denote by D
p0q
X the

ring of differential operators of level zero (Berthelot’s sheaf of differential operators) of
X{S and by TX1 the tangent sheaf on X 1{S. Then, an OX -module with a quasi-nilpotent

integrable connection is the same thing as a pDp0q
X -module, and a quasi-nilpotent Higgs

bundle on X 1 is the same thing a zS‚T X1-module (where S‚ denotes the symmetric algebra
and completion is always meant with respect to the augmentation ideal). Moreover, there

exists an injective p-curvature map S‚TX1 ãÑ D
p0q
X whose image is exactly the center Z

p0q
X

of D
p0q
X ; and the image of the linearized p-curvature map OX bOX1 S‚TX1 ãÑ D

p0q
X is the

centralizer ZO
p0q
X of OX . Using a lifting of Frobenius, one can build an isomorphism

pDp0q
X » End pZp0q

X

p{ZOX

p0q
q

from which Simpson correspondence may be deduced through Morita equivalence. Actu-

ally, if P
p0q
X denotes the ring of principal parts of level zero of X{S and Ω1

X1 is the sheaf of
differential forms on X 1{S, then this isomorphism comes by duality from an isomorphism

OXˆX1 X bOX1 Γ‚Ω1
X1 » P

p0q
X (1)

(where Γ‚ denotes the divided power algebra).

The key of the construction consists in using a lifting F̃ of F modulo p2 in order to define
the divided Frobenius map,

rF ˚s :“
1

p
rF : Ω1

X1 Ñ P
p0q
X ,

that can be extended in order to obtain the isomorphism (1). Let us also recall how the
p-curvature map may be obtained by duality. If IX (resp. IX1) denotes the ideal of the
diagonal of X{S (resp. X 1{S), then one can use the divided power map

ϕ ÞÑ ϕrps, IX1 Ñ P
p0q
X

in order to define a morphism Ω1
X1 “ IX1{I2

X1 Ñ P
p0q
X {IXP

p0q
X . In fact, we obtain an

isomorphism

OX bOX1 Γ‚Ω1
X1 » P

p0q
X {IXP

p0q
X (2)
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and the linearized p-curvature is dual to the following composition

P
p0q
X ։ P

p0q
X {IXP

p0q
X » OX bOX1 Γ‚Ω1

X1 .

Let us give an explicit description of these constructions. Locally, we may assume that
S “ SpecpRq and X “ SpecpAq are affine and that we are given a system of étale
coordinates on X. Actually, we will concentrate on the one dimensional case and call x the
coordinate. The pull back A1 of A along the Frobenius of R comes with an étale coordinate
x1. We denote by F ˚ : A1 Ñ A the relative Frobenius of A so that F ˚px1q “ xp. We let
ξ “ 1bx´xb1 P AbR A and denote by ω P Ω1

A1 the class of ξ1 “ 1bx1 ´x1 b1 P A1 bR A1.
If we write Axξy and Axωy for the divided power polynomial rings, then the isomorphism
(2) is the A-linear map

Axωy » Axξy{ξ, ωrks ÞÑ ξrpks. (3)

We can also describe the divided Frobenius map when we are given a lifting rF ˚ of
F ˚ modulo p2. To make it simpler, we assume that rF ˚prx1q “ rxp. Then, from
rF ˚prξ1q “ 1 b rxp ´ rxp b 1 one easily derive

rF ˚spωq “
pÿ

i“1

pp ´ 1q ¨ ¨ ¨ pp ´ i ` 1qxp´iξris (4)

and the isomorphism (1) is given by

pArξs{ξpqxωy » Axξy, ωrks ÞÑ prF ˚spωqqrks.

We will mimic this strategy in the twisted case and prove in the end the following theorem
(the vocabulary will be specified later on):

Theorem 0.2. Let R be a commutative ring and q P R such that R is q-divisible of
q-characteristic p ą 0. Let pA, σq be a twisted R-algebra with twisted coordinate x such
that σpxq “ qx. If F ˚ is a p-Frobenius on A which is adapted to σ, then it induces
an equivalence between A-modules endowed with a quasi-nilpotent σ-derivation and A1-
modules endowed with a quasi-nilpotent Higgs field.

Let us make some comments. The condition that R is q-divisible of q-characteristic p ą 0
is satisfied for example in the following situations:

1. q “ 1 and CharpRq “ p with p prime: this is Ogus-Vologodsky’s theorem,

2. q ‰ 1 and q is a pth root of unity with p prime,

3. q P K Ă R, with K a field, is a primitive pth root of unity but p needs not be prime.

Then if we are given an R-algebra A, the existence (and uniqueness) of σ and F ˚ satisfying
the above properties, are guaranteed in the following situations:

1. A “ Rrxs or A “ Rrx, x´1s and q P Rˆ,

2. R is pN -torsion with p prime (and the pth power map of R{p lifts to R) and x is an
étale coordinate on A.

In particular, we see that when R is pN -torsion with p prime, theorem 0.2 is a q-deformation
of theorem 0.1 is the sense of [Sch16].
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Description

In the first section, we study the behavior under multiplication of twisted powers in a
polynomial ring. Roughly speaking, these twisted powers are the products that naturally
appear when one writes down a formal solution for a q-differential equation. They depend
on the constant q but also on the variable x. Actually, for more flexibility, we use another
parameter y (which is y :“ p1 ´ qqx in practice). The point is to check that there is
enough divisibility in the sense of q-integers so that we can define the twisted divided
power polynomial ring in section two. We need these divided powers because we are
mainly interested in the case when q is a primitive root of unity where (twisted) powers
are not sufficient.

Beware that there is no such thing as a general theory of twisted divided powers and we
are only able to do the twisted divided power polynomials. Nevertheless, we can define
the twisted divided p-power map by using different parameters q and y on both sides, and
give an explicit description of the image. We will also show that, as in the classical case,
there exists a duality between polynomials and twisted divided power polynomials. In
the third section, we apply the previous constructions to the case where there exists an
endomorphism σ that multiplies y by q. In this situation, there exists a general theory
of twisted powers and it is compatible with the previous one. We show that σ extends
to twisted divided power polynomials and that it behaves nicely with respect to twisted
divided p-power map as well as duality.

In the fourth section, we introduce the twisted principal parts of level zero. This is the
ring where the formal solutions of a q-differential equation live, even when q is a root of
unity. At this point, we really need a coordinate x and set y “ x ´ σpxq. Note that there
exists a theory of twisted principal parts of infinite level that is sufficient when q is not
a root of unity. However, we need twisted divided powers in order to obtain the correct
object in general, exactly as what happens in positive characteristic for usual differential
equations. One can define formally the Taylor map and check that it is given by the
expected formula. Using this Taylor map, one can dualize the construction and define
in section five the notion of twisted differential operator of level zero. We show that, as
expected, the ring of twisted differential operators of level zero is isomorphic to the twisted
Weyl algebra. In section six, we concentrate on the primitive pth root of unity situation.
One can then define the twisted p-curvature map as the dual of the twisted divided p-power
map introduced earlier. We show that its image is exactly the center of the twisted Weyl
algebra.

Section seven is quite technical. We want to define the notion of divided p-Frobenius on
the twisted divided power polynomial rings (again, we need different flavors of the divided
powers on the source and the target). Actually, we were unable to give an explicit formula
and will rely on a generic argument in order to show the existence of the map. In the last
section, we concentrate again on the root of unity situation and we dualize the twisted
divided p-Frobenius map in order to obtain a formal Azumaya splitting of the twisted
Weyl algebra. It is then completely standard to derive by Morita equivalence a Simpson
correspondence for twisted differential modules.

4



Notations

Throughout the article, R will denote a commutative ring (with unit) and q will be a fixed
element of R. We need to recall here some vocabulary and notation from [LQ15a]. First
of all, the q-analog of a natural integer m is:

pmqq :“ 1 ` q ` ¨ ¨ ¨ ` qm´1.

And when q P Rˆ, the q-analog of ´m is:

p´mqq :“ ´
1

q
` ¨ ¨ ¨ `

1

qm
.

We will also call pmqq (or p´mqq when q P Rˆ) a q-integer of R.

We might use the attribute “twisted” in place of the prefix q and say twisted analog or
twisted integer for example instead of q-analog or q-integer. The same remark applies to
all the forthcoming definitions.

The q-characteristic of R is the smallest positive integer p such that ppqq “ 0 if it exists,
and zero otherwise. We will then write q´charpRq :“ p. If q ‰ 1 and p ą 0, then it means
that q is a primitive pth root of unity. When q “ 1, then p is nothing than the usual
characteristic of R.

The ring R is said to be q-flat (resp. q-divisible) if pmqq is always regular (resp. invertible)
in R unless pmqq “ 0. For example, when the q-characteristic p is a prime number, then R

is automatically q-divisible, and therefore also q-flat. And of course, when R is a domain
(resp. a field), then R is automatically q-flat (resp. q-divisible). More generally, it is
sufficient to assume that q belongs to a subdomain (resp. subfield) of R.

We also define the q-factorial of m P N as

pmqq! :“ p1qqp2qq ¨ ¨ ¨ pmqq

and, by induction, the q-binomial coefficients
ˆ

n

k

˙

q

:“

ˆ
n ´ 1

k ´ 1

˙

q

` qk

ˆ
n ´ 1

k

˙

q

when n, k P N. Note that we recover the twisted analog as a special occurrence of a twisted
binomial coefficient since

pmqq “

ˆ
m

1

˙

q

if m P N.

1 Twisted powers

Recall that R denotes a commutative ring and q P R. We assume in this section that A is
a commutative R-algebra (with unit) and we also fix some y P A.

We denote by Arξs the polynomial ring over A and by Arξsďn the A-module of polynomials
of degree at most n. We set for all n P N,

ξpnq :“
n´1ź

i“0

pξ ` piqqyq P Arξsďn. (5)
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If we want to make clear that these elements depend on q and y, we might write ξpnqq,y

but we will try to avoid as much as possible this clumsy notation. As we will see later,
notation (5) is related to the twisted powers of [LQ15a] but we do not need to know this
at the moment.

Note that, by definition, we have

ξp0q “ 1, ξp1q “ ξ, . . . ξpnq “ ξpξ ` yq ¨ ¨ ¨ pξ ` pn ´ 1qqyq, . . .

We will also use the induction formula

ξpn`1q “ ξpnqpξ ` pnqqyq. (6)

Lemma 1.1. The ξpnq’s for n P N form a basis of the A-module Arξs. More precisely, the
ξpmq’s for m ď n form a basis of Arξsďn.

In other words, the map ξn ÞÑ ξpnq defines an automorphism of Arξs as filtered A-module
(by the degree).

Proof. This follows from the fact that each ξpnq is monic of degree n.

Lemma 1.2. In Arξs, we have for all m, n P N,

ξpmqξpnq “

min pm,nqÿ

i“0

p´1qipiqq!q
ipi´1q

2

ˆ
m

i

˙

q

ˆ
n

i

˙

q

yiξpm`n´iq.

Proof. This is proved by induction on n. The formula is trivially true for n “ 0 and we
will have

ξpmqξpn`1q “ ξpmqξpnqpξ ` pnqqyq (7)

“

min pm,nqÿ

i“0

p´1qipiqq!q
ipi´1q

2

ˆ
m

i

˙

q

ˆ
n

i

˙

q

yiξpm`n´iqpξ ` pnqqyq. (8)

Now, we know from proposition 1.3 of [LQ15a] that for all 0 ď i ď m ` n, we have

pnqq “ pm ` n ´ iqq ´ qnpm ´ iqq.

Therefore, we see that

ξpm`n´iqpξ ` pnqqyq “ ξpm`n´iq pξ ` pn ` m ´ iqqy ´ qnpm ´ iqqyq

“ ξpm`n`1´iq ´ qnpm ´ iqqyξpm`n´iq.

We can replace in (8) and get
ξpmqξpn`1q “ S ` T

with

S “

min pm,nqÿ

i“0

p´1qipiqq!q
ipi´1q

2

ˆ
m

i

˙

q

ˆ
n

i

˙

q

yiξpm`n`1´iq

and

T “ ´

min pm,nqÿ

i“0

p´1qipiqq!q
ipi´1q

2

ˆ
m

i

˙

q

ˆ
n

i

˙

q

yiqnpm ´ iqqyξpm`n´iq.
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Changing i to i ´ 1, we obtain

T “

min pm,nq`1ÿ

i“1

p´1qiqn`1´ipi ´ 1qq!pm ` 1 ´ iqqq
ipi´1q

2

ˆ
m

i ´ 1

˙

q

ˆ
n

i ´ 1

˙

q

yiξpm`n`1´iq.

Now we can compute for 1 ď i ď min pm, nq,

piqq!

ˆ
m

i

˙

q

ˆ
n

i

˙

q

` qn´i`1pi ´ 1qq!pm ´ i ` 1qq

ˆ
m

i ´ 1

˙

q

ˆ
n

i ´ 1

˙

q

“ piqq !

ˆ
m

i

˙

q

ˆ
n ` 1

i

˙

q

.

And the assertion will follow once we have checked the the side cases. For i “ 0, this
should be clear and the case i “ minpm, nq ` 1 has to be split in two. First, if m ď n, then
i “ m ` 1 and pm ´ i ` 1qq “ 0: there is no contribution as expected. Second, if m ą n

and i “ n ` 1, we do have

pnqq!pm ´ nqq

ˆ
m

n

˙

q

ˆ
n

n

˙

q

“ pn ` 1qq!

ˆ
m

n ` 1

˙

q

ˆ
n ` 1

n ` 1

˙

q

.

Remarks 1. In the case m “ 1, we find

ξξpnq “ ξpn`1q ´ pnqqyξpnq

which we can also directly derive from the induction formula (6).

2. The coefficients of yiξpm`n`iq are polynomials in q with integer coefficients. Actually,
in order to prove the lemma, it would be sufficient to consider the case R “ Zrts and
q “ t. Or even R “ Qptq. However, this does not seem to make anything simpler at
this point.

3. In the case q “ 1, we will rather write ω instead of ξ for the extra variable. Then,
the multiplication formula simplifies a little bit to

ωpmqωpnq “

min pm,nqÿ

i“0

p´1qii!

ˆ
m

i

˙ˆ
n

i

˙
yiωpm`n´iq.

Lemma 1.3. Assume that q “ 1. Then, under the morphism of A-algebras

Arωs
δ // Arωs bA Arωs

ω
✤ // 1 b ω ` ω b 1,

(9)

we have

δ
´

ωpnq
¯

:“
nÿ

i“0

ˆ
n

i

˙
ωpn´iq b ωpiq.

Proof. The formula is proved to be correct by induction on n. First of all, since δ is a ring
homomorphism, we have

δpωpn`1qq “ δ
´

ωpnqpω ` nyq
¯

“ δpωpnqqδpω ` nyq.
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Moreover, we can write for all i “ 0, . . . , n,

δpω ` nyq “ 1 b ω ` ω b 1 ` ny “ 1 b pω ` iyq ` pω ` pn ´ iqyq b 1.

Thus, by induction, we will have

δpωpn`1qq “
nÿ

i“0

ˆ
n

i

˙
pωpn´iq b ωpiqqp1 b pω ` iyq ` pω ` pn ´ iqyq b 1q

“
nÿ

i“0

ˆ
n

i

˙
ωpn´iq b ωpiqpω ` iyq `

nÿ

i“0

ˆ
n

i

˙
ωpn´iqpω ` pn ´ iqyq b ωpiq

“
nÿ

i“0

ˆ
n

i

˙
ωpn´iq b ωpi`1q `

nÿ

i“0

ˆ
n

i

˙
ωpn´i`1q b ωpiq

“
n`1ÿ

i“1

ˆ
n

i ´ 1

˙
ωpn´i`1q b ωpiq `

nÿ

i“0

ˆ
n

i

˙
ωpn´i`1q b ωpiq

“
n`1ÿ

i“0

ˆˆ
n

i ´ 1

˙
`

ˆ
n

i

˙˙
ωpn`1´iq b ωpiq

“
n`1ÿ

i“0

ˆ
n ` 1

i

˙
ωpn`1´iq b ωpiq.

2 Twisted divided powers

We let as before A be a commutative R-algebra with a distinguished element y.

We denote by Axξy the free A-module on the (abstract) generators ξrns with n P N. We will
set 1 :“ ξr0s and ξ :“ ξr1s. We will also denote by Irn`1s the free A-submodule generated
by all ξrks with k ą n and

Axxξyy :“ limÐÝ Axξy{Irn`1s.

We will soon turn Axξy into a commutative A-algebra that will depend on q and y. If
necessary, we will then write

Axξyq,y, ξrnsq,y , Irn`1s
q,y and Axxξyyq,y.

The next result is elementary but fundamental.

Proposition 2.1. There exists a unique morphism of filtered A-modules

Arξs // Axξy

ξpnq ✤ // pnqq!ξrns.

(10)

It is an isomorphism if all positive q-integers are invertible in R.

The last condition means that R is q-divisible of q-characteristic zero.

Proof. This follows from the facts that the ξpnq’s form a basis of Arξs thanks to lemma
1.1, and that the ξrns’s form a basis of Axξy by definition.
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In the latest case, we will turn the bijection into an identification. In other words, we will
write

ξrns “
ξpnq

pnqq!
“

ξpξ ` yq ¨ ¨ ¨ pξ ` pn ´ 1qqyq

1 ¨ ¨ ¨ pn ´ 1qqpnqq
.

Proposition 2.2. The multiplication rule

@m, n P N, ξrmsξrns “

min pm,nqÿ

i“0

p´1qiq
ipi´1q

2

ˆ
m ` n ´ i

m

˙

q

ˆ
m

i

˙

q

yiξrm`n´is (11)

defines a structure of commutative A-algebra on Axξy and the linear map (10) is a
morphism of A-algebras. Moreover, for all n P N, Irn`1s is an ideal in Axξy.

Note that we have ˆ
m ` n ´ i

m

˙

q

ˆ
m

i

˙

q

“

ˆ
m ` n ´ i

n

˙

q

ˆ
n

i

˙

q

so that the formula is actually symmetric in m and n.

Proof. In order to show that these formulas define a ring structure, it is sufficient to
consider the case where R “ Zrts, A “ Zrt, Y s are polynomial rings with q “ t and y “ Y .
But then, we can even assume that R “ Qptq and A “ QptqrY s. In particular, we are in
a situation where all positive q-integers are invertible in A. Then the map (10) becomes
bijective. Moreover, using lemma 1.2, we see that that the multiplication on both sides
coincide because

pmqq!pnqq!

ˆ
m ` n ´ i

m

˙

q

ˆ
m

i

˙

q

“ pm ` n ´ iqq!piqq!

ˆ
m

i

˙

q

ˆ
n

i

˙

q

as one easily checks.

Finally, assume that n ą k. Then, for i ď minpm, nq, we have i ď m and therefore
m ` n ´ i ě n ą k. It follows that ξrmsξrns ” 0 mod Irks, and Irks is an ideal.

Example 1. For all k P N, we have

ξrksξ “ pk ` 1qqξrk`1s ´ pkqqyξrks.

2. We have
pξr2sq2 “ p2qq2p3qqξr4s ´ p3qqp2qqyξr3s ` qy2ξr2s.

Definition 2.3. The free A-module Axξy on the (abstract) generators ξrns with n P N,
endowed with the multiplication rule of proposition 2.2, is the twisted divided power
polynomial ring over A.

Remark 1. It is important to remind that q and y are built into this definition. As
already mentioned, if we want to make clear the dependence on the parameters, we
will write Axξyq,y.

2. The coefficients in the multiplication formula (11) are polynomials in q. Actually
if we consider the map ZrtsrY s Ñ A that sends t to q and Y to y, there exists an
isomorphism of A-algebras

A bZrtsrY s ZrtsrY sxξy » Axξy.

9



3. The filtration of Axξy by the ideals Irn`1s will be called the divided power filtration or
ideal filtration. Note that Axxξyy inherits the structure of a commutative A-algebra.

Example 1. In the case q “ 1 and y “ 0, we fall back onto the usual divided power
polynomial ring.

2. When q ‰ 1 but still y “ 0, is is possible to develop a general theory of q-divided
powers, and Axξy will be the divided power polynomial ring for this theory. We do
not know how to achieve this in general.

3. Assume R “ A “ F2, q “ 1 and y “ 1. In this situation, we have ξ2 “ ξ in Axξy
but there exists no non trivial idempotent of degree 1 in the usual divided power
polynomial ring. Thus we see that when q “ 1 but y ‰ 0, the ring Axξy is not
isomorphic to the usual divided power polynomial ring.

Lemma 2.4. Assume R is q-divisible of q-characteristic p ą 0. Then, the ideal generated
by ξ in Axξy is the free A-module generated by all ξrks with p ∤ k.

Proof. The formulas

@k P N, ξrksξ “ pk ` 1qqξrk`1s ` pkqqyξrks (12)

show that the ideal Axξyξ is contained in the A-module generated by all pkqqξrks’s. Since
pkqq “ 0 when p | k, we see that Axξyξ is actually contained in the free A-module generated
by all ξrks’s with p ∤ k. Conversely, formula (12) also tells us that

pk ` 1qqξrk`1s ” pkqqyξrks mod ξ

for all k. Using the fact that we always have pkp ` iqq “ piqq, we see that for all k P N, we
have

ξrkp`1s “ pkp ` 1qqξrkp`1s ” pkpqqyξrkps “ 0 mod ξ

Then, by induction on i, we get for 1 ă i ă p,

piqqξrkp`is ” pi ´ 1qqyξrkp`i´1s ” 0 mod ξ

and we easily conclude since piqq P Rˆ for 0 ă i ă p because R is q-divisible.

Definition 2.5. Assume that q´charpRq “ p ą 0. Then the unique A-linear map

Axωy1,yp // Axξyq,y

ωrks ✤ // ξrkps
(13)

is the twisted divided p-power map.

Remark We will not need it but it should be noticed that when p is not the q-
characteristic of R, the definition has to be modified a little bit: the twisted divided power
map will be given by

Axωyqp,yp // Axξyq,y

ωrks ✤ //
śk

i“2

`
ip´1

p´1

˘
ξrkps.
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Theorem 2.6. Assume that q´charpRq “ p ą 0. If R is q-flat, then the twisted divided
power map is a ring homomorphism. If R is q-divisible, then it induces an isomorphism
of A-algebras

Axωy1,yp » Axξyq,y{pξq. (14)

Recall that the first condition means that q is a primitive pth root of unity or that q “ 1
and R has positive characteristic p. Moreover, q-divisibility is satisfied if p is prime or if
q belongs to a subfield K of R for example.

Proof. By definition, if we denote by u the twisted divided power map (13), we have

upωrksq “ ξrkps.

Therefore, it follows from lemma 2.4 that the map (14) is an isomorphism of A-modules
when R is q-divisible. Thus, it only remains to show that u is a ring homomorphism when
R is q-flat. In other words, we want to check that

@k, l P N, upωrksωrlsq “ upωrksqupωrlsq. (15)

Since

ωrksωrls “

min pk,lqÿ

i“0

p´1qi

ˆ
k ` l ´ i

k

˙ˆ
k

i

˙
yipωrk`l´is,

the left hand side of equality (15) is equal to

min pk,lqÿ

i“0

p´1qi

ˆ
k ` l ´ i

k

˙ˆ
k

i

˙
yipξrkp`lp´ips.

We can also compute the right hand side

ξrkpsξrlps “

min pkp,lpqÿ

i“0

p´1qiq
ipi´1q

2

ˆ
kp ` lp ´ i

kp

˙

q

ˆ
kp

i

˙

q

yiξrpk`pl´is.

Our assertion therefore follows from the twisted Lucas theorem (proposition 2.13 of
[LQ15a]) thanks to lemma 2.7 below.

Lemma 2.7. Assume that p :“ q´charpRq ą 0 and R is q-flat. Then

p´1qip “ p´1qiq
ippip´1q

2

Proof. If p is odd, then either i is even or ip is odd and we may therefore write

q
ippip´1q

2 “ pqpq
ipip´1q

2 “ 1

because qp “ 1. Now one easily sees that p´1qip “ pp´1qpqi “ p´1qi.

If we assume that p is even so that p “ 2k with k P N, then we know from proposition
1.11 of [LQ15a] that, since R is q-flat, we have qk “ ´1 and the formula also holds.

11



We want to consider now the paring of A-modules

ă , ą : Arθs ˆ Axωy Ñ A

given by

@m, n P N, ă θm, ωrns ą “

"
1 if n “ m

0 otherwise.

Strictly speaking, this is not a perfect paring. However, it induces for each n P N, a perfect
pairing between the A-submodule (or quotient)

Arθsďn » Arθs{θn`1

of polynomials of degree at most n and the A-submodule (or quotient)

Axωyďn » Axωy{Irn`1s

of twisted divided power polynomials of degree at most n. Alternatively, we can say that
it induces perfect parings between Arrθss and Axωy as well as between Arθs and Axxωyy.

Proposition 2.8. Assume that q “ 1. Then,

1. multiplication on Arθs is dual to the morphism of A-algebras

Axωy
δ // Axωy b Axωy

ωrns ✤ //
řn

i“0
ωris b ωrn´is.

(16)

2. multiplication on Axωy is dual to the morphism of A-algebras

Arθs // Arθs b Arθs

θ
✤ // 1 b θ ` θ b 1 ´ yθ b θ.

Proof. We essentially use the fact that the θn’s and the ωrns’s become dual basis under
our pairing and that the dual to a matrix is its transpose.

Since multiplication on the polynomial ring Arθs is given by

θmθn “ θm`n “
ÿ

m`n“k

θk,

comultiplication on Axωy will be given by

ωrks ÞÑ
ÿ

m`n“k

ωrms b ωrns

and changing indices (k becomes n, m becomes i and therefore n “ k ´m has to be turned
into n ´ i) will give what we want.

We also have to show that this comultiplication map is a ring morphism. As usual, we
may assume that all the non zero integers are invertible. We may then refer to lemma 1.3
which identifies the morphism (16) with the morphism (9).

We proceed in the same way for the second assertion. Multiplication on Axωy is given by

ωrmsωrns “
ÿ

m`n´i“k

p´1qi

ˆ
k

m

˙ˆ
m

i

˙
yiωrks

12



and comultiplication will therefore be given by

θk ÞÑ
ÿ

m`n´i“k

p´1qi

ˆ
k

m

˙ˆ
m

i

˙
yiθm b θn. (17)

On the other hand, we have

p1 b θ ` θ b 1 ´ yθ b θqk “
ÿ

iďjďk

ˆ
k

j

˙ˆ
j

i

˙
p1 b θqk´jpθ b 1qj´ip´yθ b θqi

“
ÿ

iďjďk

ˆ
k

j

˙ˆ
j

i

˙
p´1qiyiθj b θk´j`i

which is exactly the same as (17) (up to the renaming of m into j).

3 Twisted divided powers and twisted algebras

We assume now that A is a twisted commutative R-algebra (a commutative R-algebra
endowed with an R-linear ring endomorphism σA) and that σApyq “ qy. We will investigate
the relation of σA with twisted divided powers relative to q and y.

We endow the polynomial ring Arξs with the unique σA-linear endomorphism such that

σA,ypξq “ ξ ` y.

In practice, we will usually write σ instead of σA or σA,y in order to make the notations
lighter.

Proposition 3.1. We have in Arξs,

@n P N, σnpξq “ ξ ` pnqqy. (18)

Actually, if σ is bijective on A and q P Rˆ, then σ is bijective on Arξs and formula (18)
holds for any n P Z.

Proof. By induction, we will have for all n P N,

σnpξq “ σpξ ` pn ´ 1qqyq “ pξ ` yq ` pn ´ 1qqqy “ ξ ` p1 ` qpn ´ 1qqqy

and we know that 1 ` qpn ´ 1qq “ pnqq.

Assume that σ is bijective on A and q P Rˆ. Then, from σpyq “ qy, we get σ´1pyq “ q´1y.
If moreover, σ is bijective on Arξs, then we deduce from the equality σpξq “ ξ ` y that

ξ “ σ´1pξ ` yq “ σ´1pξq ` σ´1pyq “ σ´1pξq ` q´1y

and it follows that
σ´1pξq “ ξ ´ q´1y.

Conversely, this formula can be used to define an inverse to σ on Arξs. Finally, applying
this to σn (and therefore replacing y by pnqqy and q by qn), we obtain as claimed:

σ´npξq “ ξ ´ q´npnqqy “ ξ ` p´nqqy.

13



Remark 1. As a consequence of the proposition, we see that if q´charpRq “ p ą 0,
then σppξq “ ξ (and of course, also σppyq “ y).

2. As usual, most formulas will be polynomial in q, y and ξ. More precisely, we may
usually reduce to the case R “ Zrts (and often to R “ Qptq) and q “ t. In other
words, we would work in Zrt, Y, ξs with σptq “ t, σpY q “ tY and σpξq “ ξ ` Y .

Recall that we defined in section 4 of [LQ15a] the twisted powers of f P Arξs with respect
to σ as

f pnqσ “ fσpfq ¨ ¨ ¨ σn´1pfq.

Corollary 3.2. We have

@n P N, ypnqσ “ q
npn´1q

2 yn and ξpnqσ “ ξpnqq,y :“
n´1ź

i“0

pξ ` piqqyq.

Proof. Immediately follows from the condition σpyq “ qy and proposition 3.1.

We will drop the index σ when we believe that no confusion will arise (in particular, this
is consistent with the notations of the previous section). But we might also write ypnqq

and ξpnqq,y respectively if we want to insist on the choice of q and y.

We will need below the following formula:

Lemma 3.3. In Arξs, we have for all n P N,

σpξpnqq “
nÿ

i“0

piqq!

ˆ
n

i

˙

q

yiξpn´iq.

Proof. By induction, we will have

σpξpnqq “ σpξpn´1qqσnpξq

“ σpξpn´1qqpξ ` pnqqyq

“ ξσpξn´1q ` pnqqyσpξpn´1qq

“ ξpnq ` pnqqy

n´1ÿ

i“0

piqq!

ˆ
n ´ 1

i

˙

q

yiξpn´1´iq

“ ξpnq `
nÿ

i“1

pnqqpi ´ 1qq!

ˆ
n ´ 1

i ´ 1

˙

q

yiξpn´iq

and the result follows from the identity

pnqqpi ´ 1qq!

ˆ
n ´ 1

i ´ 1

˙

q

“ piqq!

ˆ
n

i

˙

q

.

Proposition 3.4. The unique σ-linear endomorphism of Axξy such that

@n P N, σpξrnsq “
nÿ

i“0

yiξrn´is,

is a ring homomorphism. Moreover, the map (10) is a morphism of twisted R-algebras.
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Recall that a morphism of twisted rings (or algebras) is a morphism which commutes with
the given endomorphisms.

Proof. As we did several times in section 2), we can easily reduce to the case of R “ Qptq
and q “ t and we may therefore assume all q-integers are invertible in R. Then the map
(10) becomes bijective. We may then use lemma 3.3 and the equality

pn ´ iqq!piqq!

ˆ
n

i

˙

q

“ pnqq!.

Again, if necessary, we will write σq,y to make clear the dependence in q and y.

Remark 1. The endomorphism σ of Axξy is not continuous and does not extend to a
ring endomorphism of Axxξyy.

2. We have to be careful that, in general, σp will not be the identity on Axξy even if it
is so on Arξs. For example, if q “ ´1, we will have

σpξq “ ξ ` y and σpξr2sq “ ξr2s ` yξ ` y2,

and therefore

σ2pξr2sq “ σpξr2sq ´ yσpξq ` y2 “ ξr2s ` yξ ` y2 ´ ypξ ` yq ` y2 “ ξr2s ` y2.

Actually, we can give a general formula for the powers of σ on Axξy:

Proposition 3.5. We have

@p P N, @n P N, σppξrnsq “
nÿ

i“0

ˆ
p ` i ´ 1

i

˙

q

yiξrn´is.

Proof. By induction, we will have

σp`1pξrnsq “ σ

˜
nÿ

k“0

ˆ
p ` k ´ 1

k

˙

q

ykξrn´ks
¸

“
nÿ

k“0

ˆ
p ` k ´ 1

k

˙

q

σpykqσpξrn´ksq

“
nÿ

k“0

ˆ
p ` k ´ 1

k

˙

q

qkyk

˜
n´kÿ

j“0

yjξrn´k´js
¸

“
nÿ

i“0

˜
iÿ

k“0

ˆ
p ` k ´ 1

k

˙

q

qk

¸
yiξrn´is.

In order to get the formula, is is sufficient to notice that, by definition (and induction),
we have

iÿ

k“0

ˆ
p ` k ´ 1

k

˙

q

qk “

ˆ
p ` i

i

˙

q

.

The multiplication rule is quite involved in Axξy but the twisted multiplication is much
simpler:
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Proposition 3.6. We have

@n, m P N, ξrnsσnpξrmsq “

ˆ
m ` n

n

˙

q

ξrn`ms

Proof. We may assume that all q-integers are invertible in R and use assertion 1) of lemma
4.3 of [LQ15a] which gives ξpnqσnpξpmqq “ ξpn`mq.

Given any natural integer p, we have

σpypq “ σpyqp “ pqyqp “ qpyp.

We may therefore also apply all the above considerations to the situation qp P R and yp P A,
and consider the twisted R-algebra Axωyqp,yp . In the particular case q´charpRq “ p, we
fall onto Axωy1,yp . Recall that the twisted divided power map induces an isomorphism of
A-algebras

Axωy1,yp » Axξyq,y{pξq.

when R is q-divisible of positive q-characteristic p.

Proposition 3.7. Assume R is q-divisible of q-characteristic p ą 0. Then, the canonical
map

Axξyq,y Ñ Axξyq,y{pξq » Axωy1,yp (19)

is a morphism of twisted A-algebras.

Proof. If we denote by u the twisted divided p-power map (13), we need to check that

@k P N, pu ˝ σqpωrksq ” pσ ˝ uqpωrksq mod ξ. (20)

From lemma 3.3, we know that

σpωrksq “
kÿ

i“0

yipωrk´is

and it follows that

pu ˝ σqpωrksq “
kÿ

i“0

yipξrkp´ips

On the other hand, using lemma 3.3 again, we have

pσ ˝ uqpωrksq “ σpξrkpsq “
kpÿ

i“0

yiξrkp´is

and we are done thanks to lemma 2.4.

The next result is interesting mostly in the case q “ 1 and we will therefore use ω instead
of ξ.

Proposition 3.8. We have

@f P Arθs, @g P Axωy, ă p1 ´ yθqf, σpgq ą“ σpă f, g ąq

16



Proof. By σ-linearity, it is sufficient to compute for m, n P N,

ă p1 ´ yθqθm, σpωrnsq ą “ ă θm ´ yθm`1,

nÿ

i“0

yiωrn´is ą

“
nÿ

i“0

yi ă θm, ωrn´is ą ´
nÿ

i“0

yi`1 ă θm`1, ωrn´is ą

“ ă θm, ωrns ą `
nÿ

i“1

yi ă θm, ωrn´is ą

´
n´1ÿ

i“0

yi`1 ă θm`1, ωrn´is ą ´yn`1 ă θm`1, 1 ą .

The middle sums cancel each other and the last term is 0.

Remark We may also wonder about the dual (for the above pairing) to the endomorphism
σ of Axωy when σA “ IdA. We just transform

σpωrnsq “
nÿ

i“0

yiωrn´is “
ÿ

i`j“n

yiωrjs

to its dual formula and get

θj ÞÑ
ÿ

i`j“n

yiθn “
8ÿ

i“0

yiθi`j

which shows that we must introduce power series. More precisely, writing n instead of j,
we obtain

θn ÞÑ
8ÿ

i“0

yiθi`n “ p
8ÿ

i“0

yiθiqθn

In other words, we see that the dual to σ on Axωy is exactly division by 1 ´ yθ P Arrθssˆ:

Arrθss // Arrθss

fpθq ✤ // fpθq

1 ´ yθ
.

This is not a surprise according to proposition 3.8. Of course, in order to define this
map, we may as well work over the localized ring Arθ, 1

1´yθ
s. This map is not a ring

homomorphism.

4 Twisted principal parts of level zero

We assume now that A is a twisted commutative algebra. It means that A is a twisted
commutative algebra but we also assume that there exists a twisted coordinate (we recall
below what it means) x P A such that σpxq “ qx ` h with q, h P R. We set y :“ x ´ σpxq.

In order to apply the results of the previous section, we need to check the following:

Lemma 4.1. In the ring A, we have σpyq “ qy.
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Proof. We have y “ p1 ´ qqx ´ h and therefore

σpyq “ p1 ´ qqpqx ` hq ´ h “ qp1 ´ qqx ` qh “ qy.

As we did before, we will endow the polynomial ring Arξs with the unique σ-linear ring
endomorphism such that

σpξq “ ξ ` y.

We now review some material from [LQ18]. We endow P :“ AbRA with the endomorphism
σP :“ σA b IdA. We will always see P as an A-module via the action on the left and simply
write z :“ z b 1 P P when z P A. By contrast, we set z̃ :“ 1 b z. We will also write the
morphism giving the right action as

Θ : A // P
z
✤ // z̃.

We denote by I Ă P the kernel of multiplication on A and consider the modules of twisted
principal parts of infinite level P

p8q
pnqσ

:“ P{Ipn`1qσ with

Ipnqσ “ IσpIq ¨ ¨ ¨ σn´1pIq

There exists a unique morphism of twisted R-algebras

Arξs // P

ξ
✤ // x̃ ´ x.

(21)

We assumed above that x is a twisted coordinate on A: it means that the map (21) induces
an isomorphism

Arξs{ξpn`1q » P
p8q
pnqσ

for all n P N. We may then see Arξs as a subring of the ring pPp8q
σ :“ limÐÝ P

p8q
pnqσ

of twisted
principal parts of infinite order. We might index all these objects with A{R if we want to
make clear the dependence on A and R.

Definition 4.2. The A-module of twisted principal parts of order at most n and level 0
of A is

P
p0q
A{R,pnqσ

:“ Axξy{Irn`1s

And the A-module of twisted principal parts of infinite order and level 0 of A is

pPp0q
A{R,σ

:“ limÐÝ P
p0q
A{R,pnqσ

p“ Axxξyyq.

In order to lighten the notations, we will sometimes drop the index A{R.

Remark 1. Unlike the infinite level analog, this notion depends on q and x and not
only on σ.

2. If we still denote by X an indeterminate, then there exists a canonical A-linear
isomorphism of rings

A bZrt,Xs P
p0q
Zrt,Xs{Zrts,pnqσ

» P
p0q
A{R,pnqσ

.
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3. We might also have to consider the intermediate and completed ideals

I
rks
A{R,pnqσ

:“ Irks{Irn`1s and pIrks
A{R,σ

“ limÐÝ I
rks
A{R,pnqσ

.

for k ď n ` 1.

4. By definition, P
p0q
pnqσ

is the finite free A-module on the images of the ξris for i ď n

and I
rks
pnqσ

is the free A-module on the images of the ξris for k ď i ď n. It follows that

pPp0q
A{R,σ

(resp. pIrks
A{R

) is the set of infinite sums
ř

ziξ
ris with zi P A and i P N (resp.

and i ě k).

5. Formula (11) shows that Irn`1s is an ideal inside Axξy. It follows that the quotients

P
p0q
A{R,pnqσ

have a natural structure of A-algebra and so does pPp0q
A{R,σ

.

Lemma 4.3. The map (10) sends ξpmq inside Irn`1s when m ą n. In particular, it induces
a homomorphism

Arξs{ξpn`1q Ñ P
p0q
pnq.

This is even an isomorphism if all pmqq are invertible in R for m ď n.

Proof. Same arguments as for lemma 2.1.

Proposition 4.4. There are canonical homomorphisms

P
p8q
A{R,pnqσ

Ñ P
p0q
A{R,pnqσ

and pPp8q
A{R,σ

Ñ pPp0q
A{R,σ

which are bijective when all pmqq are invertible (for m ď n in the first case).

Proof. Follows from lemmas 2.1 and 4.3.

When this last condition is satisfied, we might identify both rings and drop the superscript,
writing simply PA{R,pnqσ

or pPA{R,σ.

Definition 4.5. The twisted Taylor map of level zero is the composite homomorphism of
R-algebras

A

pΘp0q
((PP

PP
PP

PP
PP

PP
PP

PP
PP

Θ //

pΘp8q

%%

PA{R
// pPp8q

A{R,σ

��
pPp0q

A{R,σ
.

Also, we will denote by

Θp0q
n : A Ñ P

p0q
A{R,pnqσ

the composition of the twisted Taylor map and the projection. When there is no risk of
confusion, we might simply write Θ for any of these Taylor maps.
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We can give an explicit expression for the twisted Taylor map as we shall see shortly. First
of all, since x is a twisted coordinate on A, we know from proposition 2.10 of [LQ18] that
there exists a unique R-linear endomorphism Bσ,A of A such that

@z1, z2 P A, Bσ,Apz1z2q “ z1Bσ,Apz2q ` σpz2qBσ,Apz1q

(a σ-derivation) and Bσ,Apxq “ 1. We will often simply write Bσ , but this endomorphism
should not be confused with the abstract generator of the twisted Weyl algebra that we
will denote later in the same way.

Proposition 4.6. We have

@z P A, pΘp0qpzq “
8ÿ

k“0

Bk
σpzqξrks.

Proof. Recall from proposition 5.5 of [LQ18] that there exists a family of endomorphisms

B
rks
σ of A such that

@z P A, pΘp8qpzq “
8ÿ

k“0

Brks
σ pzqξk.

The proposition then follows from corollary 6.2 of [LQ18] where we showed that

@k P N, @z P A, Bk
σpzq “ pkqq!Brks

σ pzq.

Example 1. We always have Θpxq “ x ` ξ.

2. We have
Θpx2q “ x2 ` pp1 ` qqx ` hqqξ ` p1 ` qqξr2s.

3. If σpxq “ qx with q P Rˆ and x P Aˆ, one can show that

Θ

ˆ
1

x

˙
“

8ÿ

k“0

p´1qk pkqq!ξrks

q
kpk`1q

2 xk`1

“
1

x
´

ξ

x2
`

p1 ` qqξr2s

q3x3
´ ¨ ¨ ¨ .

We will denote by
ABσ“0 :“ H0

Bσ
pAq “ tz P A, Bσpzq “ 0u

the subalgebra of horizontal sections of A.

Proposition 4.7. There exists a left exact sequence

ABσ“0 // A
can //
Θ

// pPp0q
σ .

Proof. We have Θpzq “
ř

Bk
σpzqξrks and it follows that Θpzq “ z if and only if Bσpzq “

0.

Proposition 4.8. There exists an epi-mono factorization

PA{R ։ A bABσ“0 A ãÑ pPp0q
A{R

.

When R is q-divisible of q-characteristic p ą 0, there exists another epi-mono factorization

pPp8q
A{R,σ

։ P
p8q
A{R,pp´1qσ

ãÑ pPp0q
A{R,σ

.
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As a consequence, when R is q-divisible of q-characteristic p ą 0, we obtain an inclusion

A bABσ“0 A ãÑ P
p8q
A{R,pp´1qσ

» P
p0q
A{R,pp´1qσ

Proof. If an element of P is sent to 0 P pPp0q, then it is also sent to 0 in P
p0q
p0qσ

“ A and it
therefore belongs to I. Now an element of the form z̃ ´ z P I is sent to

pΘp0qpzq ´ z “
8ÿ

k“1

Bk
σpzqξrks P pPp0q

and this is equal to 0 if and only if Bσpzq “ 0. Thus we see that the kernel of P Ñ pPp0q is
the ideal J generated by the z̃ ´ z with z P ABσ“0 and we have P{J “ A bABσ“0 A.

When q´charpRq “ p ą 0, the image of ξppq in Axξy is ppqq!ξrps “ 0. Therefore, there
exists an epi-mono factorization

Arξs ։ Arξs{ξppq Ñ Axξy

inducing an isomorphism of A-modules

Arξs{ξppq » Axξy{Irps

because R is q-divisible. The second assertion follows immediately.

Remark If R were not q-divisible (but still q´charpRq “ p ą 0), we would still get a
decomposition

pPp8q
A{R,σ

։ P
p8q
A{R,pp´1qσ

Ñ pPp0q
A{R,σ

։ P
p0q
A{R,pp´1qσ

and an inclusion A bABσ“0 A ãÑ P
p0q
A{R,pp´1qσ

.

5 Twisted differential operators of level zero

We assume again that A is a twisted commutative algebra with twisted coordinate x and
we set y :“ x ´ σpxq.

If M is an A-module, when we write P
p0q
pnqσ

b1
A M , we mean that we endow P

p0q
pnqσ

with the
action given by the twisted Taylor map. In other words, we have

@z P A, s P M, ξrks b1 zs “ Θpzqξrks b1 s.

In particular, on P
p0q
pnqσ

b1
A P

p0q
pmqσ

, we use the natural action of A for the left structure

(action on the right) and the twisted Taylor map for the right structure (action on the
left). Also, it will be convenient to set

pPp0q
σ

pb1
A

pPp0q
σ :“ limÐÝ

´
P

p0q
pnqσ

b1
A P

p0q
pmqσ

¯
.

This is the set of infinite sums
ř

i,jPN zi,jξ
ris b1 ξrjs with zi,j P A (with Taylor switch on

coefficients).
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Definition 5.1. If M and N are two A-modules, a twisted differential operator of level
0 of from M to N is an A-linear map

P
p0q
pnqσ

b1
A M Ñ N.

In general, we will write

Diffp0q
n,σpM, Nq “ HomApP

p0q
pnqσ

b1
A M, Nq

and
Diffp0q

σ pM, Nq “ limÝÑ Diffp0q
n pM, Nq.

In the case N “ M , we will simply write Diffp0q
n,σpMq and Diffp0q

σ pMq. Moreover, we set

D
p0q
A{R,σ

:“ Diffp0q
σ pAq.

Definition 5.2. The comultiplication on P
p0q
σ is the A-linear map

pδp0q : pPp0q
σ

// pPp0q
σ pb1

A
pPp0q

σ

ξrns ✤ //
řn

i“0
ξrn´is b1 ξris

We might also have to consider the partial comultiplication maps

δp0q
m,n : P

p0q
pm`nqσ

Ñ P
p0q
pnqσ

b1
A P

p0q
pmqσ

.

which are given by the same formulas. In practice, we should simply denote all these maps
by δ.

Proposition 5.3. There exists a commutative diagram

A bR A

δ

��

P //

δ

��

pPp8q
σ

pδp8q

��

// pPp0q
σ

pδp0q

��

A bR A bR A P b1
A P // pPp8q

σ b1
A P

p8q
σ

// pPp0q
σ b1

A
pPp0q

σ

where the first horizontal map sends z1 b z2 to z1 b 1 b z2.

Proof. Follows from theorem theorem 3.5 of [LQ18].

Proposition 5.4. The comultiplication map pδp0q is a homomorphism of rings.

Of course, the same result holds for the partial comultiplications.

Proof. First, we may clearly assume that A “ Rrxs is the polynomial ring in the variable
x. We can then reduce to the case R “ Zrt, ss with q “ t and h “ s and finally to the
case R “ Qptqrss. In other words, we may assume that all q-integers are invertible in R.
Then the assertion follows from proposition 4.4 and theorem 3.5 of [LQ18] since we know

that the comultiplication map is a ring morphism on pPp8q
σ . Actually, this last result itself

follows from the fact that comultiplication is already a ring morphism on P (it corresponds
to the projection that forgets the middle term).
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Definition 5.5. The composition of two twisted differential operators of level 0, Φ :

P
p0q
pnqσ

bA M Ñ N and Ψ : P
p0q
pmqσ

bA L Ñ M , is the twisted differential operator of level 0

Φ ˝ Ψ : P
p0q
pm`nqσ

b1
A L

δbId // P
p0q
pnqσ

b1
A P

p0q
pmqσ

b1
A L

Idb1
A

Ψ
// P

p0q
pnqσ

b1
A M

Φ // N. (22)

Proposition 5.6. Composition of twisted differential operators of level 0 is associative.
In particular, it turns D

p0q
A{R,σ

into a ring.

Proof. We can reduce as usual to the case where R “ Qptqrss, q “ t and h “ s and use
the analogous result for twisted differential operators of infinite level (see Proposition 4.7
of [LQ18]).

Recall that we introduced in Definition 5.4 of [LQ15b] the twisted Weyl algebra DA{R,σ,Bσ

associated to the twisted differential algebra A: this is the Ore extension of A by σ and
Bσ as in proposition 1.4 of [Bou12]). Concretely, this is the free A-module on abstract
generators Bk

σ with the commutation rule Bσ ˝ z “ σpzqBσ ` Bσpzq.

Proposition 5.7. There exists an isomorphism of filtered R-algebras DA{R,σ,Bσ
» D

p0q
A{R,σ

.

In the future, we will identify these two rings and simply write DA{R,σ.

Proof. There exists an obvious isomorphism of filtered A-modules DA{R,σ,Bσ
» D

p0q
A{R,σ

obtained by making the Bk
σ’s dual to the ξrks’s. We only need to show that this is a

morphism of rings and, as usual, we may assume that all q-integers are invertible. But
then, it follows from proposition 4.4 that there exists an isomorphism of filtered rings

D
p8q
A{R,σ

» D
p0q
A{R,σ

. On the other hand, there exists also a canonical isomorphism of filtered

rings DA{R,σ,Bσ
» D

p8q
A{R,σ

as we saw in theorem 6.3 of [LQ18]. Our isomorphism is obtained
by composing them.

Remark 1. This last result might give the feeling that we have been working quite
hard for nothing: defining twisted divided powers required some energy. But this
is not true. The dual approach to the twisted Weyl R-algebra introduces new tools
that will prove to be quite profitable. Recall that it is also possible to define twisted
differential operators of infinite level inductively as operators on the ring of functions
and avoid the introduction of principal parts (and twisted powers). Again, this might
sound simpler but it is not the best way to do it.

2. The canonical map Arξs Ñ Axξy is essentially dual to the canonical map DA{R,σ Ñ

D
p8q
A{R,σ

whose image is the subring DA{R,σ of small twisted differential operators
generated by functions and derivations inside EndRpAq.

Proposition 5.8. Assume R is q-divisible and q´charpRq “ p ą 0. Then, there exists a
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commutative diagram

EndABσ“0pAq �
� // EndRpAq

DA{R,σ
// // DA{R,σ

� � //
?�

OO

D
p8q
A{R,σ

?�

OO

Diff
p0q
p´1,σpAq
?�

OO
»

77♣♣♣♣♣♣♣♣♣♣♣

Diff
p8q
p´1,σpAq.
?�

OO

»

gg❖❖❖❖❖❖❖❖❖❖❖

Proof. This is obtained by duality from proposition 4.8.

6 Twisted p-curvature

As before, A denotes a twisted R-algebra with coordinate x. In particular, we have
σpxq “ qx ` h with q, h P R and we set y :“ x ´ σpxq. We also assume in this section that
q´charpRq “ p ą 0.

Lemma 6.1. For all n P N, the diagram

A
can //
Θ

// P
p0q
pnqσ

// P
p0q
pnqσ

{pξq

is commutative.

It means that, modulo ξ, both A-algebra structures coincide on P
p0q
pnqσ

.

Proof. If I denotes the ideal of the diagonal in P :“ A bR A as usual, we may consider
the following commutative diagram

A
can //
Θ

// P //

��

P{I “ A

��

A
can //
Θ

// P
p0q
pnqσ

// P
p0q
pnqσ

{ξ

The upper left maps are given by left and right actions of A on P and it follows that the
upper line is commutative. And all the squares are commutative. Therefore, the second
line must be commutative too.

Proposition 6.2. For all m, n P N, the following diagram is commutative:

P
p0q
ppn`mqpqσ

δ //

����

P
p0q
pnpqσ

pb1
A

pPp0q
pmpqσ

����

P
p0q
ppn`mqpqσ

{pξq // P
p0q
pnpqσ

{pξq bA P
p0q
pmpqσ

{pξq

Axωy{I
rn`m`1s
ω

δ //

OO

Axωy{I
rn`1s
ω bA Axωy{I

rm`1s
ω .

OO
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The upper map δ comes from definition 5.2 and the bottom one is the comultiplication
map that we met in proposition 2.8. The bottom vertical maps are induced by the twisted
divided p-power map (13).

Proof. By definition, all horizontal arrows are given by compatible formulas on the
generators. However, the upper right tensor product is obtained by using the Taylor map
on the right factor although the down right tensor product uses the canonical structure
on both side. But this does not matter thanks to lemma 6.1.

Proposition 6.3. Assume that R is q-divisible. Then, there exists a (unique) A-linear
homomorphism of R-algebras

Arθs // DA{R,σ

θ
✤ // Bp

σ

(23)

It induces an isomorphism between Arθs and the centralizer AZA{R,σ of A in DA{R,σ and
an isomorphism between ABσ“0rθs and the center ZA{R,σ of DA{R,σ.

Proof. We know from the first part of proposition 2.8 that the bottom map of proposition
6.2 is dual to multiplication on the polynomial ring Arθs. And by definition, the top map
is dual to multiplication on DA{R,σ. Moreover, since we assume that R is q-divisible, it
follows from theorem 2.6 that the bottom vertical maps of proposition 6.2 are bijective.
Therefore, by duality, the top vertical maps corresponds to an injective morphism of
R-algebras Arθs Ñ DA{R,σ that sends θ to Bp

σ. Since Arθs is a commutative ring, its
image is contained into the centralizer AZA{R,σ of A in DA{R,σ. Conversely, since R is
q-flat, it follows from the first part of lemma 6.4 below that the image of Arθs is exactly
AZA{R,σ. The assertion about ZA{R,σ is then a consequence of the last assertion of the
same lemma.

Lemma 6.4. We denote by ArBp
σs (resp. ABσ“0rBp

σs) the A-submodule (resp. ABσ“0-
module) of DA{R,σ generated by Bpk

σ with k P N. Then,

1. if A is q-flat, we have AZA{R,σ Ă ArBp
σs,

2. we always have ArBp
σs X ZA{R “ ABσ“0rBp

σs X AZA{R,σ.

Be careful that, in this lemma, ArBp
σs and ABσ“0rBp

σs denote the A-submodules generated
by the powers of Bp

σ which are a priori different from the R-subalgebra generated by A

and Bp
σ (as long as this last ring is not known to be commutative for example).

Proof. If ϕ :“
ř

zkBk
σ P DA{R,σ, we can use proposition 6.4 from [LQ18] and write

ϕx “
ÿ

zkBk
σx “

ÿ
zkpσkpxqBk

σ ` pkqqBk´1
σ q

“
ÿ

σkpxqzkBk
σ `

ÿ
pkqqzkBk´1

σ “
ÿ ´

σkpxqzk ` pk ` 1qqzk`1

¯
Bk

σ.

Therefore, if ϕ commutes with x, we will have

@k ě 0, σkpxqzk ` pk ` 1qqzk`1 “ xzk.

For k “ 0, we obtain z1 “ 0. If k is a positive integer such that zk´1 “ 0, we must
have pkqqzk “ 0. If we assume that A is q-flat, we must have pkqq “ 0 or zk “ 0. Since
q´charpRq “ p ą 0, this exactly means that ϕ P ArBp

σs.
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We now prove the second assertion. We pick-up some

ϕ :“
ÿ

zkBkp
σ P ArBp

σs X AZA{R,σ.

Then, we have ϕ P ZA{R if and only if ϕBσ “ Bσϕ which means that

ÿ
zkBkp`1

σ “
ÿ

BσzkBkp
σ “

ÿ
σpzkqBkp`1

σ ` BσpzkqBkp
σ .

Thus we see that the condition is equivalent to

@k P N, zk “ σpzkq and Bσpzkq “ 0.

It follows from lemma 6.4 of [LQ15b] for example that the first condition is implied by the
second and we are done.

Definition 6.5. The map (23) is the twisted p-curvature map.

7 Divided Frobenius

In this section, the ring R is endowed with an endomorphism F ˚
R, A denotes a commutative

R-algebra and x is any element of A. We set y :“ p1 ´ qqx. We also fix a p P Nzt0u and
at some point, we will use q1 :“ qp and y1 :“ ppqqy.

Recall also that we write for all n P N,

ξpnq :“ ξpnqq,y :“
n´1ź

i“0

pξ ` piqqyq “
n´1ź

i“0

`
ξ ` p1 ´ qiqx

˘
“

n´1ź

i“0

`
x ` ξ ´ qix

˘
.

Definition 7.1. A p-Frobenius on A (with respect to F ˚
R and x) is a morphism of R-

algebras F ˚
A{R : A1 :“ R

F ˚
R

ÔbR A Ñ A such that F ˚
A{Rp1 b xq “ xp.

Example 1. If R is a ring of prime characteristic p ą 0 endowed with the pth power
map, then the usual relative Frobenius is a p-Frobenius on A.

2. If R is a ring of pN -torsion with p prime, F ˚ is a lifting of the pth power map on
R{p and x is an étale coordinate on A, then there exists a unique p-Frobenius on A.

3. If A “ Rrxs or A “ Rrx, x´1s, then there exists a unique p-Frobenius on A.

Definition 7.2. If F ˚
A{R is a p-Frobenius on A, then the p-Frobenius F ˚

Arξs{R on Arξs is
the F ˚

A{R-linear morphism of R-algebras

F ˚
A{R : A1rξs // Arξs

ξ
✤ // px ` ξqp ´ xp.

Remark 1. The p-Frobenius on Arξs is both a p-Frobenius with respect to x and to
x ` ξ.

2. When R has q-characteristic p, then px ` ξqp ´ xp “ ξppq (use proposition 4.6 of
[LQ15a] for example).
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3. There exists a commutative diagram

A1rξs
F ˚

//

��

Arξs

��
A1 bR A1 F ˚bF ˚

// A bR A

where the vertical map sends ξ to 1 b x ´ x b 1.

We will frequently need the twisted binomial formula (see proposition 2.14 of [LQ15a] for
example) that we recall now:

@z1, z2 P A, @n P N,

n´1ź

i“0

pqiz1 ` z2q “
nÿ

k“0

q
kpk´1q

2

ˆ
n

k

˙

q

zk
1 zn´k

2
. (24)

Now, we become also interested in the Frobenius version of the twisted powers. Recall
that we write q1 :“ qp and y1 :“ ppqqy and we have therefore

@n P N, ξpnqq1,y1 :“
n´1ź

i“0

pξ ` piqqpppqqyq “
n´1ź

i“0

pξ ` ppiqqyq “
n´1ź

i“0

`
x ` ξ ´ qpix

˘
.

Definition 7.3. The p-Frobenius coefficients are the polynomials

An,i :“
nÿ

j“0

p´1qn´jt
ppn´jqpn´j´1q

2

ˆ
n

j

˙

tp

ˆ
pj

i

˙

t

P Zrts.

Remark We will show later that An,i “ 0 unless n ď i ď pn but we may observe right
now that An,pn “ 1 and that An,i “ 0 for i ą pn.

From now on, we will often omit the index in the p-Frobenius maps and simply write F ˚.

Proposition 7.4. If F ˚ is a p-Frobenius on A, then we have

@n P N, F ˚pξpnqq1 ,y1 q “
pnÿ

i“0

An,ipqqxpn´iξpiqq,y

where the An,i are the p-Frobenius coefficients.

Proof. Using the twisted binomial formula (24) in the case z1 “ xp and z2 “ ´pξ ` xqp

(with qp instead of q), we have

F ˚pξpnqq1 ,y1 q “
n´1ź

i“0

`
px ` ξqp ´ qpixp

˘
“

“
nÿ

j“0

p´1qn´jq
ppn´jqpn´j´1q

2

ˆ
n

j

˙

qp

xppn´jqpx ` ξqpj.

Using lemma 7.5 below, we obtain

F ˚pξpnqq1,y1 q “
nÿ

j“0

p´1qn´jq
ppn´jqpn´j´1q

2

ˆ
n

j

˙

qp

xppn´jq
pjÿ

i“0

ˆ
pj

i

˙

q

xpj´iξpiqq,y

“
pnÿ

i“0

˜
nÿ

j“0

p´1qn´jq
ppn´jqpn´j´1q

2

ˆ
n

j

˙

qp

ˆ
pj

i

˙

q

¸
xpn´iξpiqq,y . l
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Lemma 7.5. We have for all m P N,

px ` ξqm “
mÿ

i“0

ˆ
m

i

˙

q

xm´iξpiq. (25)

Proof. We have for all i P N, ξpi`1q “ ξpiqpx ` ξ ´ qixq and it follows that ξpiqpx ` ξq “
ξpi`1q ` qixξpiq. Therefore, if the formula holds for some m, we will have

px ` ξqm`1 “
mÿ

i“0

ˆ
m

i

˙

q

xm´iξpiqpx ` ξq

“
mÿ

i“0

ˆ
m

i

˙

q

xm´ipξpi`1q ` qixξpiqq

“
m`1ÿ

i“1

ˆ
m

i ´ 1

˙

q

xm´i`1ξpiq `
mÿ

i“0

ˆ
m

i

˙

q

qixm`1´iξpiq

“
m`1ÿ

i“0

˜ˆ
m

i ´ 1

˙

q

` qi

ˆ
m

i

˙

q

¸
xm`1´iξpiq

“
m`1ÿ

i“0

ˆ
m ` 1

i

˙

q

xm´iξpiq.

As a particular case of the proposition, we have the following:

Corollary 7.6. If F ˚ is a p-Frobenius on A, then we have

F ˚pξq “
pÿ

i“1

ˆ
p

i

˙

q

xp´iξpiq. l

As a preparation for the next statement, we prove now the following exchange lemma:

Lemma 7.7. We have for all m, n P N,

q
npn´1q

2 p1 ´ qqnpnqq!

ˆ
m

n

˙

q

“
nÿ

k“0

p´1qn´kq
kpk´1q

2

ˆ
n

k

˙

q

qmpn´kq.

It means in particular that the right hand side is zero unless m ě n.

Proof. Using the twisted binomial formula (24) for z1 “ 1 and z2 “ ´qm, we get

nÿ

k“0

p´1qn´kq
kpk´1q

2

ˆ
n

k

˙

q

qmpn´kq “
n´1ź

k“0

pqk ´ qmq

“
n´1ź

k“0

qk
n´1ź

k“0

p1 ´ qm´kq

“ q
npn´1q

2 p1 ´ qqn
n´1ź

k“0

pm ´ kqq

“ q
npn´1q

2 p1 ´ qqnpnqq!

ˆ
m

n

˙

q

.
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Lemma 7.8. Given n, i P N, we have An,i “ 0 unless n ď i ď pn in which case

q
ipi´1q

2 p1 ´ qqi´npiqq!An,ipqq “ ppqn
q pnqqp !qp

npn´1q
2

i´nÿ

l“0

p´1qi´n`lq
lpl´1q

2

ˆ
i

l

˙

q

ˆ
i ´ l

n

˙

qp

.

Proof. We will compute

LHS :“ q
ipi´1q

2 p1 ´ qqipiqq!An,ipqq.

In order to do that, we use lemma 7.7 twice (with qp instead of q the second time):

LHS “ q
ipi´1q

2 p1 ´ qqipiqq!
nÿ

k“0

p´1qn´kq
ppn´kqpn´k´1q

2

ˆ
n

k

˙

qp

ˆ
pk

i

˙

q

“
nÿ

k“0

p´1qn´kq
ppn´kqpn´k´1q

2

ˆ
n

k

˙

qp

˜
q

ipi´1q
2 p1 ´ qqipiqq!

ˆ
pk

i

˙

q

¸

“
nÿ

k“0

p´1qn´kqp
pn´kqpn´k´1q

2

ˆ
n

k

˙

qp

˜
iÿ

l“0

p´1qi´l

ˆ
i

l

˙

q

q
lpl´1q

2 qpkpi´lq
¸

“
iÿ

l“0

p´1qi´n`l

ˆ
i

l

˙

q

q
lpl´1q

2

˜
nÿ

k“0

p´1qkqp
pn´kqpn´k´1q

2

ˆ
n

k

˙

qp

qpkpi´lq
¸

.

“
i´nÿ

l“0

p´1qi´n`l

ˆ
i

l

˙

q

q
lpl´1q

2

˜
qp

npn´1q
2 p1 ´ qpqnpnqqp !

ˆ
i ´ l

n

˙

qp

¸

“ ppqn
q pnqqp !qp

npn´1q
2 p1 ´ qqn

i´nÿ

l“0

p´1qi´n`lq
lpl´1q

2

ˆ
i

l

˙

q

ˆ
i ´ l

n

˙

qp

since 1 ´ qp “ p1 ´ qqppqq. When i ă n, the right hand side is zero. Since An,i is a
polynomial in q, it has to be zero too. Otherwise, we obtain the expected equality by
moving p1 ´ qqn to the left hand side.

Remark In particular, we have

pnqq!An,npqq “ ppqn
q pnqqp !qpp´1q npn´1q

2 .

Proposition 7.9. Given n, i P N, there exists a unique Bn,i P Zrts such that

piqt!An,i “ pnqtp !ppqn
t Bn,iptq,

where An,i denote the p-Frobenius coefficient. We have Bn,i “ 0 unless n ď i ď pn with
extreme values

Bn,npqq “ q
pp´1qnpn´1q

2 and Bn,pnpqq “
nź

k“1

p´1ź

i“1

pkp ´ iqq.

Proof. Any non zero t-integer or tp-integer is prime to both 1´ t and t. The first assertion
therefore follows from lemma 7.8. The precise values in the case i “ n and i “ pn are
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obtained from the remark before the proposition and from the fact that An,pn “ 1 since

ppnqq! “
nź

k“1

p´1ź

i“0

pkp ´ iqq

“
nź

k“1

pkpqq

nź

k“1

p´1ź

i“1

pkp ´ iqq

“ ppqn
q pnqqp !

nź

k“1

p´1ź

i“1

pkp ´ iqq

because pkpqq “ pkqqpppqq for each k.

Example 1. We have B1,1pqq “ 1, B1,2pqq “ pp´1qq, B2,2pqq “ qp´1, B3,3pqq “ q3pp´1q.

2. When R has positive q-characteristic p and 1 ď n ď p, we have

p1 ´ qqp´nBn,ppqq “ p´1qn´1

ˆ
p

n

˙
.

For example, if we write j “ 1`
?

´3

2
, we obtain p1 ´ jqB2,3pjq “ ´3 and therefore

B2,3pjq “ j2 ´ 1.

Definition 7.10. Let F ˚ be a p-Frobenius on A. Then,

1. the divided p-Frobenius coefficients are the polynomials Bn,i of proposition 7.9,

2. the divided p-Frobenius map is the unique F ˚-linear map A1xωyqp,y Ñ Axξyq,y such
that

@n P N, rF ˚spωrnsq “
pnÿ

i“n

Bn,ipqqxpn´iξris.

Remark 1. As a particular case of this definition, we have

rF ˚spωq “
pÿ

i“1

pp ´ 1qq ¨ ¨ ¨ pp ´ i ` 1qqxp´iξris.

In more fancy terms, the ith coefficient is pi ´ 1qq!
`

p´1

i´1

˘
q
.

2. The divided p-Frobenius map is continuous. More precisely, it is compatible with
the ideal filtration and induces F ˚-linear maps

A1xωy{Irn`1s
ω Ñ Axξy{I

rn`1s
ξ .

3. We may extend the divided Frobenius map by linearity and obtain an A-linear map

Axωyqp,p1´qqxp Ñ Axξyq,y

given by the same formula (we have F ˚pyq “ p1 ´ qqxp).

Lemma 7.11. Let F ˚ be a p-Frobenius on A. Then, under the canonical map Arξs Ñ
Axξyq,y, we have for all n P N,

F ˚pξpnqq1 ,y1 q ÞÑ pnqqp !ppqn
q rF ˚spωrnsqp,y q.
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Proof. This is a direct consequence of the definitions. More precisely, since An,i “ 0 for

i ă n, we have F ˚pξpnqq1 ,y1 q “
řpn

i“n An,ipqqxpn´iξpiqq,y and this is sent to

pnÿ

i“n

An,ipqqxpn´ipiqq!ξrisq,y “
pnÿ

i“n

pnqqp !ppqn
q Bn,ipqqxpn´iξrisq,y

“ pnqqp !ppqn
q rF ˚spωrnsqp,y q.

Proposition 7.12. If F ˚ is a p-Frobenius on A, then the divided Frobenius map

rF ˚s : A1xωyqp,y Ñ Axξyq,y

is a homomorphism of rings.

Proof. We want to check that for all m, n P N, we have

rF ˚spωrmsqp,y ωrnsqp,y q “ rF s˚pωrmsqp,y qrF ˚spωrnsqp,y q. (26)

Note that it is sufficient to do the case R “ Zrts, t “ q and A “ Rrxs, and then specialize
our variables. In particular, we may assume that q´charpRq “ 0 in which case we will
identify Arξs with Axξyq,y. Then, this essentially follows from the fact that F ˚ itself is
a ring homomorphism. But we need to be careful. By F ˚-linearity, the left hand side of
(26) is equal to

LHS “

min pm,nqÿ

i“0

p´1qiq
pipi´1q

2

ˆ
m ` n ´ i

m

˙

qp

ˆ
m

i

˙

qp

p1 ´ qqixpirF ˚spωrm`n´isqp,y q

From proposition 7.11, we see that, for all i ď m ` n, we have

piqqp !

ˆ
m ` n

i

˙

qp

ppqi
qF ˚pξpm`n´iqq1 ,y1 q “ pm ` nqqp !ppqn`m

q rF ˚spωrm`n´isqp,y q

and it follows that
pm ` nqqp !ppqm`n

q LHS “

min pm,nqÿ

i“0

p´1qiq
pipi´1q

2 piqqp !

ˆ
m ` n ´ i

m

˙

qp

ˆ
m

i

˙

qp

ˆ
m ` n

i

˙

qp

ppqi
qp1 ´ qqixpiF ˚pξpm`n´iqq1,y1 q

On the other hand, if we denote the right hand side of (26) by by RHS, we have

pm ` nqqp !ppqm`n
q RHS “

ˆ
m ` n

n

˙

pq

pmqqp !ppqm
q rF s˚pωrmsqp,y qpnqqp !ppqn

q rF s˚pωrnsqp,y q

“

ˆ
m ` n

n

˙

qp

F ˚pξpmqq1 ,y1 qF ˚pξpnqq1,y1 q

“

ˆ
m ` n

n

˙

pq

F ˚pξpmqq1 ,y1 ξpnqq1,y1 q

and finally
pm ` nqqp !ppqm`n

q RHS “
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ˆ
m ` n

n

˙

qp

min pm,nqÿ

i“0

p´1qipiqqp !q
pipi´1q

2

ˆ
m

i

˙

qp

ˆ
n

i

˙

qp

ppqi
qp1 ´ qqixpiF ˚pξpm`n´iqq1 ,y1 q.

Now, we may identify both sides because
ˆ

m ` n ´ i

m

˙

qp

ˆ
m ` n

i

˙

qp

“

ˆ
m ` n

n

˙

qp

ˆ
n

i

˙

qp

.

Proposition 7.13. If R has positive q-characteristic p and F ˚ is a p-Frobenius on A,
then rF ˚s induces a homomorphism of A-algebras

pArξs{ξppqq,y qxωy1,p1´qqxp » Arξs{ξppqq,y bA1 A1xωy1,y Ñ Axξyq,y

When R is q-divisible, this is an isomorphism.

Proof. There exists such a map because ξppq is sent to ppqqξrps “ 0. Moreover, when R is
q-divisible, this map induces a bijection between basis on both sides as we can easily check.
More precisely, one may define a notion of degree on both sides by setting degpξrnsq “ n

on the right hand side and degpξ
k
ωrnsq “ k ` pn when k ă p on the left hand side. By

definition, this homomorphism preserves the degrees and it is therefore sufficient to prove

that it induces a bijection on the associated graded modules. But then, ξ
k
ωrns is sent to

Bn,pnpqqξrpn`ks and one has

Bn,pnpqq “ ppp ´ 1qq!qn P Rˆ

since R is q-divisible.

Remark 1. This homomorphism is continuous. Actually, it preserves the ideal filtra-
tions. Note however that it is not an isomorphism of filtered modules when R is
q-divisible: the filtration on the left hand side is usually strictly smaller that the
filtration on the right hand side.

2. It is tempting to introduce a variant of the p-Frobenius coefficients by setting
Cn,i “ Bn,i{Bn,pn P Qrts. When R is q-divisible, Cn,ipqq is well defined and satisfies

piqq!An,ipqq “ ppnqq!Cn,ipqq.

Then, if we replace B’s with C’s in the definition of rF ˚s, the modified version
would send monic to monic (this was our approach in [GLQ10]). If moreover, we
assume that q´charpRq “ p, then the modified version of rF ˚s would still be a ring
homomorphism (but this is not true anymore in general: this is why we had to be
careful in the proof of proposition 7.12).

3. There exists an intermediate alternative for the coefficients that is only defined when
R is q-divisible but which is always a ring homomorphism and coincides with the C’s
when the q-characteristic is p. This is obtained by dividing out Bn,ipqq by ppp´1qq !qn.

8 Twisted Simpson correspondence

We let A be a twisted R-algebra with twisted coordinate x such that σpxq “ qx. We fix
an endomorphism F ˚

R of R and let F ˚ be a p-Frobenius on A with respect to F ˚
R and x

for some p P Nzt0u. We are mostly interested in the case where R is q-divisible of positive
q-characteristic p.
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Proposition 8.1. Assume that R is q-divisible of q-characteristic p. Then, the divided
p-Frobenius provides by an A-linear map

ΦA{R : DA{R,σ Ñ ZAA{R,σ Ă DA{R,σ.

More precisely, we have for all n P N,

ΦpBn
σ q “

nÿ

k“0

Bk,npqqxpk´nBpk
σ (27)

where the Bk,n denote the divided p-Frobenius coefficients.

Proof. The linearized divided p-Frobenius maps Axωy{I
rn`1s
ω Ñ Axξy{I

rn`1s
ξ coming from

section 7 provide by duality a compatible system of morphisms

Diffp0q
n,σpAq Ñ Arθsďn.

We may then use proposition 6.3 in order to identify Arθs with the centralizer ZAA{R,σ

of A in DA{R,σ. By duality, the coefficient of Bkp
σ in ΦpBn

σq is the coefficient of ξrns in

rF ˚spωrksq which is exactly Bk,nxpk´n.

Remark 1. The morphism ΦA{R is not a ring homomorphism (as we already knew
from the case q “ 1).

2. If we do not assume that R is q-divisible of q-characteristic p, then we still get a
map DA{R,σ Ñ Arθs given by an analogous formula but we cannot identify the target
with ZAA{R,σ.

3. In formula (27), the sum actually starts with the smallest integer k ě n{p.

Example 1. We have ΦpBσq “ xp´1Bp
σ.

2. We have ΦpB2
σq “ pp ´ 1qqxp´2Bp

σ ` qp´1x2p´2B2p
σ .

3. When q´charpRq “ p “ 3, we have

ΦpB3
σq “ B3

σ ` pq2 ´ 1qx3B6
σ ` x6B9

σ.

Recall from proposition 4.7 that F ˚pA1q Ă ABσ“0 if and only the diagram

A1 F ˚
// A

can //
θ

// pPp0q
σ

commutes. Under this hypothesis, rF ˚s will induce, for all n P N, an F ˚-linear morphism
of R-algebras

rF ˚s : A1xωy{Irns
ω bA1 A1xωy{Irns

ω Ñ P
p0q
pnqσ

b1
A P

p0q
pnqσ

.

Proposition 8.2. If F ˚pA1q Ă ABσ“0, then the diagram

A1xωy{I
rns
ω

rF ˚s //

δ
��

P
p0q
pnqσ

δ
��

A1xωy{I
rns
ω bA1 A1xωy{I

rns
ω

rF ˚s // Pp0q
pnqσ

b1
A P

p0q
pnqσ

.

is commutative.

33



Proof. We want to prove that we always have

δprF ˚spωrnsq “ rF ˚spδpωrnsq.

We can compute the left hand side

δprF ˚spωrnsq “ δ

˜
pnÿ

k“n

Bn,kpqqxpn´kξrks
¸

“
pnÿ

k“n

Bn,kpqqxpn´kδpξrksq

“
pnÿ

k“n

Bn,kpqqxpn´k

˜
kÿ

j“0

pξrk´js b1 ξrjs
¸

And we can also compute the right hand side

rF ˚spδpωrnsq “ rF ˚s

˜
nÿ

k“0

ωrn´ks b ωrks
¸

“
nÿ

k“0

rF ˚spωrn´ksq b1 rF ˚spωrksq.

Our assertion therefore follows from lemma 8.3 below.

Lemma 8.3. We have
pnÿ

k“n

Bn,kpqqxpn´k

˜
kÿ

j“0

ξrk´js b1 ξrjs
¸

“
nÿ

k“0

rF ˚spωrn´ksq b1 rF ˚spωrksq

in pPp0q
A{R

pb1
A

pPp0q
A{R

.

Proof. Since it is a generic question, we may assume that all q-integers are invertible in R

and also, if we wish, that A “ Rrxs is simply the polynomial ring. Using proposition 5.3
and remark 3) after definition 7.2, it is therefore sufficient to check the equality

pnÿ

k“n

An,kpqqxpn´k

˜
kÿ

j“0

ˆ
k

j

˙

q

ξpk´jq b1 ξpjq
¸

“
nÿ

k“0

ˆ
n

k

˙

pq

F ˚pξpn´kqq1,y1 q b1 F ˚pξpkqq1,y1 q

in P b1
A P “ A bR A bR A. This follows from proposition 3.5 of [LQ18] applied both to σ

and σp since F ˚ is a ring homomorphism.

Lemma 8.4. Assume that R is q-divisible of q-characteristic p. If F ˚pA1q Ă ABσ“0, then
we have

1. A bABσ“0 A » P
p8q
pp´1qσ

p“ Arξs{ξppqq and

2. A bABσ“0 A is a direct factor in A bA1 A.

Proof. First of all, the condition F ˚pA1q Ă ABσ“0 implies that there exists a natural
surjection

A bA1 A ։ A bABσ“0 A.

On the other hand, proposition 4.8 provides a canonical injection A bABσ“0 A ãÑ P
p8q
pp´1qσ

.
Let us consider now the following commutative diagram

A1rξs //

F ˚

��

A1 bR A1

F ˚

��

// A1

��
Arξs // A bR A // A bA1 A.
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The upper line sends ξ to 0 and it follows that the bottom line sends ξppq :“ F ˚pξq to 0.
In the end, we obtain the commutative diagram

A bA1 A // // A bABσ“0 A
� _

��

Arξs{ξppq » //

OO

P
p8q
pp´1qσ

(28)

from which both assertions follow.

Definition 8.5. We say that F ˚ is adapted to σ if F ˚ finite flat or rank p and
F ˚pA1q Ă ABσ“0.

Example If R has q-characteristic p and A is a localization of the polynomial ring Rrxs,
then F ˚ is always adapted.

Proposition 8.6. Assume that R is q-divisible of q-characteristic p. If F ˚ is adapted to
σ, we can make the identifications

A bA1 A “ A bABσ“0 A “ P
p8q
pp´1qσ

“ P
p0q
pp´1qσ

“ Arξs{ξppq.

Proof. Only the first equality needs a proof. We know from the second part of lemma 8.4
that A bABσ“0 A is a direct factor in A bA1 A. But the first part of the lemma tells us that
A bABσ“0 A is free of rank p over A1 and our assumption implies that A bA1 A is locally
free of the same rank p over A1. Therefore, they must be equal.

Remark By duality, lemma 8.4 tells us that, when F ˚pA1q Ă ABσ“0, we have DA{R,σ “
EndABσ“0pAq and that this is a direct factor in EndA1pAq. Moreover, the proposition says
that when F ˚ is adapted to σ, then all three rings are equal. As a consequence, we will
actually have an equality F ˚pA1q “ ABσ“0.

We denote by pZA{R,σ, xZAA{R,σ and pDA{R,σ the completions with respect to Bp
σ (or Bσ for

the last one: it gives the same thing). We may now state our Azumaya splitting result:

Theorem 8.7. Assume that R is q-divisible of positive q-characteristic p. If F ˚pA1q Ă
ABσ“0, then ΦA{R provides an A-linear ring homomorphism

DA{R,σ Ñ EndZA{R,σ
pZAA{R,σq. (29)

If moreover, F ˚ is finite flat of rank p, we obtain an isomorphism

pDA{R,σ » EndpZA{R,σ
p xZAA{R,σq. (30)

Recall that the conjunction of the hypothesis exactly means that F ˚ is adapted to σ.

Proof. Using lemma 8.4, we deduce from proposition 7.13 that there exists a canonical
morphism of A-algebras

pA bA1 Aq bA1 Axωy Ñ Axξy.
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which is an isomorphism when F ˚ is finite flat of rank p. Moreover, it follows from propo-
sition 8.2 that this morphism is compatible with the comultiplication maps. Therefore, it
produces by duality (and base change) an A-linear homomorphism of rings:

pDA{R,σ Ñ EndA1pAq bA1 xZAA{R,σ Ñ EndpZA{R,σ
p xZAA{R,σq.

Actually, since the twisted divided p-Frobenius is continuous, this map is defined before
completion. Finally, when F is finite flat, the last map is also an isomorphism and we are
done.

Remark 1. The first assertion of the theorem means that ΦA{R turns ZAA{R,σ into a
DA{R,σ-module via

Bk
σ ¨ zBpi

σ “ ΦpBk
σ ˝ zqBpi

σ .

2. As a consequence of the theorem, we see that when F ˚pA1q Ă ABσ“0, the map
ΦA{R induces an endomorphism of the A-algebra ZA{R,σ, and that it gives rise to an

automorphism of pZA{R,σ if moreover F is finite flat of rank p.

3. When F is adapted to σ, we actually have an isomorphism (before completion)

ZA{R,σ ΦÔbZA{R,σ
DA{R,σ » EndZA{R,σ

pZAA{R,σq.

Example Since Bσ ˝ z “ Bσpzq ` σpzqBσ for all z P A, we have for all n P N,
Bσ ˝ xn “ pnqqxn´q ` qnxnBσ. It follows that

Bσ ¨ 1 “ ΦpBσq “ xp´1Bp
σ,

and for n ě 1,

Bσ ¨ xn “ ΦpBσ ˝ xkq “ pnqqxn´1 ` qnxnxp´1Bp
σ “ ppnqq ` qnxpBp

σq xn´1.

In other words, the matrix of Bσ will be

»
——————–

0 qxpBp
σ ` 1 0 ¨ ¨ ¨ 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 ¨ ¨ ¨ 0 qp´1xpBp
σ ` pp ´ 1qq

Bp
σ 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl

.

Note that this is slightly different from the formulas of proposition 4.1 of [GL14] because
we use here Ogus-Vologodsky divided Frobenius (the coefficients B and not the coefficients
C).

Corollary 8.8. Assume that R is q-divisible of positive q-characteristic p and that F is
adapted to σ. Then, ΦA{R induces an equivalence between pDA{R,σ-modules and pZA{R,σ-
modules.

Proof. This is Morita equivalence. l
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In order to state the twisted Simpson correspondence, we need to recall some vocabulary.
An endomorphism uM of an abelian group M is said to be quasi-nilpotent if

@s P M, DN P N, uN
M psq “ 0.

Also, a σ-derivation on an A-module M is an R-linear map Bσ,M : M Ñ M that satisfies
the twisted Leibniz rule

@z P A, @s P M, Bσ,M pzsq “ BσA
pzqs ` σpzqBσ,M psq.

We can now reformulate the previous corollary in more down-to-earth terms:

Corollary 8.9 (Twisted Simpson correspondence). Assume that R is q-divisible of positive
q-characteristic p and F is adapted to σ. Then, the category of A-modules M endowed with
a quasi-nilpotent σ-derivation Bσ,M is equivalent to the category of A1-modules H endowed
with a quasi-nilpotent A-linear endomorphism uH .

Remark 1. The equivalence is explicit and given by

M ÞÑ H :“ MΦ“1 and H ÞÑ M :“ A bA1 H.

More precisely,
MΦ“1 :“ ts P M, @k P N, ΦpBk

σqpsq “ Bk
σpsqu

(which is not easy to compute) will be endowed with the action of Bp
σ and A bA1 H

will be endowed with the unique σ-derivation such that

Bσp1 b sq “ xp´1 b θpsq.

2. Twisted Simpson correspondence holds for example in the following situations:

(a) R a ring of prime characteristic p and x is an étale coordinate on A (Ogus-
Vologodsky).

(b) R contains a field K, q P K is a primitive pth root of unity and A “ Rrxs or
Rrx, x´1s.

(c) R is pN -torsion with p prime, the pth power map of R{p lifts to R, q is a non
trivial pth root of unity and x is an étale coordinate on A.
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