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Introduction Motivation

The classical Simpson correspondence establishes an equivalence between certain local systems and certain Higgs bundles (see [START_REF] Simpson | Higgs bundles and local systems[END_REF]). It is purely topological in nature. There exists also a Simpson correspondence in positive characteristic (see [START_REF] Ogus | Nonabelian Hodge theory in characteristic p[END_REF]) that we recall now (local form): Theorem 0.1 (Ogus-Vologodsky). Let S be scheme of positive characteristic p and X a smooth scheme over S. Then, if the relative Frobenius F : X Ñ X 1 lifts modulo p 2 , it induces an equivalence between modules with a quasi-nilpotent integrable connection on X and quasi-nilpotent Higgs bundles on X 1 .

In [START_REF] Gros | A Simpson correspondence in positive characteristic[END_REF], we generalized this theorem to higher level with a strategy of proof that was different from the original one. We want to recall it here. Let us denote by D p0q X the ring of differential operators of level zero (Berthelot's sheaf of differential operators) of X{S and by T X 1 the tangent sheaf on X 1 {S. Then, an O X -module with a quasi-nilpotent integrable connection is the same thing as a p D p0q X -module, and a quasi-nilpotent Higgs bundle on X 1 is the same thing a z S ' T X 1 -module (where S ' denotes the symmetric algebra and completion is always meant with respect to the augmentation ideal). Moreover, there exists an injective p-curvature map S ' T X 1 ãÑ D p0q X whose image is exactly the center Z from which Simpson correspondence may be deduced through Morita equivalence. Actually, if P p0q X denotes the ring of principal parts of level zero of X{S and Ω 1 X 1 is the sheaf of differential forms on X 1 {S, then this isomorphism comes by duality from an isomorphism

O XˆX1 X b O X 1 Γ ' Ω 1 X 1 » P p0q X (1) 
(where Γ ' denotes the divided power algebra).

The key of the construction consists in using a lifting F of F modulo p 2 in order to define the divided Frobenius map,

rF ˚s :" 1 p r F : Ω 1 X 1 Ñ P p0q X ,
that can be extended in order to obtain the isomorphism (1). Let us also recall how the p-curvature map may be obtained by duality. If I X (resp. I X 1 ) denotes the ideal of the diagonal of X{S (resp. X 1 {S), then one can use the divided power map ϕ Þ Ñ ϕ rps , I X 1 Ñ P p0q X in order to define a morphism Ω 1 X 1 " I X 1 {I 2 X 1 Ñ P p0q X {I X P p0q X . In fact, we obtain an isomorphism

O X b O X 1 Γ ' Ω 1 X 1 » P p0q X {I X P p0q X
(2) and the linearized p-curvature is dual to the following composition

P p0q X ։ P p0q X {I X P p0q X » O X b O X 1 Γ ' Ω 1 X 1 .
Let us give an explicit description of these constructions. Locally, we may assume that S " SpecpRq and X " SpecpAq are affine and that we are given a system of étale coordinates on X. Actually, we will concentrate on the one dimensional case and call x the coordinate. The pull back A 1 of A along the Frobenius of R comes with an étale coordinate x 1 . We denote by F ˚: A 1 Ñ A the relative Frobenius of A so that F ˚px 1 q " x p . We let ξ " 1b x´xb 1 P Ab R A and denote by ω P Ω 1 A 1 the class of ξ 1 " 1b x 1 ´x1 b 1 P A 1 b R A 1 . If we write Axξy and Axωy for the divided power polynomial rings, then the isomorphism (2) is the A-linear map Axωy » Axξy{ξ, ω rks Þ Ñ ξ rpks .

(3)

We can also describe the divided Frobenius map when we are given a lifting r F ˚of F ˚modulo p 2 . To make it simpler, we assume that r F ˚pr x 1 q " r x p . Then, from r F ˚pr ξ 1 q " 1 b r

x p ´r x p b 1 one easily derive rF ˚spωq "

p ÿ i"1
pp ´1q ¨¨¨pp ´i `1qx p´i ξ ris (4) and the isomorphism (1) is given by pArξs{ξ p qxωy » Axξy, ω rks Þ Ñ prF ˚spωqq rks .

We will mimic this strategy in the twisted case and prove in the end the following theorem (the vocabulary will be specified later on):

Theorem 0.2. Let R be a commutative ring and q P R such that R is q-divisible of q-characteristic p ą 0. Let pA, σq be a twisted R-algebra with twisted coordinate x such that σpxq " qx. If F ˚is a p-Frobenius on A which is adapted to σ, then it induces an equivalence between A-modules endowed with a quasi-nilpotent σ-derivation and A 1modules endowed with a quasi-nilpotent Higgs field.

Let us make some comments. The condition that R is q-divisible of q-characteristic p ą 0 is satisfied for example in the following situations:

1. q " 1 and CharpRq " p with p prime: this is Ogus-Vologodsky's theorem, 2. q ‰ 1 and q is a pth root of unity with p prime, 3. q P K Ă R, with K a field, is a primitive pth root of unity but p needs not be prime.

Then if we are given an R-algebra A, the existence (and uniqueness) of σ and F ˚satisfying the above properties, are guaranteed in the following situations:

1. A " Rrxs or A " Rrx, x ´1s and q P R ˆ,

2. R is p N -torsion with p prime (and the pth power map of R{p lifts to R) and x is an étale coordinate on A.

In particular, we see that when R is p N -torsion with p prime, theorem 0.2 is a q-deformation of theorem 0.1 is the sense of [START_REF] Scholze | Canonical q-deformations in arithmetic geometry[END_REF].

Description

In the first section, we study the behavior under multiplication of twisted powers in a polynomial ring. Roughly speaking, these twisted powers are the products that naturally appear when one writes down a formal solution for a q-differential equation. They depend on the constant q but also on the variable x. Actually, for more flexibility, we use another parameter y (which is y :" p1 ´qqx in practice). The point is to check that there is enough divisibility in the sense of q-integers so that we can define the twisted divided power polynomial ring in section two. We need these divided powers because we are mainly interested in the case when q is a primitive root of unity where (twisted) powers are not sufficient.

Beware that there is no such thing as a general theory of twisted divided powers and we are only able to do the twisted divided power polynomials. Nevertheless, we can define the twisted divided p-power map by using different parameters q and y on both sides, and give an explicit description of the image. We will also show that, as in the classical case, there exists a duality between polynomials and twisted divided power polynomials. In the third section, we apply the previous constructions to the case where there exists an endomorphism σ that multiplies y by q. In this situation, there exists a general theory of twisted powers and it is compatible with the previous one. We show that σ extends to twisted divided power polynomials and that it behaves nicely with respect to twisted divided p-power map as well as duality.

In the fourth section, we introduce the twisted principal parts of level zero. This is the ring where the formal solutions of a q-differential equation live, even when q is a root of unity. At this point, we really need a coordinate x and set y " x ´σpxq. Note that there exists a theory of twisted principal parts of infinite level that is sufficient when q is not a root of unity. However, we need twisted divided powers in order to obtain the correct object in general, exactly as what happens in positive characteristic for usual differential equations. One can define formally the Taylor map and check that it is given by the expected formula. Using this Taylor map, one can dualize the construction and define in section five the notion of twisted differential operator of level zero. We show that, as expected, the ring of twisted differential operators of level zero is isomorphic to the twisted Weyl algebra. In section six, we concentrate on the primitive pth root of unity situation. One can then define the twisted p-curvature map as the dual of the twisted divided p-power map introduced earlier. We show that its image is exactly the center of the twisted Weyl algebra.

Section seven is quite technical. We want to define the notion of divided p-Frobenius on the twisted divided power polynomial rings (again, we need different flavors of the divided powers on the source and the target). Actually, we were unable to give an explicit formula and will rely on a generic argument in order to show the existence of the map. In the last section, we concentrate again on the root of unity situation and we dualize the twisted divided p-Frobenius map in order to obtain a formal Azumaya splitting of the twisted Weyl algebra. It is then completely standard to derive by Morita equivalence a Simpson correspondence for twisted differential modules.

Notations

Throughout the article, R will denote a commutative ring (with unit) and q will be a fixed element of R. We need to recall here some vocabulary and notation from [START_REF] Le | On quantum integers and rationals[END_REF]. First of all, the q-analog of a natural integer m is:

pmq q :" 1 `q `¨¨¨`q m´1 .
And when q P R ˆ, the q-analog of ´m is:

p´mq q :" ´1 q `¨¨¨`1 q m .
We will also call pmq q (or p´mq q when q P R ˆ) a q-integer of R.

We might use the attribute "twisted" in place of the prefix q and say twisted analog or twisted integer for example instead of q-analog or q-integer. The same remark applies to all the forthcoming definitions.

The q-characteristic of R is the smallest positive integer p such that ppq q " 0 if it exists, and zero otherwise. We will then write q´charpRq :" p. If q ‰ 1 and p ą 0, then it means that q is a primitive pth root of unity. When q " 1, then p is nothing than the usual characteristic of R.

The ring R is said to be q-flat (resp. q-divisible) if pmq q is always regular (resp. invertible) in R unless pmq q " 0. For example, when the q-characteristic p is a prime number, then R is automatically q-divisible, and therefore also q-flat. And of course, when R is a domain (resp. a field), then R is automatically q-flat (resp. q-divisible). More generally, it is sufficient to assume that q belongs to a subdomain (resp. subfield) of R.

We also define the q-factorial of m P N as pmq q ! :" p1q q p2q q ¨¨¨pmq q and, by induction, the q-binomial coefficients ˆn k ˙q :" ˆn ´1 k ´1˙q `qk ˆn ´1 k ˙q when n, k P N. Note that we recover the twisted analog as a special occurrence of a twisted binomial coefficient since

pmq q " ˆm 1 ˙q if m P N.

Twisted powers

Recall that R denotes a commutative ring and q P R. We assume in this section that A is a commutative R-algebra (with unit) and we also fix some y P A.

We denote by Arξs the polynomial ring over A and by Arξs ďn the A-module of polynomials of degree at most n. We set for all n P N,

ξ pnq :" n´1 ź i"0
pξ `piq q yq P Arξs ďn .

(5)

If we want to make clear that these elements depend on q and y, we might write ξ pnqq,y but we will try to avoid as much as possible this clumsy notation. As we will see later, notation (5) is related to the twisted powers of [START_REF] Le | On quantum integers and rationals[END_REF] but we do not need to know this at the moment.

Note that, by definition, we have ξ p0q " 1, ξ p1q " ξ, . . . ξ pnq " ξpξ `yq ¨¨¨pξ `pn ´1q q yq, . . .

We will also use the induction formula ξ pn`1q " ξ pnq pξ `pnq q yq. (6)

Lemma 1.1. The ξ pnq 's for n P N form a basis of the A-module Arξs. More precisely, the ξ pmq 's for m ď n form a basis of Arξs ďn .

In other words, the map ξ n Þ Ñ ξ pnq defines an automorphism of Arξs as filtered A-module (by the degree).

Proof. This follows from the fact that each ξ pnq is monic of degree n.

Lemma 1.2. In Arξs, we have for all m, n P N,

ξ pmq ξ pnq " min pm,nq ÿ i"0 p´1q i piq q !q ipi´1q 2 ˆm i ˙qˆn i ˙qy i ξ pm`n´iq .
Proof. This is proved by induction on n. The formula is trivially true for n " 0 and we will have ξ pmq ξ pn`1q " ξ pmq ξ pnq pξ `pnq q yq (7) " min pm,nq ÿ i"0 p´1q i piq q !q ipi´1q 2 ˆm i ˙qˆn i ˙qy i ξ pm`n´iq pξ `pnq q yq. (

Now, we know from proposition 1.3 of [START_REF] Le | On quantum integers and rationals[END_REF] that for all 0 ď i ď m `n, we have pnq q " pm `n ´iq q ´qn pm ´iq q .

Therefore, we see that ξ pm`n´iq pξ `pnq q yq " ξ pm`n´iq pξ `pn `m ´iq q y ´qn pm ´iq q yq " ξ pm`n`1´iq ´qn pm ´iq q yξ pm`n´iq .

We can replace in (8) and get ξ pmq ξ pn`1q " S `T with S " min pm,nq ÿ i"0

p´1q i piq q !q ipi´1q 2 ˆm i ˙qˆn i ˙qy i ξ pm`n`1´iq
and T " ´min pm,nq ÿ i"0 p´1q i piq q !q ipi´1q 2 ˆm i ˙qˆn i ˙qy i q n pm ´iq q yξ pm`n´iq .

Changing i to i ´1, we obtain T " min pm,nq`1 ÿ i"1 p´1q i q n`1´i pi ´1q q !pm `1 ´iq q q ipi´1q 2 ˆm i ´1˙qˆn i ´1˙q y i ξ pm`n`1´iq . Now we can compute for 1 ď i ď min pm, nq,

piq q ! ˆm i ˙qˆn i ˙q `qn´i`1 pi ´1q q !pm ´i `1q q ˆm i ´1˙qˆn i ´1˙q " piq q ! ˆm i ˙qˆn `1 i ˙q.
And the assertion will follow once we have checked the the side cases. For i " 0, this should be clear and the case i " minpm, nq `1 has to be split in two. First, if m ď n, then i " m `1 and pm ´i `1q q " 0: there is no contribution as expected. Second, if m ą n and i " n `1, we do have

pnq q !pm ´nq q ˆm n ˙qˆn n ˙q " pn `1q q ! ˆm n `1˙qˆn `1 n `1˙q .
Remarks 1. In the case m " 1, we find ξξ pnq " ξ pn`1q ´pnq q yξ pnq which we can also directly derive from the induction formula (6).

2. The coefficients of y i ξ pm`n`iq are polynomials in q with integer coefficients. Actually, in order to prove the lemma, it would be sufficient to consider the case R " Zrts and q " t. Or even R " Qptq. However, this does not seem to make anything simpler at this point.

3. In the case q " 1, we will rather write ω instead of ξ for the extra variable. Then, the multiplication formula simplifies a little bit to ω pmq ω pnq " min pm,nq ÿ i"0

p´1q i i! ˆm i ˙ˆn i ˙yi ω pm`n´iq .
Lemma 1.3. Assume that q " 1. Then, under the morphism of A-algebras

Arωs δ / / Arωs b A Arωs ω ✤ / / 1 b ω `ω b 1, ( 9 
)
we have δ ´ωpnq ¯:"

n ÿ i"0 ˆn i ˙ωpn´iq b ω piq .
Proof. The formula is proved to be correct by induction on n. First of all, since δ is a ring homomorphism, we have δpω pn`1q q " δ ´ωpnq pω `nyq ¯" δpω pnq qδpω `nyq.

Moreover, we can write for all i " 0, . . . , n, δpω `nyq " 1 b ω `ω b 1 `ny " 1 b pω `iyq `pω `pn ´iqyq b 1.

Thus, by induction, we will have δpω pn`1q q " n ÿ i"0 ˆn i ˙pω pn´iq b ω piq qp1 b pω `iyq `pω `pn ´iqyq b 1q

" n ÿ i"0 ˆn i ˙ωpn´iq b ω piq pω `iyq `n ÿ i"0 ˆn i ˙ωpn´iq pω `pn ´iqyq b ω piq " n ÿ i"0 ˆn i ˙ωpn´iq b ω pi`1q `n ÿ i"0 ˆn i ˙ωpn´i`1q b ω piq " n`1 ÿ i"1 ˆn i ´1˙ω pn´i`1q b ω piq `n ÿ i"0 ˆn i ˙ωpn´i`1q b ω piq " n`1 ÿ i"0 ˆˆn i ´1˙`ˆn i ˙˙ω pn`1´iq b ω piq " n`1 ÿ i"0 ˆn `1 i ˙ωpn`1´iq b ω piq .

Twisted divided powers

We let as before A be a commutative R-algebra with a distinguished element y.

We denote by Axξy the free A-module on the (abstract) generators ξ rns with n P N. We will set 1 :" ξ r0s and ξ :" ξ r1s . We will also denote by I rn`1s the free A-submodule generated by all ξ rks with k ą n and Axxξyy :" lim Ð Ý Axξy{I rn`1s .

We will soon turn Axξy into a commutative A-algebra that will depend on q and y. If necessary, we will then write Axξy q,y , ξ rnsq,y , I rn`1s q,y and Axxξyy q,y .

The next result is elementary but fundamental.

Proposition 2.1. There exists a unique morphism of filtered A-modules

Arξs / / Axξy ξ pnq ✤ / / pnq q !ξ rns .

(10)

It is an isomorphism if all positive q-integers are invertible in R.

The last condition means that R is q-divisible of q-characteristic zero.

Proof. This follows from the facts that the ξ pnq 's form a basis of Arξs thanks to lemma 1.1, and that the ξ rns 's form a basis of Axξy by definition.

In the latest case, we will turn the bijection into an identification. In other words, we will write ξ rns " ξ pnq pnq q ! " ξpξ `yq ¨¨¨pξ `pn ´1q q yq 1 ¨¨¨pn ´1q q pnq q .

Proposition 2.2. The multiplication rule @m, n P N, ξ rms ξ rns " min pm,nq ÿ i"0

p´1q i q ipi´1q 2 ˆm `n ´i m ˙qˆm i ˙qy i ξ rm`n´is (11)
defines a structure of commutative A-algebra on Axξy and the linear map (10) is a morphism of A-algebras. Moreover, for all n P N, I rn`1s is an ideal in Axξy.

Note that we have ˆm `n ´i m ˙qˆm i ˙q " ˆm `n ´i n ˙qˆn i ˙q so that the formula is actually symmetric in m and n.

Proof. In order to show that these formulas define a ring structure, it is sufficient to consider the case where R " Zrts, A " Zrt, Y s are polynomial rings with q " t and y " Y . But then, we can even assume that R " Qptq and A " QptqrY s. In particular, we are in a situation where all positive q-integers are invertible in A. Then the map (10) becomes bijective. Moreover, using lemma 1.2, we see that that the multiplication on both sides coincide because

pmq q !pnq q ! ˆm `n ´i m ˙qˆm i
˙q " pm `n ´iq q !piq q ! ˆm i ˙qˆn i ˙q as one easily checks.

Finally, assume that n ą k. Then, for i ď minpm, nq, we have i ď m and therefore m `n ´i ě n ą k. It follows that ξ rms ξ rns " 0 mod I rks , and I rks is an ideal.

Example

1. For all k P N, we have ξ rks ξ " pk `1q q ξ rk`1s ´pkq q yξ rks .

2. We have pξ r2s q 2 " p2q q 2 p3q q ξ r4s ´p3q q p2q q yξ r3s `qy 2 ξ r2s .

Definition 2.3. The free A-module Axξy on the (abstract) generators ξ rns with n P N, endowed with the multiplication rule of proposition 2.2, is the twisted divided power polynomial ring over A.

Remark 1. It is important to remind that q and y are built into this definition. As already mentioned, if we want to make clear the dependence on the parameters, we will write Axξy q,y .

2. The coefficients in the multiplication formula (11) are polynomials in q. Actually if we consider the map ZrtsrY s Ñ A that sends t to q and Y to y, there exists an isomorphism of A-algebras A b ZrtsrY s ZrtsrY sxξy » Axξy.

3. The filtration of Axξy by the ideals I rn`1s will be called the divided power filtration or ideal filtration. Note that Axxξyy inherits the structure of a commutative A-algebra.

Example 1. In the case q " 1 and y " 0, we fall back onto the usual divided power polynomial ring.

2. When q ‰ 1 but still y " 0, is is possible to develop a general theory of q-divided powers, and Axξy will be the divided power polynomial ring for this theory. We do not know how to achieve this in general.

3. Assume R " A " F 2 , q " 1 and y " 1. In this situation, we have ξ 2 " ξ in Axξy but there exists no non trivial idempotent of degree 1 in the usual divided power polynomial ring. Thus we see that when q " 1 but y ‰ 0, the ring Axξy is not isomorphic to the usual divided power polynomial ring.

Lemma 2.4. Assume R is q-divisible of q-characteristic p ą 0. Then, the ideal generated by ξ in Axξy is the free A-module generated by all ξ rks with p ∤ k.

Proof. The formulas @k P N, ξ rks ξ " pk `1q q ξ rk`1s `pkq q yξ rks (12)

show that the ideal Axξyξ is contained in the A-module generated by all pkq q ξ rks 's. Since pkq q " 0 when p | k, we see that Axξyξ is actually contained in the free A-module generated by all ξ rks 's with p ∤ k. Conversely, formula (12) also tells us that pk `1q q ξ rk`1s " pkq q yξ rks mod ξ for all k. Using the fact that we always have pkp `iq q " piq q , we see that for all k P N, we have ξ rkp`1s " pkp `1q q ξ rkp`1s " pkpq q yξ rkps " 0 mod ξ Then, by induction on i, we get for 1 ă i ă p, piq q ξ rkp`is " pi ´1q q yξ rkp`i´1s " 0 mod ξ and we easily conclude since piq q P R ˆfor 0 ă i ă p because R is q-divisible.

Definition 2.5. Assume that q´charpRq " p ą 0. Then the unique A-linear map

Axωy 1,y p / / Axξy q,y ω rks ✤ / / ξ rkps (13)
is the twisted divided p-power map.

Remark

We will not need it but it should be noticed that when p is not the qcharacteristic of R, the definition has to be modified a little bit: the twisted divided power map will be given by Axωy q p ,y p / / Axξy q,y

ω rks ✤ / / ś k i"2 `ip´1 p´1 ˘ξrkps .
Theorem 2.6. Assume that q´charpRq " p ą 0. If R is q-flat, then the twisted divided power map is a ring homomorphism. If R is q-divisible, then it induces an isomorphism of A-algebras Axωy 1,y p » Axξy q,y {pξq.

Recall that the first condition means that q is a primitive pth root of unity or that q " 1 and R has positive characteristic p. Moreover, q-divisibility is satisfied if p is prime or if q belongs to a subfield K of R for example.

Proof. By definition, if we denote by u the twisted divided power map (13), we have

upω rks q " ξ rkps .
Therefore, it follows from lemma 2.4 that the map ( 14) is an isomorphism of A-modules when R is q-divisible. Thus, it only remains to show that u is a ring homomorphism when R is q-flat. In other words, we want to check that @k, l P N, upω rks ω rls q " upω rks qupω rls q.

(15)

Since

ω rks ω rls " min pk,lq ÿ i"0 p´1q i ˆk `l ´i k ˙ˆk i ˙yip ω rk`l´is ,
the left hand side of equality ( 15) is equal to

min pk,lq ÿ i"0 p´1q i ˆk `l ´i k ˙ˆk i ˙yip ξ rkp`lp´ips .
We can also compute the right hand side

ξ rkps ξ rlps " min pkp,lpq ÿ i"0 p´1q i q ipi´1q 2 ˆkp `lp ´i kp ˙qˆk p i ˙qy i ξ rpk`pl´is .
Our assertion therefore follows from the twisted Lucas theorem (proposition 2.13 of [START_REF] Le | On quantum integers and rationals[END_REF]) thanks to lemma 2.7 below.

Lemma 2.7. Assume that p :" q´charpRq ą 0 and R is q-flat. Then

p´1q ip " p´1q i q ippip´1q 2
Proof. If p is odd, then either i is even or ip is odd and we may therefore write q ippip´1q 2 " pq p q ipip´1q 2 " 1 because q p " 1. Now one easily sees that p´1q ip " pp´1q p q i " p´1q i .

If we assume that p is even so that p " 2k with k P N, then we know from proposition 1.11 of [START_REF] Le | On quantum integers and rationals[END_REF] that, since R is q-flat, we have q k " ´1 and the formula also holds.

We want to consider now the paring of A-modules ă , ą : Arθs ˆAxωy Ñ A given by @m, n P N, ă θ m , ω rns ą "

" 1 if n " m 0 otherwise.
Strictly speaking, this is not a perfect paring. However, it induces for each n P N, a perfect pairing between the A-submodule (or quotient)

Arθs ďn » Arθs{θ n`1
of polynomials of degree at most n and the A-submodule (or quotient)

Axωy ďn » Axωy{I rn`1s
of twisted divided power polynomials of degree at most n. Alternatively, we can say that it induces perfect parings between Arrθss and Axωy as well as between Arθs and Axxωyy.

Proposition 2.8. Assume that q " 1. Then,

multiplication on Arθs is dual to the morphism of A-algebras

Axωy δ / / Axωy b Axωy ω rns ✤ / / ř n i"0 ω ris b ω rn´is .
(16)

multiplication on Axωy is dual to the morphism of A-algebras

Arθs / / Arθs b Arθs θ ✤ / / 1 b θ `θ b 1 ´yθ b θ.
Proof. We essentially use the fact that the θ n 's and the ω rns 's become dual basis under our pairing and that the dual to a matrix is its transpose.

Since multiplication on the polynomial ring Arθs is given by

θ m θ n " θ m`n " ÿ m`n"k θ k ,
comultiplication on Axωy will be given by

ω rks Þ Ñ ÿ m`n"k ω rms b ω rns
and changing indices (k becomes n, m becomes i and therefore n " k ´m has to be turned into n ´i) will give what we want.

We also have to show that this comultiplication map is a ring morphism. As usual, we may assume that all the non zero integers are invertible. We may then refer to lemma 1.3 which identifies the morphism (16) with the morphism (9).

We proceed in the same way for the second assertion. Multiplication on Axωy is given by

ω rms ω rns " ÿ m`n´i"k p´1q i ˆk m ˙ˆm i ˙yi ω rks
and comultiplication will therefore be given by

θ k Þ Ñ ÿ m`n´i"k p´1q i ˆk m ˙ˆm i ˙yi θ m b θ n . ( 17 
)
On the other hand, we have

p1 b θ `θ b 1 ´yθ b θq k " ÿ iďjďk ˆk j ˙ˆj i ˙p1 b θq k´j pθ b 1q j´i p´yθ b θq i " ÿ iďjďk ˆk j ˙ˆj i ˙p´1q i y i θ j b θ k´j`i
which is exactly the same as (17) (up to the renaming of m into j).

Twisted divided powers and twisted algebras

We assume now that A is a twisted commutative R-algebra (a commutative R-algebra endowed with an R-linear ring endomorphism σ A ) and that σ A pyq " qy. We will investigate the relation of σ A with twisted divided powers relative to q and y.

We endow the polynomial ring Arξs with the unique σ A -linear endomorphism such that σ A,y pξq " ξ `y.

In practice, we will usually write σ instead of σ A or σ A,y in order to make the notations lighter.

Proposition 3.1. We have in Arξs,

@n P N, σ n pξq " ξ `pnq q y. ( 18 
)
Actually, if σ is bijective on A and q P R ˆ, then σ is bijective on Arξs and formula (18) holds for any n P Z.

Proof. By induction, we will have for all n P N, σ n pξq " σpξ `pn ´1q q yq " pξ `yq `pn ´1q q qy " ξ `p1 `qpn ´1q q qy and we know that 1 `qpn ´1q q " pnq q .

Assume that σ is bijective on A and q P R ˆ. Then, from σpyq " qy, we get σ ´1pyq " q ´1y. If moreover, σ is bijective on Arξs, then we deduce from the equality σpξq " ξ `y that ξ " σ ´1pξ `yq " σ ´1pξq `σ´1 pyq " σ ´1pξq `q´1 y and it follows that σ ´1pξq " ξ ´q´1 y.

Conversely, this formula can be used to define an inverse to σ on Arξs. Finally, applying this to σ n (and therefore replacing y by pnq q y and q by q n ), we obtain as claimed:

σ ´npξq " ξ ´q´n pnq q y " ξ `p´nq q y. Remark 1. As a consequence of the proposition, we see that if q´charpRq " p ą 0, then σ p pξq " ξ (and of course, also σ p pyq " y).

2. As usual, most formulas will be polynomial in q, y and ξ. More precisely, we may usually reduce to the case R " Zrts (and often to R " Qptq) and q " t. In other words, we would work in Zrt, Y, ξs with σptq " t, σpY q " tY and σpξq " ξ `Y .

Recall that we defined in section 4 of [START_REF] Le | On quantum integers and rationals[END_REF] the twisted powers of f P Arξs with respect to σ as f pnqσ " f σpf q ¨¨¨σ n´1 pf q.

Corollary 3.2. We have

@n P N, y pnqσ " q npn´1q 2
y n and ξ pnqσ " ξ pnqq,y :"

n´1 ź i"0 pξ `piq q yq.
Proof. Immediately follows from the condition σpyq " qy and proposition 3.1.

We will drop the index σ when we believe that no confusion will arise (in particular, this is consistent with the notations of the previous section). But we might also write y pnqq and ξ pnqq,y respectively if we want to insist on the choice of q and y.

We will need below the following formula:

Lemma 3.3. In Arξs, we have for all n P N,

σpξ pnq q " n ÿ i"0 piq q ! ˆn i ˙qy i ξ pn´iq .
Proof. By induction, we will have σpξ pnq q " σpξ pn´1q qσ n pξq " σpξ pn´1q qpξ `pnq q yq " ξσpξ n´1 q `pnq q yσpξ pn´1q q " ξ pnq `pnq q y n´1 ÿ i"0

piq q ! ˆn ´1 i ˙qy i ξ pn´1´iq " ξ pnq `n ÿ i"1 pnq q pi ´1q q ! ˆn ´1 i ´1 ˙qy i ξ pn´iq
and the result follows from the identity

pnq q pi ´1q q ! ˆn ´1 i ´1
˙q " piq q ! ˆn i ˙q.

Proposition 3.4. The unique σ-linear endomorphism of Axξy such that @n P N, σpξ rns q " n ÿ i"0

y i ξ rn´is ,
is a ring homomorphism. Moreover, the map (10) is a morphism of twisted R-algebras.

Recall that a morphism of twisted rings (or algebras) is a morphism which commutes with the given endomorphisms.

Proof. As we did several times in section 2), we can easily reduce to the case of R " Qptq and q " t and we may therefore assume all q-integers are invertible in R. Then the map (10) becomes bijective. We may then use lemma 3.3 and the equality pn ´iq q !piq q ! ˆn i ˙q " pnq q !.

Again, if necessary, we will write σ q,y to make clear the dependence in q and y.

Remark 1. The endomorphism σ of Axξy is not continuous and does not extend to a ring endomorphism of Axxξyy.

2. We have to be careful that, in general, σ p will not be the identity on Axξy even if it is so on Arξs. For example, if q " ´1, we will have σpξq " ξ `y and σpξ r2s q " ξ r2s `yξ `y2 , and therefore σ 2 pξ r2s q " σpξ r2s q ´yσpξq `y2 " ξ r2s `yξ `y2 ´ypξ `yq `y2 " ξ r2s `y2 .

Actually, we can give a general formula for the powers of σ on Axξy:

Proposition 3.5. We have @p P N, @n P N, σ p pξ rns q "

n ÿ i"0 ˆp `i ´1 i ˙qy i ξ rn´is .
Proof. By induction, we will have

σ p`1 pξ rns q " σ ˜n ÿ k"0 ˆp `k ´1 k ˙qy k ξ rn´ks " n ÿ k"0 ˆp `k ´1 k ˙qσpy k qσpξ rn´ks q " n ÿ k"0 ˆp `k ´1 k ˙qq k y k ˜n´k ÿ j"0 y j ξ rn´k´js " n ÿ i"0 ˜i ÿ k"0 ˆp `k ´1 k ˙qq k ¸yi ξ rn´is .
In order to get the formula, is is sufficient to notice that, by definition (and induction), we have

i ÿ k"0 ˆp `k ´1 k ˙qq k " ˆp `i i ˙q.
The multiplication rule is quite involved in Axξy but the twisted multiplication is much simpler:

Proposition 3.6. We have @n, m P N, ξ rns σ n pξ rms q " ˆm `n n ˙qξ rn`ms

Proof. We may assume that all q-integers are invertible in R and use assertion 1) of lemma 4.3 of [START_REF] Le | On quantum integers and rationals[END_REF] which gives ξ pnq σ n pξ pmq q " ξ pn`mq .

Given any natural integer p, we have σpy p q " σpyq p " pqyq p " q p y p .

We may therefore also apply all the above considerations to the situation q p P R and y p P A, and consider the twisted R-algebra Axωy q p ,y p . In the particular case q´charpRq " p, we fall onto Axωy 1,y p . Recall that the twisted divided power map induces an isomorphism of A-algebras Axωy 1,y p » Axξy q,y {pξq.

when R is q-divisible of positive q-characteristic p.

Proposition 3.7. Assume R is q-divisible of q-characteristic p ą 0. Then, the canonical map Axξy q,y Ñ Axξy q,y {pξq » Axωy 1,y p (

is a morphism of twisted A-algebras.

Proof. If we denote by u the twisted divided p-power map (13), we need to check that @k P N, pu ˝σqpω rks q " pσ ˝uqpω rks q mod ξ.

(20)

From lemma 3.3, we know that

σpω rks q " k ÿ i"0 y ip ω rk´is
and it follows that pu ˝σqpω rks q "

k ÿ i"0 y ip ξ rkp´ips
On the other hand, using lemma 3.3 again, we have pσ ˝uqpω rks q " σpξ rkps q " kp ÿ i"0

y i ξ rkp´is
and we are done thanks to lemma 2.4.

The next result is interesting mostly in the case q " 1 and we will therefore use ω instead of ξ.

Proposition 3.8. We have @f P Arθs, @g P Axωy, ă p1 ´yθqf, σpgq ą" σpă f, g ąq Proof. We have y " p1 ´qqx ´h and therefore σpyq " p1 ´qqpqx `hq ´h " qp1 ´qqx `qh " qy.

As we did before, we will endow the polynomial ring Arξs with the unique σ-linear ring endomorphism such that σpξq " ξ `y.

We now review some material from [START_REF] Le | Formal confluence of quantum differential operators[END_REF]. We endow P :" Ab R A with the endomorphism σ P :" σ A b Id A . We will always see P as an A-module via the action on the left and simply write z :" z b 1 P P when z P A. By contrast, we set z :" 1 b z. We will also write the morphism giving the right action as Θ :

A / / P z ✤ / / z.
We denote by I Ă P the kernel of multiplication on A and consider the modules of twisted principal parts of infinite level P p8q pnqσ :" P{I pn`1qσ with

I pnqσ " IσpIq ¨¨¨σ n´1 pIq
There exists a unique morphism of twisted R-algebras

Arξs / / P ξ ✤ / / x ´x. (21) 
We assumed above that x is a twisted coordinate on A: it means that the map (21) induces an isomorphism Arξs{ξ pn`1q » P p8q pnqσ for all n P N. We may then see Arξs as a subring of the ring p P p8q σ

:" lim Ð Ý P p8q pnqσ of twisted principal parts of infinite order. We might index all these objects with A{R if we want to make clear the dependence on A and R. In order to lighten the notations, we will sometimes drop the index A{R.

Remark

1. Unlike the infinite level analog, this notion depends on q and x and not only on σ. the composition of the twisted Taylor map and the projection. When there is no risk of confusion, we might simply write Θ for any of these Taylor maps.

If we still denote by

We can give an explicit expression for the twisted Taylor map as we shall see shortly. First of all, since x is a twisted coordinate on A, we know from proposition 2.10 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF] that there exists a unique R-linear endomorphism B σ,A of A such that @z 1 , z 2 P A, B σ,A pz 1 z 2 q " z 1 B σ,A pz 2 q `σpz 2 qB σ,A pz 1 q (a σ-derivation) and B σ,A pxq " 1. We will often simply write B σ , but this endomorphism should not be confused with the abstract generator of the twisted Weyl algebra that we will denote later in the same way.

Proposition 4.6. We have

@z P A, p Θ p0q pzq " 8 ÿ k"0 B k σ pzqξ rks .
Proof. Recall from proposition 5.5 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF] that there exists a family of endomorphisms

B rks σ of A such that @z P A, p Θ p8q pzq " 8 ÿ k"0 B rks σ pzqξ k .
The proposition then follows from corollary 6.2 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF] where we showed that @k P N, @z P A, B k σ pzq " pkq q !B rks σ pzq.

Example

1. We always have Θpxq " x `ξ.

2. We have Θpx 2 q " x 2 `pp1 `qqx `hqqξ `p1 `qqξ r2s .

3. If σpxq " qx with q P R ˆand x P A ˆ, one can show that Θ ˆ1 x ˙" 8 ÿ k"0 p´1q k pkq q !ξ rks q kpk`1q 2

x k`1 " 1 x ´ξ x 2 `p1 `qqξ r2s q 3 x 3 ´¨¨¨.

We will denote by A Bσ "0 :" H 0 Bσ pAq " tz P A, B σ pzq " 0u the subalgebra of horizontal sections of A.

Proposition 4.7. There exists a left exact sequence

A Bσ "0 / / A can / / Θ / / p P p0q σ .
Proof. We have Θpzq " ř B k σ pzqξ rks and it follows that Θpzq " z if and only if B σ pzq " 0. As a consequence, when R is q-divisible of q-characteristic p ą 0, we obtain an inclusion

Proposition 4.8. There exists an epi-mono factorization

P A{R ։ A b A Bσ "0 A ãÑ p P p0q A{R . When R is q-divisible of q-characteristic p ą 0,
A b A Bσ "0 A ãÑ P p8q A{R,pp´1qσ » P p0q A{R,pp´1qσ
Proof. If an element of P is sent to 0 P p P p0q , then it is also sent to 0 in P p0q p0qσ " A and it therefore belongs to I. Now an element of the form z ´z P I is sent to p Θ p0q pzq ´z "

8 ÿ k"1 B k σ pzqξ rks P p P p0q
and this is equal to 0 if and only if B σ pzq " 0. Thus we see that the kernel of P Ñ p P p0q is the ideal J generated by the z ´z with z P A Bσ"0 and we have P{J " A b A Bσ "0 A.

When q´charpRq " p ą 0, the image of ξ ppq in Axξy is ppq q !ξ rps " 0. Therefore, there exists an epi-mono factorization Arξs ։ Arξs{ξ ppq Ñ Axξy inducing an isomorphism of A-modules Arξs{ξ ppq » Axξy{I rps because R is q-divisible. The second assertion follows immediately. Remark If R were not q-divisible (but still q´charpRq " p ą 0), we would still get a decomposition p P 

Twisted differential operators of level zero

We assume again that A is a twisted commutative algebra with twisted coordinate x and we set y :" x ´σpxq.

If M is an A-module, when we write P p0q pnqσ b 1 A M , we mean that we endow P p0q pnqσ with the action given by the twisted Taylor map. In other words, we have @z P A, s P M, ξ rks b 1 zs " Θpzqξ rks b 1 s.

In particular, on P p0q pnqσ b 1 A P p0q pmqσ , we use the natural action of A for the left structure (action on the right) and the twisted Taylor map for the right structure (action on the left). Also, it will be convenient to set

p P p0q σ p b 1 A p P p0q σ :" lim Ð Ý ´Pp0q pnqσ b 1 A P p0q pmqσ ¯.
This is the set of infinite sums ř i,jPN z i,j ξ ris b 1 ξ rjs with z i,j P A (with Taylor switch on coefficients). Definition 5.1. If M and N are two A-modules, a twisted differential operator of level 0 of from M to N is an A-linear map

P p0q pnqσ b 1 A M Ñ N.
In general, we will write Diff p0q n,σ pM, N q " Hom A pP p0q pnqσ b 1 A M, N q and Diff p0q σ pM, N q " lim Ý Ñ Diff p0q n pM, N q.

In the case N " M , we will simply write Diff p0q n,σ pM q and Diff p0q σ pM q. Moreover, we set D which are given by the same formulas. In practice, we should simply denote all these maps by δ.

Proposition 5.3. There exists a commutative diagram

A b R A δ P / / δ p P p8q σ p δ p8q / / p P p0q σ p δ p0q A b R A b R A P b 1 A P / / p P p8q σ b 1 A P p8q σ / / p P p0q σ b 1 A p P p0q σ
where the first horizontal map sends

z 1 b z 2 to z 1 b 1 b z 2 .
Proof. Follows from theorem theorem 3.5 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF].

Proposition 5.4. The comultiplication map p δ p0q is a homomorphism of rings.

Of course, the same result holds for the partial comultiplications.

Proof. First, we may clearly assume that A " Rrxs is the polynomial ring in the variable x. We can then reduce to the case R " Zrt, ss with q " t and h " s and finally to the case R " Qptqrss. In other words, we may assume that all q-integers are invertible in R.

Then the assertion follows from proposition 4.4 and theorem 3.5 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF] since we know that the comultiplication map is a ring morphism on p P p8q σ . Actually, this last result itself follows from the fact that comultiplication is already a ring morphism on P (it corresponds to the projection that forgets the middle term). 

A P p0q pmqσ b 1 A L Idb 1 A Ψ / / P p0q pnqσ b 1 A M Φ / / N. ( 22 
)
Proposition 5.6. Composition of twisted differential operators of level 0 is associative. In particular, it turns D p0q A{R,σ into a ring.

Proof. We can reduce as usual to the case where R " Qptqrss, q " t and h " s and use the analogous result for twisted differential operators of infinite level (see Proposition 4.7 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF]).

Recall that we introduced in Definition 5.4 of [START_REF] Le | Twisted calculus[END_REF] the twisted Weyl algebra D A{R,σ,Bσ associated to the twisted differential algebra A: this is the Ore extension of A by σ and B σ as in proposition 1.4 of [START_REF] Bourbaki | Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples[END_REF]). Concretely, this is the free A-module on abstract generators B k σ with the commutation rule B σ ˝z " σpzqB σ `Bσ pzq.

Proposition 5.7. There exists an isomorphism of filtered R-algebras D A{R,σ,Bσ » D p0q A{R,σ .

In the future, we will identify these two rings and simply write D A{R,σ .

Proof. There exists an obvious isomorphism of filtered A-modules

D A{R,σ,Bσ » D p0q A{R,σ
obtained by making the B k σ 's dual to the ξ rks 's. We only need to show that this is a morphism of rings and, as usual, we may assume that all q-integers are invertible. But then, it follows from proposition 4.4 that there exists an isomorphism of filtered rings D p8q A{R,σ » D p0q A{R,σ . On the other hand, there exists also a canonical isomorphism of filtered rings D A{R,σ,Bσ » D p8q A{R,σ as we saw in theorem 6.3 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF]. Our isomorphism is obtained by composing them.

Remark

1. This last result might give the feeling that we have been working quite hard for nothing: defining twisted divided powers required some energy. But this is not true. The dual approach to the twisted Weyl R-algebra introduces new tools that will prove to be quite profitable. Recall that it is also possible to define twisted differential operators of infinite level inductively as operators on the ring of functions and avoid the introduction of principal parts (and twisted powers). Again, this might sound simpler but it is not the best way to do it. Proposition 5.8. Assume R is q-divisible and q´charpRq " p ą 0. Then, there exists a commutative diagram

The canonical map

End A Bσ "0 pAq / / End R pAq D A{R,σ / / / / D A{R,σ / / ? O O D p8q A{R,σ ? O O Diff p0q p´1,σ pAq ? O O » 7 7 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ Diff p8q p´1,σ pAq. ? O O » g g ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖
Proof. This is obtained by duality from proposition 4.8.

Twisted p-curvature

As before, A denotes a twisted R-algebra with coordinate x. In particular, we have σpxq " qx `h with q, h P R and we set y :" x ´σpxq. We also assume in this section that q´charpRq " p ą 0. The upper left maps are given by left and right actions of A on P and it follows that the upper line is commutative. And all the squares are commutative. Therefore, the second line must be commutative too. The upper map δ comes from definition 5.2 and the bottom one is the comultiplication map that we met in proposition 2.8. The bottom vertical maps are induced by the twisted divided p-power map (13).

Proof. By definition, all horizontal arrows are given by compatible formulas on the generators. However, the upper right tensor product is obtained by using the Taylor map on the right factor although the down right tensor product uses the canonical structure on both side. But this does not matter thanks to lemma 6.1.

Proposition 6.3. Assume that R is q-divisible. Then, there exists a (unique) A-linear

homomorphism of R-algebras Arθs / / D A{R,σ θ ✤ / / B p σ ( 23 
)
It induces an isomorphism between Arθs and the centralizer AZ A{R,σ of A in D A{R,σ and an isomorphism between A Bσ"0 rθs and the center Z A{R,σ of D A{R,σ .

Proof. We know from the first part of proposition 2.8 that the bottom map of proposition 6.2 is dual to multiplication on the polynomial ring Arθs. And by definition, the top map is dual to multiplication on D A{R,σ . Moreover, since we assume that R is q-divisible, it follows from theorem 2.6 that the bottom vertical maps of proposition 6.2 are bijective. Therefore, by duality, the top vertical maps corresponds to an injective morphism of R-algebras Arθs Ñ D A{R,σ that sends θ to B p σ . Since Arθs is a commutative ring, its image is contained into the centralizer AZ A{R,σ of A in D A{R,σ . Conversely, since R is q-flat, it follows from the first part of lemma 6.4 below that the image of Arθs is exactly AZ A{R,σ . The assertion about Z A{R,σ is then a consequence of the last assertion of the same lemma. Lemma 6.4. We denote by ArB p σ s (resp. A Bσ "0 rB p σ s) the A-submodule (resp. A Bσ "0module) of D A{R,σ generated by B pk σ with k P N. Then, 1. if A is q-flat, we have AZ A{R,σ Ă ArB p σ s, 2. we always have ArB p σ s X Z A{R " A Bσ"0 rB p σ s X AZ A{R,σ .

Be careful that, in this lemma, ArB p σ s and A Bσ"0 rB p σ s denote the A-submodules generated by the powers of B p σ which are a priori different from the R-subalgebra generated by A and B p σ (as long as this last ring is not known to be commutative for example).

Proof. If ϕ :" ř z k B k σ P D A{R,σ
, we can use proposition 6.4 from [START_REF] Le | Formal confluence of quantum differential operators[END_REF] and write

ϕx " ÿ z k B k σ x " ÿ z k pσ k pxqB k σ `pkq q B k´1 σ q " ÿ σ k pxqz k B k σ `ÿpkq q z k B k´1 σ " ÿ ´σk pxqz k `pk `1q q z k`1 ¯Bk σ .
Therefore, if ϕ commutes with x, we will have

@k ě 0, σ k pxqz k `pk `1q q z k`1 " xz k .
For k " 0, we obtain z 1 " 0. If k is a positive integer such that z k´1 " 0, we must have pkq q z k " 0. If we assume that A is q-flat, we must have pkq q " 0 or z k " 0. Since q´charpRq " p ą 0, this exactly means that ϕ P ArB p σ s.

There exists a commutative diagram

A 1 rξs F ˚/ / Arξs A 1 b R A 1 F ˚bF ˚/ / A b R A
where the vertical map sends ξ to 1 b x ´x b 1.

We will frequently need the twisted binomial formula (see proposition 2.14 of [START_REF] Le | On quantum integers and rationals[END_REF] for example) that we recall now:

@z 1 , z 2 P A, @n P N, n´1 ź i"0 pq i z 1 `z2 q " n ÿ k"0 q kpk´1q 2 ˆn k ˙qz k 1 z n´k 2 . ( 24 
)
Now, we become also interested in the Frobenius version of the twisted powers. Recall that we write q 1 :" q p and y 1 :" ppq q y and we have therefore

@n P N, ξ pnq q 1 ,y 1 :" n´1 ź i"0 pξ `piq q p ppq q yq " n´1 ź i"0 pξ `ppiq q yq " n´1 ź i"0 `x `ξ ´qpi x ˘.
Definition 7.3. The p-Frobenius coefficients are the polynomials

A n,i :" n ÿ j"0 p´1q n´j t ppn´jqpn´j´1q 2
ˆn j ˙tp ˆpj i ˙t P Zrts.

Remark

We will show later that A n,i " 0 unless n ď i ď pn but we may observe right now that A n,pn " 1 and that A n,i " 0 for i ą pn.

From now on, we will often omit the index in the p-Frobenius maps and simply write F ˚.

Proposition 7.4. If F ˚is a p-Frobenius on A, then we have @n P N, F ˚pξ pnq q 1 ,y 1 q " pn ÿ i"0

A n,i pqqx pn´i ξ piqq,y where the A n,i are the p-Frobenius coefficients.

Proof. Using the twisted binomial formula (24) in the case z 1 " x p and z 2 " ´pξ `xq p (with q p instead of q), we have

F ˚pξ pnq q 1 ,y 1 q " n´1 ź i"0 `px `ξq p ´qpi x p ˘" " n ÿ j"0 p´1q n´j q ppn´jqpn´j´1q 2
ˆn j ˙qp x ppn´jq px `ξq pj .

Using lemma 7.5 below, we obtain Proof. We have for all i P N, ξ pi`1q " ξ piq px `ξ ´qi xq and it follows that ξ piq px `ξq " ξ pi`1q `qi xξ piq . Therefore, if the formula holds for some m, we will have

F ˚pξ pnq q 1 ,y 1 q " n ÿ j"0
px `ξq m`1 " m ÿ i"0 ˆm i ˙qx m´i ξ piq px `ξq " m ÿ i"0 ˆm i ˙qx m´i pξ pi`1q `qi xξ piq q " m`1 ÿ i"1 ˆm i ´1˙q x m´i`1 ξ piq `m ÿ i"0 ˆm i ˙qq i x m`1´i ξ piq " m`1 ÿ i"0 ˜ˆm i ´1˙q `qi ˆm i ˙q¸x m`1´i ξ piq " m`1 ÿ i"0 ˆm `1 i ˙qx m´i ξ piq .
As a particular case of the proposition, we have the following:

Corollary 7.6. If F ˚is a p-Frobenius on A, then we have

F ˚pξq " p ÿ i"1 ˆp i ˙qx p´i ξ piq . l
As a preparation for the next statement, we prove now the following exchange lemma:

Lemma 7.7. We have for all m, n P N,

q npn´1q 2 p1 ´qq n pnq q ! ˆm n ˙q " n ÿ k"0 p´1q n´k q kpk´1q 2 ˆn k ˙qq mpn´kq .
It means in particular that the right hand side is zero unless m ě n.

Proof. Using the twisted binomial formula (24) for z 1 " 1 and z 2 " ´qm , we get

n ÿ k"0 p´1q n´k q kpk´1q 2 ˆn k ˙qq mpn´kq " n´1 ź k"0 pq k ´qm q " n´1 ź k"0 q k n´1 ź k"0 p1 ´qm´k q " q npn´1q 2 p1 ´qq n n´1 ź k"0 pm ´kq q " q npn´1q 2
p1 ´qq n pnq q ! ˆm n ˙q.

Lemma 7.8. Given n, i P N, we have A n,i " 0 unless n ď i ď pn in which case q ipi´1q 2 p1 ´qq i´n piq q !A n,i pqq " ppq n q pnq q p !q p npn´1q 2 i´n ÿ l"0 p´1q i´n`l q lpl´1q 2 ˆi l ˙qˆi ´l n ˙qp .

Proof. We will compute LHS :" q ipi´1q 2 p1 ´qq i piq q !A n,i pqq.

In order to do that, we use lemma 7.7 twice (with q p instead of q the second time):

LHS " q ipi´1q 2 p1 ´qq i piq q ! n ÿ k"0 p´1q n´k q ppn´kqpn´k´1q 2 ˆn k ˙qp ˆpk i ˙q " n ÿ k"0 p´1q n´k q ppn´kqpn´k´1q 2 ˆn k ˙qp ˜q ipi´1q 2 p1 ´qq i piq q ! ˆpk i ˙q" n ÿ k"0 p´1q n´k q p pn´kqpn´k´1q 2 ˆn k ˙qp ˜i ÿ l"0 p´1q i´l ˆi l ˙qq lpl´1q 2 q pkpi´lq " i ÿ l"0 p´1q i´n`l ˆi l ˙qq lpl´1q 2 ˜n ÿ k"0 p´1q k q p pn´kqpn´k´1q 2 ˆn k ˙qp q pkpi´lq ¸. " i´n ÿ l"0 p´1q i´n`l ˆi l ˙qq lpl´1q 2 ˜qp npn´1q 2 p1 ´qp q n pnq q p ! ˆi ´l n ˙qp "
ppq n q pnq q p !q p npn´1q 2 p1 ´qq n i´n ÿ l"0 p´1q i´n`l q lpl´1q 2 ˆi l ˙qˆi ´l n ˙qp since 1 ´qp " p1 ´qqppq q . When i ă n, the right hand side is zero. Since A n,i is a polynomial in q, it has to be zero too. Otherwise, we obtain the expected equality by moving p1 ´qq n to the left hand side.

Remark

In particular, we have pnq q !A n,n pqq " ppq n q pnq q p !q pp´1q npn´1q 2 .

Proposition 7.9. Given n, i P N, there exists a unique B n,i P Zrts such that

piq t !A n,i " pnq t p !ppq n t B n,i ptq,
where A n,i denote the p-Frobenius coefficient. We have B n,i " 0 unless n ď i ď pn with extreme values B n,n pqq " q pp´1qnpn´1q 2 and B n,pn pqq "

n ź k"1 p´1 ź i"1 pkp ´iq q .
Proof. Any non zero t-integer or t p -integer is prime to both 1 ´t and t. The first assertion therefore follows from lemma 7.8. The precise values in the case i " n and i " pn are Proof. This is a direct consequence of the definitions. More precisely, since A n,i " 0 for i ă n, we have F ˚pξ pnq q 1 ,y 1 q " ř pn i"n A n,i pqqx pn´i ξ piqq,y and this is sent to

pn ÿ i"n
A n,i pqqx pn´i piq q !ξ risq,y " pn ÿ i"n pnq q p !ppq n q B n,i pqqx pn´i ξ risq,y " pnq q p !ppq n q rF ˚spω rns q p ,y q.

Proposition 7.12. If F ˚is a p-Frobenius on A, then the divided Frobenius map rF ˚s : A 1 xωy q p ,y Ñ Axξy q,y is a homomorphism of rings.

Proof. We want to check that for all m, n P N, we have rF ˚spω rms q p ,y ω rns q p ,y q " rF s ˚pω rms q p ,y qrF ˚spω rns q p ,y q.

(26)

Note that it is sufficient to do the case R " Zrts, t " q and A " Rrxs, and then specialize our variables. In particular, we may assume that q´charpRq " 0 in which case we will identify Arξs with Axξy q,y . Then, this essentially follows from the fact that F ˚itself is a ring homomorphism. But we need to be careful. By F ˚-linearity, the left hand side of (26) is equal to

LHS " min pm,nq ÿ i"0 p´1q i q pipi´1q 2 ˆm `n ´i m
˙qp ˆm i ˙qp p1 ´qq i x pi rF ˚spω rm`n´is q p ,y q From proposition 7.11, we see that, for all i ď m `n, we have piq q p ! ˆm `n i ˙qp ppq i q F ˚pξ pm`n´iq q 1 ,y 1 q " pm `nq q p !ppq n`m q rF ˚spω rm`n´is q p ,y q and it follows that pm `nq q p !ppq m`n q LHS " min pm,nq ÿ i"0

p´1q i q pipi´1q 2 piq q p ! ˆm `n ´i m
˙qp ˆm i ˙qp ˆm `n i ˙qp ppq i q p1 ´qq i x pi F ˚pξ pm`n´iq q 1 ,y 1 q On the other hand, if we denote the right hand side of (26) by by RHS, we have pm `nq q p !ppq m`n q RHS " ˆm `n n ˙pq pmq q p !ppq m q rF s ˚pω rms q p ,y qpnq q p !ppq n q rF s ˚pω rns q p ,y q " ˆm `n n ˙qp F ˚pξ pmq q 1 ,y 1 qF ˚pξ pnq q 1 ,y 1 q " ˆm `n n ˙pq F ˚pξ pmq q 1 ,y 1 ξ pnq q 1 ,y 1 q and finally pm `nq q p !ppq m`n q RHS " ˆm `n n ˙qp min pm,nq ÿ i"0 p´1q i piq q p !q pipi´1q 2 ˆm i ˙qp ˆn i ˙qp ppq i q p1 ´qq i x pi F ˚pξ pm`n´iq q 1 ,y 1 q. Now, we may identify both sides because ˆm `n ´i m ˙qp ˆm `n i ˙qp " ˆm `n n ˙qp ˆn i ˙qp .

Proposition 7.13. If R has positive q-characteristic p and F ˚is a p-Frobenius on A, then rF ˚s induces a homomorphism of A-algebras

pArξs{ξ ppqq,y qxωy 1,p1´qqx p » Arξs{ξ ppqq,y b A 1 A 1 xωy 1,y Ñ Axξy q,y
When R is q-divisible, this is an isomorphism.

Proof. There exists such a map because ξ ppq is sent to ppq q ξ rps " 0. Moreover, when R is q-divisible, this map induces a bijection between basis on both sides as we can easily check. More precisely, one may define a notion of degree on both sides by setting degpξ rns q " n on the right hand side and degpξ k ω rns q " k `pn when k ă p on the left hand side. By definition, this homomorphism preserves the degrees and it is therefore sufficient to prove that it induces a bijection on the associated graded modules. But then, ξ k ω rns is sent to B n,pn pqqξ rpn`ks and one has B n,pn pqq " ppp ´1q q !q n P R ŝince R is q-divisible.

Remark

1. This homomorphism is continuous. Actually, it preserves the ideal filtrations. Note however that it is not an isomorphism of filtered modules when R is q-divisible: the filtration on the left hand side is usually strictly smaller that the filtration on the right hand side.

It is tempting to introduce a variant of the p-Frobenius coefficients by setting

C n,i " B n,i {B n,pn P Qrts. When R is q-divisible, C n,i pqq is well defined and satisfies piq q !A n,i pqq " ppnq q !C n,i pqq.

Then, if we replace B's with C's in the definition of rF ˚s, the modified version would send monic to monic (this was our approach in [START_REF] Gros | A Simpson correspondence in positive characteristic[END_REF]). If moreover, we assume that q´charpRq " p, then the modified version of rF ˚s would still be a ring homomorphism (but this is not true anymore in general: this is why we had to be careful in the proof of proposition 7.12).

3. There exists an intermediate alternative for the coefficients that is only defined when R is q-divisible but which is always a ring homomorphism and coincides with the C's when the q-characteristic is p. This is obtained by dividing out B n,i pqq by ppp´1q q !q n .

Twisted Simpson correspondence

We let A be a twisted R-algebra with twisted coordinate x such that σpxq " qx. We fix an endomorphism F R of R and let F ˚be a p-Frobenius on A with respect to F R and x for some p P Nzt0u. We are mostly interested in the case where R is q-divisible of positive q-characteristic p.

Proposition 8.1. Assume that R is q-divisible of q-characteristic p. Then, the divided p-Frobenius provides by an A-linear map

Φ A{R : D A{R,σ Ñ ZA A{R,σ Ă D A{R,σ .
More precisely, we have for all n P N,

ΦpB n σ q " n ÿ k"0 B k,n pqqx pk´n B pk σ ( 27 
)
where the B k,n denote the divided p-Frobenius coefficients.

Proof. The linearized divided p-Frobenius maps Axωy{I rn`1s ω Ñ Axξy{I rn`1s ξ coming from section 7 provide by duality a compatible system of morphisms Diff p0q n,σ pAq Ñ Arθs ďn . We may then use proposition 6.3 in order to identify Arθs with the centralizer ZA A{R,σ of A in D A{R,σ . By duality, the coefficient of B kp σ in ΦpB n σ q is the coefficient of ξ rns in rF ˚spω rks q which is exactly B k,n x pk´n .

Remark

1. The morphism Φ A{R is not a ring homomorphism (as we already knew from the case q " 1).

2. If we do not assume that R is q-divisible of q-characteristic p, then we still get a map D A{R,σ Ñ Arθs given by an analogous formula but we cannot identify the target with ZA A{R,σ .

3. In formula (27), the sum actually starts with the smallest integer k ě n{p.

Example 1. We have ΦpB σ q " x p´1 B p σ . 2. We have ΦpB 2 σ q " pp ´1q q x p´2 B p σ `qp´1 x 2p´2 B 2p σ . 3. When q´charpRq " p " 3, we have

ΦpB 3 σ q " B 3 σ `pq 2 ´1qx 3 B 6 σ `x6 B 9 σ .
Recall from proposition 4.7 that F ˚pA 1 q Ă A Bσ"0 if and only the diagram

A 1 F ˚/ / A can / / θ / / p P p0q σ
commutes. Under this hypothesis, rF ˚s will induce, for all n P N, an F ˚-linear morphism of R-algebras

rF ˚s : A 1 xωy{I rns ω b A 1 A 1 xωy{I rns ω Ñ P p0q pnqσ b 1 A P p0q pnqσ .
Proposition 8.2. If F ˚pA 1 q Ă A Bσ"0 , then the diagram

A 1 xωy{I rns ω rF ˚s / / δ P p0q pnqσ δ A 1 xωy{I rns ω b A 1 A 1 xωy{I rns ω rF ˚s / / P p0q pnqσ b 1 A P p0q pnqσ . is commutative.
The upper line sends ξ to 0 and it follows that the bottom line sends ξ ppq :" F ˚pξq to 0. In the end, we obtain the commutative diagram

A b A 1 A / / / / A b A Bσ "0 A _ Arξs{ξ ppq » / / O O P p8q pp´1qσ (28) 
from which both assertions follow.

Definition 8.5. We say that F ˚is adapted to σ if F ˚finite flat or rank p and F ˚pA 1 q Ă A Bσ"0 .

Example If R has q-characteristic p and A is a localization of the polynomial ring Rrxs, then F ˚is always adapted.

Proposition 8.6. Assume that R is q-divisible of q-characteristic p. If F ˚is adapted to σ, we can make the identifications Proof. Only the first equality needs a proof. We know from the second part of lemma 8.4 that A b A Bσ "0 A is a direct factor in A b A 1 A. But the first part of the lemma tells us that A b A Bσ "0 A is free of rank p over A 1 and our assumption implies that A b A 1 A is locally free of the same rank p over A 1 . Therefore, they must be equal.

A b A 1 A " A b A Bσ "0 A " P
Remark By duality, lemma 8.4 tells us that, when F ˚pA 1 q Ă A Bσ"0 , we have D A{R,σ " End A Bσ "0 pAq and that this is a direct factor in End A 1 pAq. Moreover, the proposition says that when F ˚is adapted to σ, then all three rings are equal. As a consequence, we will actually have an equality F ˚pA 1 q " A Bσ "0 .

We denote by p Z A{R,σ , x ZA A{R,σ and p D A{R,σ the completions with respect to B p σ (or B σ for the last one: it gives the same thing). We may now state our Azumaya splitting result: Theorem 8.7. Assume that R is q-divisible of positive q-characteristic p. If F ˚pA 1 q Ă A Bσ"0 , then Φ A{R provides an A-linear ring homomorphism D A{R,σ Ñ End Z A{R,σ pZA A{R,σ q.

(29)

If moreover, F ˚is finite flat of rank p, we obtain an isomorphism p D A{R,σ » End p Z A{R,σ p x ZA A{R,σ q.

(30)

Recall that the conjunction of the hypothesis exactly means that F ˚is adapted to σ.

Proof. Using lemma 8.4, we deduce from proposition 7.13 that there exists a canonical morphism of A-algebras pA b A 1 Aq b A 1 Axωy Ñ Axξy.

which is an isomorphism when F ˚is finite flat of rank p. Moreover, it follows from proposition 8.2 that this morphism is compatible with the comultiplication maps. Therefore, it produces by duality (and base change) an A-linear homomorphism of rings:

p D A{R,σ Ñ End A 1 pAq b A 1 x ZA A{R,σ Ñ End p Z A{R,σ p x ZA A{R,σ q.
Actually, since the twisted divided p-Frobenius is continuous, this map is defined before completion. Finally, when F is finite flat, the last map is also an isomorphism and we are done.

Remark

1. The first assertion of the theorem means that Φ A{R turns ZA A{R,σ into a D A{R,σ -module via B k σ ¨zB pi σ " ΦpB k σ ˝zqB pi σ .

2. As a consequence of the theorem, we see that when F ˚pA 1 q Ă A Bσ "0 , the map Φ A{R induces an endomorphism of the A-algebra Z A{R,σ , and that it gives rise to an automorphism of p Z A{R,σ if moreover F is finite flat of rank p.

3. When F is adapted to σ, we actually have an isomorphism (before completion)

Z A{R,σ Φ Ô b Z A{R,σ D A{R,σ » End Z A{R,σ pZA A{R,σ q.

Example Since B σ ˝z " B σ pzq `σpzqB σ for all z P A, we have for all n P N, B σ ˝xn " pnq q x n´q `qn x n B σ . It follows that B σ ¨1 " ΦpB σ q " x p´1 B p σ , and for n ě 1, B σ ¨xn " ΦpB σ ˝xk q " pnq q x n´1 `qn x n x p´1 B p σ " ppnq q `qn x p B p σ q x n´1 .

In other words, the matrix of B σ will be » Corollary 8.8. Assume that R is q-divisible of positive q-characteristic p and that F is adapted to σ. Then, Φ A{R induces an equivalence between p D A{R,σ -modules and p Z A{R,σmodules.

Proof. This is Morita equivalence. l

In order to state the twisted Simpson correspondence, we need to recall some vocabulary. An endomorphism u M of an abelian group M is said to be quasi-nilpotent if @s P M, DN P N, u N M psq " 0.

Also, a σ-derivation on an A-module M is an R-linear map B σ,M : M Ñ M that satisfies the twisted Leibniz rule @z P A, @s P M, B σ,M pzsq " B σ A pzqs `σpzqB σ,M psq.

We can now reformulate the previous corollary in more down-to-earth terms:

Corollary 8.9 (Twisted Simpson correspondence). Assume that R is q-divisible of positive q-characteristic p and F is adapted to σ. Then, the category of A-modules M endowed with a quasi-nilpotent σ-derivation B σ,M is equivalent to the category of A 1 -modules H endowed with a quasi-nilpotent A-linear endomorphism u H .

Remark

1. The equivalence is explicit and given by M Þ Ñ H :" M Φ"1 and H Þ Ñ M :" A b A 1 H.

More precisely, M Φ"1 :" ts P M, @k P N, ΦpB k σ qpsq " B k σ psqu (which is not easy to compute) will be endowed with the action of B p σ and A b A 1 H will be endowed with the unique σ-derivation such that B σ p1 b sq " x p´1 b θpsq.

2. Twisted Simpson correspondence holds for example in the following situations:

(a) R a ring of prime characteristic p and x is an étale coordinate on A (Ogus-Vologodsky).

(b) R contains a field K, q P K is a primitive pth root of unity and A " Rrxs or Rrx, x ´1s.

(c) R is p N -torsion with p prime, the pth power map of R{p lifts to R, q is a non trivial pth root of unity and x is an étale coordinate on A.

X

  ; and the image of the linearized p-curvature map O X b O X 1 S ' T X 1 ãÑ D p0q X is the centralizer ZO p0q X of O X .Using a lifting of Frobenius, one can build an isomorphismp D p0q X » End p Z p0q X p { ZO X p0q q

Definition 4. 2 .

 2 The A-module of twisted principal parts of order at most n and level 0 of A is P p0q A{R,pnqσ :" Axξy{I rn`1s And the A-module of twisted principal parts of infinite order and level 0 of A is p P p0q A{R,σ :" lim Ð Ý P p0q A{R,pnqσ p" Axxξyyq.

  there exists another epi-mono factorization p P p8q A{R,σ ։ P p8q A{R,pp´1qσ ãÑ p P p0q A{R,σ .

  and an inclusion A b A Bσ "0 A ãÑ P p0q A{R,pp´1qσ .

  p0q A{R,σ :" Diff p0q σ pAq. Definition 5.2. The comultiplication on P p0q σ is the A-linear map p δ p0q : ξ rn´is b 1 ξ risWe might also have to consider the partial comultiplication maps

Definition 5. 5 .

 5 The composition of two twisted differential operators of level 0, Φ : P p0q pnqσ b A M Ñ N and Ψ : P p0q pmqσ b A L Ñ M , is the twisted differential operator of level 0 Φ ˝Ψ : P p0q pm`nqσ b 1 A L δbId / / P p0q pnqσ b 1

  Arξs Ñ Axξy is essentially dual to the canonical map D A{R,σ Ñ D p8q A{R,σ whose image is the subring D A{R,σ of small twisted differential operators generated by functions and derivations inside End R pAq.

Lemma 6. 1 .

 1 For all n P N, the diagram A It means that, modulo ξ, both A-algebra structures coincide on P p0q pnqσ . Proof. If I denotes the ideal of the diagonal in P :" A b R A as usual, we may consider the following commutative diagram A

Proposition 6. 2 .

 2 For all m, n P N, the following diagram is commutative:

n´j q ppn´jqpn´j´1q 2

 2 ˆn j ˙qp ˆpj i ˙q¸x pn´i ξ piqq,y . l Lemma 7.5. We have for all m P N, px `ξq m " m ÿ i"0 ˆm i ˙qx m´i ξ piq . (25)

"

  Arξs{ξ ppq .

.

  Note that this is slightly different from the formulas of proposition 4.1 of [GL14] because we use here Ogus-Vologodsky divided Frobenius (the coefficients B and not the coefficients C).

  This is even an isomorphism if all pmq q are invertible in R for m ď n.

							rks A{R,pnqσ .
	for k ď n `1.					
	4. By definition, P p0q pnqσ is the finite free A-module on the images of the ξ ris for i ď n and I rks pnqσ is the free A-module on the images of the ξ ris for k ď i ď n. It follows that p P p0q A{R,σ (resp. p I rks A{R ) is the set of infinite sums ř z i ξ ris with z i P A and i P N (resp.
	and i ě k).					
	5. Formula (11) shows that I rn`1s is an ideal inside Axξy. It follows that the quotients P p0q A{R,pnqσ have a natural structure of A-algebra and so does p P p0q A{R,σ .
	Proof. Same arguments as for lemma 2.1.		
	Proposition 4.4. There are canonical homomorphisms
	P	p8q A{R,pnqσ Ñ P	p0q A{R,pnqσ	and p P	p8q A{R,σ Ñ p P	p0q A{R,σ
	R-algebras					
				p Θ p8q		
		A	p Θ p0q P P P A{R P P P P Θ / / P P P P P P P P P P P P ( ( % % / / p P p8q A{R,σ p P p0q A{R,σ	.
	Also, we will denote by				
			Θ p0q n : A Ñ P	p0q A{R,pnqσ

X an indeterminate, then there exists a canonical A-linear isomorphism of rings A b Zrt,Xs P p0q Zrt,Xs{Zrts,pnqσ » P p0q A{R,pnqσ . 3. We might also have to consider the intermediate and completed ideals I rks A{R,pnqσ :" I rks {I rn`1s and p I rks A{R,σ " lim Ð Ý I Lemma 4.3. The map (10) sends ξ pmq inside I rn`1s when m ą n. In particular, it induces a homomorphism Arξs{ξ pn`1q Ñ P p0q pnq .

which are bijective when all pmq q are invertible (for m ď n in the first case).

Proof. Follows from lemmas 2.1 and 4.3.

When this last condition is satisfied, we might identify both rings and drop the superscript, writing simply P A{R,pnqσ or p P A{R,σ .

Definition 4.5. The twisted Taylor map of level zero is the composite homomorphism of

* Supported by grant MTM2015-68524-P (MINECO/FEDER, UE).

Proof. By σ-linearity, it is sufficient to compute for m, n P N, ă p1 ´yθqθ m , σpω rns q ą " ă θ m ´yθ m`1 , n ÿ i"0 y i ω rn´is ą " n ÿ i"0 y i ă θ m , ω rn´is ą ´n ÿ

i"0 y i`1 ă θ m`1 , ω rn´is ą " ă θ m , ω rns ą `n ÿ

i"1 y i ă θ m , ω rn´is ą ´n´1 ÿ

i"0 y i`1 ă θ m`1 , ω rn´is ą ´yn`1 ă θ m`1 , 1 ą .

The middle sums cancel each other and the last term is 0.

Remark We may also wonder about the dual (for the above pairing) to the endomorphism σ of Axωy when σ A " Id A . We just transform σpω rns q " n ÿ i"0

to its dual formula and get

which shows that we must introduce power series. More precisely, writing n instead of j, we obtain

In other words, we see that the dual to σ on Axωy is exactly division by 1 ´yθ P Arrθss ˆ:

This is not a surprise according to proposition 3.8. Of course, in order to define this map, we may as well work over the localized ring Arθ, 1 1´yθ s. This map is not a ring homomorphism.

Twisted principal parts of level zero

We assume now that A is a twisted commutative algebra. It means that A is a twisted commutative algebra but we also assume that there exists a twisted coordinate (we recall below what it means) x P A such that σpxq " qx `h with q, h P R. We set y :" x ´σpxq.

In order to apply the results of the previous section, we need to check the following: Lemma 4.1. In the ring A, we have σpyq " qy.

We now prove the second assertion. We pick-up some

Then, we have ϕ P Z A{R if and only if ϕB σ " B σ ϕ which means that

Thus we see that the condition is equivalent to @k P N, z k " σpz k q and B σ pz k q " 0.

It follows from lemma 6.4 of [START_REF] Le | Twisted calculus[END_REF] for example that the first condition is implied by the second and we are done.

Definition 6.5. The map (23) is the twisted p-curvature map.

Divided Frobenius

In this section, the ring R is endowed with an endomorphism F R, A denotes a commutative R-algebra and x is any element of A. We set y :" p1 ´qqx. We also fix a p P Nzt0u and at some point, we will use q 1 :" q p and y 1 :" ppq q y.

Recall also that we write for all n P N, ξ pnq :" ξ pnqq,y :"

Definition 7.1. A p-Frobenius on A (with respect to F R and x) is a morphism of Ralgebras

If R is a ring of prime characteristic p ą 0 endowed with the pth power map, then the usual relative Frobenius is a p-Frobenius on A.

2. If R is a ring of p N -torsion with p prime, F ˚is a lifting of the pth power map on R{p and x is an étale coordinate on A, then there exists a unique p-Frobenius on A. 2. When R has q-characteristic p, then px `ξq p ´xp " ξ ppq (use proposition 4.6 of [START_REF] Le | On quantum integers and rationals[END_REF] for example).

If

obtained from the remark before the proposition and from the fact that A n,pn " 1 since

pkp ´iq q because pkpq q " pkq q p ppq q for each k.

Example 1. We have B 1,1 pqq " 1, B 1,2 pqq " pp´1q q , B 2,2 pqq " q p´1 , B 3,3 pqq " q 3pp´1q . 2. When R has positive q-characteristic p and 1 ď n ď p, we have p1 ´qq p´n B n,p pqq " p´1q n´1 ˆp n ˙.

For example, if we write j " 1`?´3

2

, we obtain p1 ´jqB 2,3 pjq " ´3 and therefore B 2,3 pjq " j 2 ´1. Definition 7.10. Let F ˚be a p-Frobenius on A. Then, 1. the divided p-Frobenius coefficients are the polynomials B n,i of proposition 7.9, 2. the divided p-Frobenius map is the unique F ˚-linear map A 1 xωy q p ,y Ñ Axξy q,y such that @n P N, rF ˚spω rns q "

B n,i pqqx pn´i ξ ris .

Remark 1. As a particular case of this definition, we have

pp ´1q q ¨¨¨pp ´i `1q q x p´i ξ ris .

In more fancy terms, the ith coefficient is pi ´1q q ! `p´1 i´1 ˘q.

2. The divided p-Frobenius map is continuous. More precisely, it is compatible with the ideal filtration and induces F ˚-linear maps

3. We may extend the divided Frobenius map by linearity and obtain an A-linear map Axωy q p ,p1´qqx p Ñ Axξy q,y given by the same formula (we have F ˚pyq " p1 ´qqx p ).

Lemma 7.11. Let F ˚be a p-Frobenius on A. Then, under the canonical map Arξs Ñ Axξy q,y , we have for all n P N, F ˚pξ pnq q 1 ,y 1 q Þ Ñ pnq q p !ppq n q rF ˚spω rns q p ,y q.

Proof. We want to prove that we always have δprF ˚spω rns q " rF ˚spδpω rns q.

We can compute the left hand side δprF ˚spω rns q " δ ˜pn ÿ rF ˚spω rn´ks q b 1 rF ˚spω rks q.

Our assertion therefore follows from lemma 8.3 below.

Lemma 8.3. We have

Proof. Since it is a generic question, we may assume that all q-integers are invertible in R and also, if we wish, that A " Rrxs is simply the polynomial ring. Using proposition 5.3 and remark 3) after definition 7.2, it is therefore sufficient to check the equality

This follows from proposition 3.5 of [START_REF] Le | Formal confluence of quantum differential operators[END_REF] applied both to σ and σ p since F ˚is a ring homomorphism. Lemma 8.4. Assume that R is q-divisible of q-characteristic p. If F ˚pA 1 q Ă A Bσ"0 , then we have 1. A b A Bσ "0 A » P p8q pp´1qσ p" Arξs{ξ ppq q and 2. A b A Bσ "0 A is a direct factor in A b A 1 A.

Proof. First of all, the condition F ˚pA 1 q Ă A Bσ"0 implies that there exists a natural surjection A b A 1 A ։ A b A Bσ "0 A.

On the other hand, proposition 4.8 provides a canonical injection A b A Bσ "0 A ãÑ P p8q pp´1qσ . Let us consider now the following commutative diagram