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Direct derivation of the stochastic CRB of DOA
estimation for rectilinear sources

Habti Abeida and Jean Pierre Delmas, Senior member, IEEE

Abstract—Several direction of arrival (DOA) estimation
algorithms have been proposed to exploit the structure of
rectilinear or strictly second-order noncircular signals. But
until now, only the compact closed-form expressions of the
corresponding deterministic Cramér Rao bound (DCRB) have
been derived because it is much easier to derive than the
stochastic CRB (SCRB). As this latter bound is asymptotically
achievable by the maximum likelihood (ML) estimator, while
the DCRB is unattainable, it is important to have a compact
closed-form expression for this SCRB to assess the perfor-
mance of DOA estimation algorithms for rectilinear signals.
The aim of this paper is to derive this expression directly
from the Slepian-Bangs formula including in particular the
case of prior knowledge of uncorrelated or coherent sources.
Some properties of these SCRBs are proved and numerical
illustrations are given.

Index Terms—Deterministic and stochastic Craḿer Rao
bound (CRB), direction of arrival (DOA), circular, noncirc ular,
rectilinear, strictly noncircular, Slepian-Bangs formula.

I. I NTRODUCTION

Various DOA estimation algorithms such as MUSIC [1],
[2], root-MUSIC [3], standard ESPRIT [4] and unitary
ESPRIT [5], [6] have been adapted to exploit the structure
of rectilinearity or strictly second-order noncircularity of
signals, which include commonly used digital modulation
schemes such as BPSK and ASK. These algorithms are
known to achieve a higher estimation accuracy and can
resolve up to twice as many sources compared to the
traditional DOA algorithms. To assess the performance of
these algorithms, it is necessary to derive the SCRB for
rectilinear sources. Nonetheless, only the SCRB for arbitrary
noncircular sources [7], [8] and the DCRB for rectilinear
sources [9]–[11] are available, among many other bounds
(e.g., [12] and references therein). But the first bound does
not take into account the prior knowledge of rectilinearity
and the second bound, although providing valuable engi-
neering insight is unattainable.

As generally the exploitation of prior knowledge usually
reduces the estimation error, this paper derives closed-form
expressions of the SCRB for arbitrary rectilinear sources
and for the specific prior knowledge of uncorrelated, and
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fully correlated (referred to coherent) sources. Note that
explicit expressions of circular and noncircular SCRBs for
DOA parameter alone have been derived by two different
methods for arbitrary sources. The first one consists of
computing the asymptotic covariance matrix of the concen-
trated ML estimator [13], which is asymptotically efficient
and the other one is obtained directly from the Slepian-
Bangs formula [14], [15]. Similarly to [16], we present
here a direct derivation of the different rectilinear SCRBs
from the extended Slepian-Bangs formula [7] for noncircular
Gaussian distributions. Finally some properties of these
SCRBs are proved and numerical illustrations are given.

II. DATA MODEL AND PROBLEM FORMULATION

ConsiderK zero-mean narrowband signals(xt,k)k=1,...,K

impinging on an arbitrary array ofM sensors. These signals
are supposed rectilinear (also called strictly second-order
noncircular), i.e., described by the following model:

xt,k = st,ke
iφk with st,k real-valued, (1)

where the phasesφk associated with different propagation
delays are assumed fixed, but unknown during the array
observation. The array output at timet is modeled as

yt = Aθ∆φst + nt, t = 1, . . . , T, (2)

where (yt)t=1,...,T are independent. Aθ
def
=

[a(θ1), ..., a(θK)] denotes the conventional steering matrix,

∆φ
def
= Diag(eiφ1 , ..., eiφK ) and st

def
= (st,1, ..., st,K)T .

nt is the additive noise, which is assumed zero-mean
circular complex Gaussian, spatially uncorrelated
with E(ntn

H
t ) = σ2

nI and independent fromst,k.
(st,k)k=1,...,K,t=1,..T are either real-valued deterministic
unknown parameters (in the so-called conditional or
deterministic model), or zero-mean real-valued Gaussian
distributed with covarianceE(stsTt ) = Rs (in the so-called
unconditional or stochastic model).

To derive the CRB from the Slepian-Bangs formula,
we have to carefully specify the parameters of the Gaus-
sian distribution of(yt)t=1,...,T . Under the deterministic
assumption,yt are circularly Gaussian distributed with
mean (Aθ∆φst)t=1,...,T and covarianceσ2

nI, which are
parameterized by the real-valued parameter:

α = (θT ,φT ,ρT , σ2
n)

T , (3)
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whereθ
def
= (θ1, ..., θK)T , φ

def
= (φ1, ..., φK)T and ρ

def
=

(sT1 , ..., s
T
T )

T . On the other hand, under the stochastic
assumption,yt is noncircularly Gaussian distributed with
zero-mean, covariance

Ry
def
= E(yty

H
t ) = Aθ∆φRs∆

∗
φA

H
θ + σ2

nI (4)

and complementary covariance

Cy
def
= E(yty

T
t ) = Aθ∆φRs∆φA

T
θ , (5)

which is also generally parameterized by (3), but whereρ

is now theK(K + 1)/2 vector made from[Rs]i,j for 1 ≤
i ≤ j ≤ K. In the particular case, where prior knowledge of
uncorrelated or full coherent sourcesst,k are incorporated,
the parameterρ reduces toρ = (σ2

1 , .., σ
2
k, , .., σ

2
K)T where

σ2
k

def
= E(s2t,k) = [Rs]k,k and toρ = c = (c1, ..., cK)T

whereRs = ccT , respectively.
Under the stochastic assumption,(yt)t=1,..,T are inde-

pendent and noncircular Gaussian distributed and therefore
the Fisher information matrix (FIM) for the parameterα is
given (elementwise) by [7]:

FIMi,j =
T

2
Tr

[
∂Rỹ

∂αi
R−1

ỹ

∂Rỹ

∂αj
R−1

ỹ

]
, (6)

whereRỹ is the covariance of the extended signalỹt
def
=

[yT
t ,y

H
t ]T given by:

Rỹ
def
= E(ỹtỹ

H
t ) = ÃRsÃ

H + σ2
nI, (7)

where Ã
def
=

[
Aθ∆φ

A∗
θ∆

∗
φ

]
= [ã1, ..., ãK ] with ãk

def
=

[aT (θk)e
iφk , aH(θk)e

−iφk ]T .
The purpose of the next section is to directly derive the

SCRB of the parameterθ alone from the FIM (6). Noting
that the parametersθk and φk are non-linearly related in
the extended steering vectorãk, closed-form expressions of
the SCRB of the coupleω

def
= (θT ,φT )T are first derived

through its inverse[CRBsto(ω)]−1 def
=

[
Iθ,θ Iθ,φ
ITθ,φ Iφ,φ

]
. Thus

the SCRB ofθ alone is deduced by

CRBsto(θ) = (Iθ,θ − Iθ,φI
−1
φ,φI

T
θ,φ)

−1. (8)

III. D ERIVATION OF THE DIFFERENTCRB

Writing the FIM (6) in compact matrix from as:

FIM =
T

2

(
∂rỹ
∂αT

)H (
R−T

ỹ ⊗R−1
ỹ

)(
∂rỹ
∂αT

)
, (9)

where rỹ
def
= vec(Rỹ) = (Ã∗ ⊗ Ã)vec(Rs) + σ2

nvec(I)
(with ⊗ is the Kronecker product), all the first steps of the
proof given in [16] apply. In particular, using the partition
(R

−T/2
ỹ ⊗ R

−1/2
ỹ )

(
∂rỹ
∂ωT |

∂rỹ
∂ρT ,

∂rỹ
∂σ2

n

)
def
= (G|V u), we can

deduce from (9):

2

T
[CRBsto(ω)]

−1
= GHΠ⊥

∆G. (10)

with ∆
def
= (V u) andΠ⊥

∆

def
= I−Π∆ whereΠ∆ denotes

the orthonormal projector on the columns of∆. Starting
from (10), whereΠ⊥

∆
is given by [16, rel. (14], the main

steps of the proof of the following theorem are given in the
Appendix:

Theorem 1: The SCRB under the general rectilinear as-
sumption is given by forK < 2M :

CRBrec1
sto (ω) =

σ2
n

T

(
(D̃H

ω Π⊥

Ã
D̃ω)⊙

((
1 1
1 1

)
⊗H̃

))−1

, (11)

with Π⊥

Ã

def
= I −Π

Ã
, whereΠ

Ã
denotes the orthonormal

projector on the columns of̃A, D̃ω
def
= [D̃θ, D̃φ] with

D̃θ
def
=

[
∂ã1

∂θ1
, ..., ∂ãK

∂θK

]
, D̃φ

def
=

[
∂ã1

∂φ1
, ..., ∂ãK

∂φK

]
, H̃

def
=

RsÃ
HR−1

ỹ ÃRs and ⊙ denotes the element by element
matrix product. Applying (8), the SCRB onθ alone is given
by:

CRBrec1
sto (θ)=

σ2
n

T

(
[(D̃H

θ Π⊥

Ã
D̃θ)⊙H̃]−[(D̃H

θ Π⊥

Ã
D̃φ)⊙H̃]

× [(D̃H
φ Π⊥

Ã
D̃φ)⊙ H̃]−1[(D̃H

φ Π⊥

Ã
D̃θ)⊙ H̃]

)−1

.(12)

Including the prior knowledge that theK rectilinear
sources are coherent (whereRs = ccT ), which appears in
specular multipath propagation, the main steps of the proof
of the following theorem are given in the Appendix:

Theorem 2: The SCRB under the prior knowledge of
fully coherent rectilinear sources is given by forK < 2M :

CRBrec2
sto (ω)=

σ2
n

Tκc

(
(D̃H

ω Π⊥

Ã
D̃ω)⊙

((
1 1
1 1

)
⊗Rs

))−1

, (13)

whereκc
def
= cT ÃHR−1

ỹ Ãc.
Including now the prior knowledge that theK rectilinear

sources are uncorrelated, the following theorem (presented
in [9]) is proved in the Appendix:

Theorem 3: The SCRB under the prior knowledge of
uncorrelated rectilinear sources is given byK < 2M :

CRBrec3
sto (ω)=

2

T

(
∆̃σD

H

ω B̃(B̃HGB̃)−1B̃HDω∆̃σ

)−1

, (14)

whereG
def
= RT

ỹ ⊗Rỹ+
σ4

n

2M−K vec(Π
Ã
)vecH(Π

Ã
), ∆̃σ

def
=

Diag(σ2
1 , ..., σ

2
K , σ2

1 , ..., σ
2
K), Dω

def
= (Ã∗|Ã∗)◦(D̃θ|D̃φ)+

(D̃∗
θ|D̃

∗
φ) ◦ (Ã|Ã), B̃ is any(2M)2 × ((2M)2−K) matrix

whose columns span the null space ofÃ∗ ◦ Ã, where◦ is
the columnwise Kronecker product.

Finally, to make comparisons with the DCRB, we recall
its closed-form expression derived in [9] and [10] and then
in [11] under more general rectilinear models forK < 2M .

CRBrec
det(ω)=

σ2
n

T

(
(D̃H

ω Π⊥

Ã
D̃ω)⊙

((
1 1
1 1

)
⊗Rs,T

))−1

, (15)

whereRs,T
def
= 1

T

∑T
t=1 sts

T
t . We also recall the closed-

form expression of the SCRB derived under the assumption
of arbitrary noncircular sources in [7], applied to rectilinear



3

sources forK < M :

CRBnc
sto(θ)=

σ2
n

2T

(
Re[(DH

θ Π⊥
Aθ

Dθ)⊙(∆∗
φH̃∆φ)]

)−1

, (16)

whereDθ
def
=

[
∂a1

∂θ1
, ..., ∂aK

∂θK

]
.

IV. A NALYTICAL AND NUMERICAL COMPARISONS

Considering the comparison of the previously introduced
closed-form expressions of the CRB, the main steps of the
proof of the following theorem are given in the Appendix:

Theorem 4: Under the general rectilinear assumption, the
DCRB (forT → ∞, i.e., replacingRs,T by Rs) and SCRB
have the relationships:

CRBrec
det(θ) ≤ CRBrec1

sto (θ) ≤ CRBnc
sto(θ). (17)

Note that for a finite value ofT , we cannot be sure that
CRBrec

det(θ) ≤ CRBrec1
sto (θ). In fact for low T and high

SNRs, the inequality reverses.
If we consider now the exploitation of prior knowledge,

the following theorem is proved in the Appendix:
Theorem 5: Under the prior knowledge that the sources

are rectilinear uncorrelated,CRBrec3
sto (θ) is reduced w.r.t.

CRBrec1
sto (θ). In contrast, the exploitation of fully coherency

of the sources does not reduceCRBrec1
sto (θ):

CRBrec3
sto (θ)≤CRB

rec1
sto (θ), CRB

rec2
sto (θ)=CRB

rec1
sto (θ). (18)

Note that similar properties have been proved for circular
sources in [17] for uncorrelated sources and in [18] for fully
coherent sources.

Finally, in the case of a single rectilinear source, we have
proved after tedious algebraic manipulations that the SCRBs
of θ1 alone deduced from (11), (13) and (14) reduce to:

CRBrec
sto(θ1) =

1

2Ta
′H
1 Π⊥

a1
a

′

1

σ2
n

σ2
s

(
1 +

σ2
n

2σ2
s‖a1‖

2

)
, (19)

wherea1
def
= a(θ1) anda

′

1
def
= da(θ1)/dθ1. Comparing (19)

to the SCRB derived in [7] under the general noncircular
assumption, we see thatCRBrec

sto(θ1) = CRBnc
sto(θ1), i.e.,

the SCRB is not reduced by exploiting the rectilinear prior
knowledge.

To illustrate, the difference between the different CRBs,
we consider now the case of two equal-power rectilinear
sources of signal-to-noise ratio10 log10(σ

2
s/σ

2
n) = 10 dB

and correlationρ, impinging on an ULA ofM = 6 sensors
with half-wavelength spacing. Figs 1-3 exhibit different
ratios of CRB. Fig.1 shows that there are significant gaps
between the DSCB and the SCRB for closely spaced and
strongly correlated rectilinear sources. More generally,ex-
tensive numerical comparisons have shown that this gap
increases for low SNR, low phase and DOA separations
and high source correlation, but this gap will always vanish
for high SNR. This proves that the conclusions based
on the DCRB may be very optimistic for not too high

SNR. Fig. 2 highlights that the exploitation of the prior of
rectilinearity greatly reduces the estimation error for closely
spaced and uncorrelated sources. Finally, Fig. 3 proves that
the joint exploitation of the prior of uncorrelatedness and
rectilinearity greatly reduces the estimation error for closely
spaced sources with different phases.
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V. A PPENDIX

Proof of theorem 1: (Detailed proofs of Theorem 1 are avail-
able at [23]) SinceRs is a (K×K) real symmetric matrix,
it then follows from [19, rel.(7.18)] thatvec(Rs) = DKρ
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whereDK is a so-called duplication matrix, and hence [16,
rel.(19)] becomes

V = (R
−T/2
ỹ Ã∗ ⊗R

−1/2
ỹ Ã)DK

def
= WDK .

Then it follows from [19, Theorem 7.38], and some simple
algebraic manipulations using [19, Theorem 7.34, rel.(b)]
that [16, rel.(20)] becomes

Π⊥
V = I−W(U⊗U)NKWH ,

whereU
def
= ÃHR−1

ỹ Ã and NK is an (K × K) matrix
defined in [19, Theorem 7.34]. By evaluating the derivatives
in G andu, and through some further algebra, one finds

uHΠ⊥
V
gk = 0,

wheregk is thekth column ofG given bygk = vec(Zk +

ZH
k ) and whereZk

def
= R

−1/2
ỹ Ãrs,kã

′H
k R

−1/2
ỹ , ã

′

k
def
=

dãk/dwk and rs,k is the kth column ofRs. This identity
allows us to rewrite the individual elements of (10) as

2

T

[
CRB−1

sto(ω)
]
k,l

= gH
k Π⊥

V
gl.

By further calculations we get

[
CRB−1

sto(ω)
]
k,l
=

T

σ2
n

Re
(
(ã

′H
k Π⊥

Ã
ã

′

l)(r
T
s,kÃ

HR−1
ỹ Ãrs,l)

)
.

(20)
Finally, we can write (20) in matrix form as in (11).
Proof of theorem 2: (Detailed proofs of Theorem 1 are
available at [23]) We follow the steps similar to those in
the proof of theorem 1. SinceRs = ccT and its derivative
w.r.t. c is given byDc

def
= c⊗ I+ I⊗ c = 2NK(c ⊗ I), it

follows then thatV has the formV = WDc. After some
algebraic manipulation using [19, Theorem 7.34, rel.(d)],it
follows that

Π⊥
V

def
= I−V(VHV)−1VH = I−V1V̄

−1VH
1 ,

with V1
def
= WNK(c ⊗ I) and V̄

def
= 1

2 (κcU + ucu
T
c )

whereuc
def
= Uc and κc

def
= cTUc. Thanks to the matrix

inversion lemma, we havēV−1 = 2
κc
(U−1 − 1

2κc
ccT ).

Through some further algebra usingu = vec(R−1
ỹ ) and

gk = vec(Zk+ZH
k ) whereZk

def
= R

−1/2
ỹ Ãcã

′H
k R

−1/2
ỹ , one

finds thatuHV1 = cT Ū whereŪ
def
= ÃHR−2

ỹ Ã, uHgk =

2ckã
′H
k R−2

ỹ Ãc andVH
1 gk = ck(ν

(k)
c uc + κcÃ

HR−1
ỹ ã

′

k)

where ν
(k)
c

def
= ã

′H
k R−1

ỹ Ãc. By further calculations we
arrive atuHΠ⊥

V
gk = 0. This identity allows us to rewrite

the individual elements of (10) as

2

T

[
CRB−1

sto(ω)
]
k,l
=gH

k Π⊥
Vgl =

2κcT

σ2
n

ckcl(ã
′H
k Π⊥

Ã
ã

′

l),

which can also be written in the matrix form (13).
Proof of theorem 3: Noting that (7) becomesRỹ =∑K

k=1 σ
2
kãkã

H
k + σ2

nI, all the steps of the proof given
in [17, Appendix A] apply to the parameterω with the

FIM (6) associated with the noncircular zero-mean Gaussian
distribution ofyt.
Proof of theorem 4: UsingRs ≥ RsÃ

HR−1
ỹ ÃRs thanks to

[20, rel. B.6.37] and noting that
(

1 1

1 1

)
is positive semidef-

inite, we have
(

1 1

1 1

)
⊗(Rs − H̃) ≥ 0 from [19, th. 7.10].

Then, noting that̃DH
ω Π⊥

Ã
D̃ω is positive definite, we have

(D̃H
ω Π⊥

Ã
D̃ω) ⊙

((
1 1

1 1

)
⊗(Rs − H̃)

)
≥ 0 thanks to [20,

rel. R.19, p.358], andCRBrec
det(θ) ≤ CRBrec1

sto (θ) directly
follows.
Consider the parametrizationαnc = (θT ,ρT

nc, σ
2
n)

T associ-
ated with the assumption of arbitrary noncircular sources
in [7], where ρnc is the 2K2 + K vector made from
[Re(Rx)]i,j , [Im(Rx)]i,j , [Re(Cx)]i,j and [Re(Cx)]i,j for
1 ≤ i < j ≤ K, and [Rx]i,i, [Re(Cx)]i,i and

[Im(Cx)]i,i for 1 ≤ i ≤ K, whereRx
def
= E(xtx

H
t ) and

Cx
def
= E(xtx

T
t ) with xt

def
= (xt,1, ..., xt,K)T . Consider

now the one to one mapping betweenαnc and α′
nc =

(θT ,φT ,ρT
1 ,ρ

′T , σ2
n)

T whereφ = (φ1, .., φk, .., φK)T is

defined by2φk
def
= ∠[Cx]k,k/[Rx]k,k, ρ1 is the vector made

from [Re(Rs)]i,j for 1 ≤ i ≤ j ≤ K, andρ
′

is the vector
gathering[Im(Rs)]i,j , [Im(Cs)]i,j for 1 ≤ i < j ≤ K and
[Re(Cs)]i,j for 1 ≤ i ≤ j ≤ K.

Let FIM1, FIMnc and FIM′
nc be the FIM associated with

the stochastic parametrizations (3),αnc and α′
nc, respec-

tively. From the one to one mappingαnc ↔ α′
nc, we get

[FIM′
nc]θ = [FIMnc]θ (where [.]θ denotes the submatrix

determined by the firstK rows and columns). Furthermore
FIM1 = [FIM′

nc]1 where[.]1 denotes the principal subma-
trix determined by the rows and columns induced by the
parametrization of FIM1. Consequently, taking the inverse,
we get [FIM1]

−1 ≤ [FIM′−1
nc ]1 [22, th. 7.7.8]. Then taking

the principal submatrix determined by the firstK rows and
columns, we getCRBrec1

sto (θ)≤CRBnc
sto(θ).

Proof of theorem 5: Let FIM3 be the FIM associated with the
parametrizations (3) for whichρ= ([Rs]k,k;1≤k≤K )T . For
rectilinear uncorrelated sources,FIM3=[FIM1]3, where[.]3
denotes the principal submatrix determined by the rows and
columns induced by the parametrization of FIM3. Taking
the inverse, we get[FIM3]

−1 ≤ [FIM−1
1 ]3 [22, th. 7.7.8].

Then taking the principal submatrix determined by the first
K rows and columns, we getCRBrec3

sto (θ)≤CRBrec1
sto (θ).

Finally, by noting that for coherent rectilinear sources,
H̃ = κccc

T in (11) givesCRBrec2
sto (ω) = CRBrec1

sto (ω), It
follows then thatCRBrec2

sto (θ) = CRBrec1
sto (θ).

VI. CONCLUSION

Closed-form expressions of the SCRB of DOA estimation
for rectilinear sources have been directly derived form the
extended Slepian-Bangs formula, including the case of prior
knowledge of uncorrelated or coherent rectilinear sources.
Analytical and numerical comparisons with the DCRB and
the SCRB for noncircular sources have shown in particular
that the DCRB may be very optimistic.
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