Detailed proofs of theorems 1 and 2 given in [1]

Habti Abeida and Jean Pierre Delmas

I. BACKGROUND
A. Relations

We will make frequent use of the following well known relations which hold for any conformable matrices
A, B, C and D.

vec(ABC) = (CT @ A)vec(B), (1)
(A®B)(C®D)=AC®BD, 2)
Tr(AB) = (vec(AT))Hvec(B). A3)

B. General expression of the CRB
The stochastic CRB is writing through the compact expression of the FIM:

-1 T ( oy S 1) [ Org
CRBsto(a) - 5 oaTl <Rg ® Rg ) oal |’ (4)

where the vectorization of Rj; = ARAT + 021 is given from (1) by

r; def vec(Ry) = (K* ® :A)vec(Rs) + o2 vec(I).

To begin the proofs of the two theorems, all the first steps of [17] apply. In particular, using the partition

-T2 —1/2 arg 31‘@ arg def
we can deduce from (4)
z -1 _ Hyrl
TCRBsto(w) =G HAG7 (6)

with A & (V,u) and Hi L P A, where I denotes the orthonormal projector on the columns of A.
Following [17, rel.(14)], it has been proved that

Iy uu I3
ML — [ _ 2V v 7
v uTI{u @
where j;g = vec(I) implies by using (1), that
u= (RyfT/2 ® R;I/Q)Vec(l) = vec(Rgl). (8)
Consequently using (6) and (7), if g, denotes the k-th column of G, the (k,[) element of ZCRBy/(w) can
be written elementwise as
2 _ gl uuf TS g
7 [CRBGo(@)],, = et Tive — =* :Hn%m 8 ®

To proceed, we need to determine the expressions of 1'[%, associated with the two parametrizations of the real
symmetric matrix Rs. But as the steps of the proof given in [17] do not apply, we have to elaborate a little bit.



II. PROOF OF THEOREM 1
S.oH

N F0r~arbitrary real symmetric matrix Ry, let r, ;, denote the kzh column of R. We get from Ry def E(ywyi) =
ARAH + 521,
OT
dR; / - ;
Ry _ (o, LA, 0) R,A" + AR, | a
dwk .
of

where é}C def day, /dwy. Hence using (1), the kth column of G in (5) is given by

—T/2 ~1/2 dRy —12dRg 12
gr = (R; / ® R, ?\vec (dw;i/> :vec< 7 / W:Rﬂ / > = vec(Z{ + Zy), (10)
where R
Z, < R;Ar, 8 R, (11)

Next, we determine V. The key observation to note here, is that the real-valued symmetric matrix R, using
[20, rel.(7.18)], can be written as
vec(Rs) = Dgp,
where Dy is the so-called duplication matrix, and hence from (5)

V=(R,”?A* @ R;"’A)Dx & WD, (12)

and consequently:

Iy = I-V(VEV)"'VZ =1 - WDg(DLWHIWDg) ' DLWH

I- WDg(DL(U®U)Dg) 'DEWH, (13)
using
WIW = (ATR;7A") © (A"R;'A) € U U,
deduced from (2), where
UL ATR A (14)

is an K x K real symmetric non-singular matrix. Then it follows from [20, Theorem 7.38], and some simple
algebraic manipulations using [20, Theorem 7.37, rel.(c)] and [20, Theorem 7.34, rel.(d)], that (13) becomes

My =1-WU 'eU HwWi, (15)

Now let us prove that uf’ ;g = 0.
Using the formula (1), we get from (11)

Wig, = (ATR."? @ AR, "?)vec(2f + Zy)
< —1/2 -1/2 % < —-1/2 -1/2 %
= vec(A"R;'?ZIR,VPA) + ATRVZ, R VPA)
= vec(brel + cxb?) X vec(Hy,), (16)
where by and cj are the K x 1 real-valued vectors given by

bl € a/R-1A and ¢, & Ur,y. (17)



From (10), (13) and (16) we obtain
yg: = g— WU 'eU Hwig,
= gr— WU ' @U )vec(Hy)
= g —vec(R; /AU 'H, U 'AR_/?)
= g —vec(R; AU (byc] +cxb])UTATR /)
= g —vec(R;PAU  bye] UTTAYRS Y2 + R V2AU 1¢;b] UTTATR /2, (18)
To simplify the expression (18), we need the following equality (19)
AU-IAY = A(AMR:'A)IAN
= AAPA)YAHAR, +2I)AH
= ARAY + 52104
= II;Ry, (19)
def <

where TI; = A(A”A)"'A". Using bJU A" = 37TI5 and U 'c; = ry; deduced from (19) and (17),
(18) can be simplified as

Yg. = g —vec(R, Ar g TR, ? + R, "Iz a,rT, APR'?)

= g —vec(Yr+YH) =vec(Zy — Y, +Z7 - Y]) (20)

def

where Y = Rg_l/ 2Ars7ké;€H II AR;/ % From (20) and (8) together with the identity (3), we get

uTlyge = (vec(R;")"vec(Zy — Yi + Zi — Y[)
= Te(R;'(Zr — Y+ Z — Y1)

= T(RyM(Z — Yi) + T((Zf — YIRS
def

Tr(Fy) + Tr(FF). 1)
Let us now prove that
TI‘(F;C) =0.
After replacing Zj, and Y, by their expression, we obtain
Zr - Y. =R, PAr, 8 TIL RV, (22)
Thus ) ~
Tr(Fp) = Tr(rxd ' TIZR;ZA). (23)
Since 1
IRy = o2 1T} or equivalently II R = gnj, (24)
we get
- 1 - 1 -
1lp-2A _ 1 -1 _ LA _
LR ?A = (U%HA) (R;'A) = iTGA =0, (25)
and thus from (23), we get Tr(Fj) = 0. It follows then from (21) that uf/ I3 g, = 0. [ |

This identity, together with (10) and (20) allows us to simplify (9) as
2 _
T [CRBsté(w)]kJ = gfﬂ#gl

= (vec(ZH + Zp)) o vec(Z) - Y, + ZH — YH)
= 2Re(Tr((Zx + Zf)(Zi1 — Y1))). (26)



Note from (11) and (22) that
Tr(Zi (2, - Y1) = (& "R, &) (r] , A"R " Ary ).
Using (24), we get

1 " 7 ~ 1~
Tr(Zi (Z1 - X)) = Jﬁ(azHﬂﬁakH)(rzkAHRg 'Ary)), (27)
and

Tr(Zk(Zl—Yl)) = (fl;cHRg_lArs’l)(ééHHiiR;lArs’k)

1, g 1 . -
= ;(akHRg1Ars7l)(alHH§Arsvk):0. (28)

n

It follows then from (27) and (28) that (26) can be simplified as

[CRB,,

sto

T . N ~ 4~
(w)] kL ERG ((akHHial)(rz,kAHRg 1Ars,l))- (29)

Finally, writing (29) in matrix form, theorem 1 is proved.

III. PROOF OF THEOREM 2

For coherent sources for which R, = cc” and p = ¢, we follow the steps similar to those in the proof of
theorem 1. First, we note that the k-th columns of G are still given by (10), but with now

Zi = oR; *Acal’R; /. (30)
Second, vec(Rs) = ¢ ® c implies that
6V€gjcg%s):c®I+I®c:2NK(c®I), (31)
where N is the K x K matrix defined in [20, Theorem 7.34]. Consequently (12) becomes
V =2WNg(c® 1), (32)
which gives after some algebraic manipulation using [20, Theorem 7.34, rel.(d)]:
Iy 1 v(VAV) 'V =1- Vv, VIV, (33)

with Vi & WNg(e®1I) and VY (¢7 ® )Nk (U ® U)Ng(c @ I) where U is defined by (14). V can be

simplified as

V = ('@I)Ng(UeU)cal)

= (' @ I)Ng(Uc® U)
1
= 3 (KZCU + UccTUT) , (34)
where the first equality follows from [20, Theorem 7.35, rel.(a)] and the third equality follows from [20,

Theorem 7.31, rel.(d)] using the definition of Ng [20, Theorem 7.34] and «. def c¢’Uc. The inverse V! is

deduced from the matrix inversion lemma applied to (34)

vl= 2 <U—1 ! ccT> . (35)

Ke 2K,

Now let us prove that uf’Ilg;g) = 0.



Using U def AH R,fA as a real-valued symmetric matrix and the identity (1), we get

Y
¢(0))" (c@1)
'O, (36)

u'Vi = (vee(R;))"(R;"?A" @R, ?A)Nk(c®T)
(ve

where the second equality follows from [20, Theorem 7.34, rel.(c)] and the third equality uses (1). Furthermore:
Vige = (" @)NExWig,
= cr(c” @ I)Nkvec(brc” U” + Ucb})
= cr(c” @ I)vec(bre" UT + Uchy)
= (mcbk + (bfc)Uc) , 37)
where the second equality follows from Whg, = ckvec(bkcf + ckbz) deduced from (16) with cj defined in (17) is now

given be ¢, Uc, and the third equality follows from [20, Theorem 7.34, rel.(c)] and the property that byc” U7 + Ucb? is a
real-valued symmetric matrix. In similar way, we have

ug, = 2¢,a R ?Ac. (38)
From (35) and (37), we get
ViVvig, =20, U 'b,. (39)
It follows from (33), (39), (36) and (38) that
ullvg, = ufgy—uVv,Vivig,

= QCké;ﬂHR§2AC — QCkCTGUilbk
= 20,5 R;?Ac — 2c,cT AR %4, = 0,
where the third equality follows from the identity UU *AH = A R obtained using (19) and (25) which is equivalent to R;QA =
MsR;’A. ]
It follows that the elements of (6) reduce to

% [CRBG (@), = et Tlve = &t & — &' VIV 'Vi'g, (40)
where we get
gfgl = vec(ZkH + Zk)Hvec(Zf{ + 7))
= T((Zi +2)"(Z{" + 7))
— 20 (Hca;HRg—la; + (b{c)(b,Tc)) , 41)

where the first equality is deduced from the definition (10) of gi associated with (30), the second equality
follows from the identity (3), and the third equality follows from the definition (17) of by and the property
that ékH R;lég is real-valued. On the other hand, we get

ngl\_f*lVfIgl = 2c,0 (bZUfl) (chl + (bch)Uc))
= 2 (/@Cé}CHR?HAég + (b;‘gc)(bITc) , (42)

where the first equality follows from (37) and (39) and the second equality is deduced from (19). Plugging
(41) and (42) into (40), we get:

2 _ 2K 7 Lo~
f [CRBst(l)(w)] k,l = Uigckcl(akHHAal)a

using R 1Hi = %Hi. Finally, writing (40) in matrix form, theorem 2 is proved.
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