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Direct derivation of the stochastic CRB of DOA
estimation for rectilinear sources

Habti Abeida and Jean Pierre Delmas, Senior member, IEEE

Abstract—Several direction of arrival (DOA) estimation fully correlated (referred to coherent) sources. Note that
algorithms have been proposed to exploit the structure of explicit expressions of circular and noncircular SCRBs for
rectilinear or strictly second-order noncircular signals. But DOA parameter alone have been derived by two different
until now, only the compact closed-form expressions of the . . .
corresponding deterministic Cramér Rao bound (DCRB) have method_s for arbitrary sources.. The first one consists of
been derived because it is much easier to derive than the cOmMputing the asymptotic covariance matrix of the concen-
stochastic CRB (SCRB). As this latter bound is asymptoticdy ~ trated ML estimator [13], which is asymptotically efficient
achievable by the maximum likelihood (ML) estimator, while and the other one is obtained directly from the Slepian-
the DCRB is unattalnable, it is important to have a compact Bangs formula [14], [15]. Similarly to [16], we present
closed-form expression for this SCRB to assess the perfor- h di derivati f the diff i SCRB
mance of DOA estimation algorithms for rectilinear signals ere a direct erlvatlor.l of the different rectilinear . S
The aim of this paper is to derive this expression directly from the extended Slepian-Bangs formula 7] for noncircula
from the Slepian-Bangs formula including in particular the Gaussian distributions. Finally some properties of these

case of prior knowledge of uncorrelated or coherent sources SCRBs are proved and numerical illustrations are given.
Some properties of these SCRBs are proved and numerical

illustrations are given.

Index Terms—Deterministic and stochastic Cranér Rao Il. DATA MODEL AND PROBLEM FORMULATION

bou_n_d (CRB),_direction_of arrival (DQA), circular, noncirc ular, ConsiderK zero-mean narrowband signéls x)x—1... x
rectilinear, strictly noncircular, Slepian-Bangs formula. impinging on an arbitrary array Gf/ sensors. These signals
are supposed rectilinear (also called strictly seconeord
|. INTRODUCTION noncircular), i.e., described by the following model:

Various DOA estimation algorithms such as MUSIC [1], T = stykew”“ with s; 5 real-valued Q)
[2], root-MUSIC [3], standard ESPRIT [4] and unitary _ ) ) )
ESPRIT [5], [6] have been adapted to exploit the structu?é}éhere the phases as§00|ated with different propagation
of rectilinearity or strictly second-order noncirculgriof elays are assumed fixed, but “_”"F‘OW” during the array
signals, which include commonly used digital modulatioﬂbservat'on' The array output at times modeled as
schemes such as BPSK and ASK. These algorithms are y: = AgAys; +ny, t=1,....T, (2)
known to achieve a higher estimation accuracy and can
resolve up to twice as many sources compared to thwere (y;):—i,..r are independent. Ay
traditional DOA algorithms. To assess the performance @(f1), ..., a(fx)] denotes the conventional steering matrix,
these algorithms, it is necessary to derive the SCRB fex,, L Diag(e, ..., ex) and s, < (s01,....50.1)7.
rectilinear sources. Nonetheless, only the SCRB for ayitr n, is the additive noise, which is assumed zero-mean
noncircular sources [7], [8] and the DCRB for rectilineagircular complex Gaussian, spatially uncorrelated
sources [9]-[11] are available, among many other boundéth E(n:n/) = 021 and independent froms, .
(e.g., [12] and references therein). But the first bound dogs ;. ), x.—1. 7 are either real-valued deterministic
not take into account the prior knowledge of rectilinearityinknown parameters (in the so-called conditional or
and the second bound, although providing valuable engleterministic model), or zero-mean real-valued Gaussian
neering insight is unattainable. distributed with covarianc&(s;s!) = R, (in the so-called

As generally the exploitation of prior knowledge usuallyinconditional or stochastic model).
reduces the estimation error, this paper derives closed-fo To derive the CRB from the Slepian-Bangs formula,
expressions of the SCRB for arbitrary rectilinear sourcege have to carefully specify the parameters of the Gaus-
and for the specific prior knowledge of uncorrelated, anglan distribution of (y¢)t=1,.. 7. Under the deterministic
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where § ' (01,....,06)T, @ def (¢1,...,05)T and p f  with A % (V u) andITx 4f 1 _ 11, whereII denotes
(st ...,sT)T. On the other hand, under the stochastithe orthonormal projector on the columns Af. Starting

assumptiony; is noncircularly Gaussian distributed withfrom (10), whereII} is given by [16, rel. (14], the main

zero-mean, covariance steps of the proof of the following theorem are given in the
Appendix:
def Hy _ * A H 2
Ry = E(yiyi’) = AeAgRAGAY + 0,1 (4 “Thegrem 1: The SCRB under the general rectilinear as-
and complementary covariance sumption is given by fors’ < 2M/:
def 2, ~ ~\\—1
C, = E(yiy!) = ApAyR.ALAT, (5)  CRBL(w) = 2 (DfmEb)o((} 1)=n)), @

which is also generally parameterized by (3), but where | def

is now the (K + 1)/2 vector made fromR,];.; for 1 < with 1‘[11 = I —II3, whereIl; denotes the orthonormal
i < j < K. In the particular case, where prior knowledge afrojector on the columns oA, D, < [Dy,D,] with
uncorrelated or full coherent sources;, are incorporated, p, % {@ aéK}' D, & [& 85Ki|' H

69 ,...,W a(z)l’...’m
the parametep reduces tgp = (03, ..,02,,..,02)" where ~ = "
) d'if P ® = (01, 05 0k) R.A”R_'AR, and © denotes the element by element

16 2 _ _ _ T
g = E(sip) = [Relir @nd top = ¢ = (c1,,¢x)"  matrix product. Applying (8), the SCRB ahalone is given
whereR,, = cc”, respectively. .

Under the stochastic assumptiofy;;);=1,...r are inde- )

X ) S rees o2 [ ~ _ - - _ -

pend_ent an_d nonC|_rcuIar Gaussuan distributed and th_‘HefQﬁRBsfg (0):—<[(D§{H§D9)®H] *KD?H%DM@H]
the Fisher information matrix (FIM) for the parameteris T

. . ~ ~ ~ ~ ~ ~ \ —1
given (elementwise) by [7]: % [(D£H§D¢> o H]*l[(D{jHiDe) o) H]).(12)
FIM, ; = gTr {%R;l%&;l : (6) Including the prior knowledge that thél rectilinear
i @ sources are coherent (wheRe, = ccT), which appears in
whereR; is the covariance of the extended sigfal def  specular multipath propagation, the main steps of the proof
iy?,yH]T given by: of the following theorem are given in the Appendix:
L o Theorem 2: The SCRB under the prior knowledge of
R; ¥ EF5Y) = AR,AY + 021, (7) fully coherent rectilinear sources is given by far < 2M:
~ 2 . ~1
where A 4 jzﬁﬂ = [oodk] with & 0 ORBY(w) = Z(DIID) o (1 1) eR.)). (3)
[aT(ak)ei¢kaaH(ek)e_i¢k]T' def " YHp-1%
The purpose of the next section is to directly derive th¥n€réxc = ¢ AR, Ac.

SCRB of the paramete? alone from the FIM (6). Noting Including now the prior knowledge_that th€ rectilinear
that the parameterg, and ¢, are non-linearly related in sources are uncorrelated, the following theorem (predente

the extended steering vectr, closed-form expressions of " [9]) is proved in the Appendix: _

the SCRB of the couples % (87, ¢™)T are first derived Theorem 3: The SCRB under the prior knowledge of
’d Moo I uncorrelated rectilinear sources is given By< 2M:

through its invers§CRBgo (w)] ! < | %f 9"”} Thus

Ig I . 2/~ —Ho~ o~ 1~ pge— ~ \—1
. PP rec _Z H 1RH
the SCRB off alone is deduced by CRBg,* (w) T(A"Dw B(B"GB)™'B D“’A")’ (14)
_ _ e i .
CRBst0(0) = (Ig,0 — 19=¢I¢,1¢I£,¢) L (8) whereG def Rg@Rg—i—mvec(Hg)vecH(HK), A, def
: = def e T
[1l. DERIVATION OF THE DIFFERENTCRB Diag(o7, ..., 0%, 0%, ...,0%), D = (A*[A*)o(Dg|Dy)+

(f)’(;|D;;) o(A|A), Bis any(2M)? x ((2M)? — K) matrix
o whose columns span the null spacef o A, whereo is
FIM — T ( Ory ) (RfT @ le) ( Ory ) ©) the columnwise Kronecker product.
2 \ 0aT v v oaT ]’ Finally, to make comparisons with the DCRB, we recall
def ~ ~ its closed-form expression derived in [9] and [10] and then
wherer; = vec(Ry) = (A* ® A)vec(Rs) + onvec(I) in[11] under more general rectilinear models for< 2M.
(with ® is the Kronecker product), all the first steps of the .

proof given in [16] apply. In particular, using the partitio  Ccrpree (w)zﬁ ((ﬁfnﬁﬁw)Q(G })®R57T))7 (15)

Writing the FIM (6) in compact matrix from as:

-T/2 —1/2y [ 8rg | dry; Ory\ def T
(R; / @R, / )(8;%|6;%, 8;’;) = (G|V u), we can » .,
deduce from (9): whereR,r = 1>, sisf. We also recall the closed-

) . Heel form expression of the SCRB derived under the assumption
7 [CRBsto(w)] = G7IIAG. (10)  of arbitrary noncircular sources in [7], applied to reciar



sources forK < M: SNR. Fig. 2 highlights that the exploitation of the prior of
o2 - —1 rectilinearity greatly reduces the estimation error farselly
CRBgio(0) = 57 (Re[(DéqHﬁ@De)@(AZsHAM)v (16) spaced and uncorrelated sources. Finally, Fig. 3 provés tha
dof the joint exploitation of the prior of uncorrelatedness and
whereDy < {g—*‘;i, - g;_ﬂ rectilinearity greatly reduces the estimation error farselly
spaced sources with different phases.

IV. ANALYTICAL AND NUMERICAL COMPARISONS 1

Considering the comparison of the previously introduce oo
closed-form expressions of the CRB, the main steps of t 0.8
proof of the following theorem are given in the Appendix: o7t

Theorem 4: Under the general rectilinear assumption, th
DCRB (forT — oo, i.e., replacingR s v by R;) and SCRB
have the relationships:

0.6

0.5

ratio of CRB

0.4t
CRBg;(0) < CRBS'(0) < CRB{,(6).  (17) 03

0.2
Note that for a finite value off’, we cannot be sure that

CRB(0) < CRB;'(0). In fact for low T' and high

sto
SNRs, the inequality reverses. oo o1 seggrf;ﬂm - 0z 0z 03
If we consider now the exploitation of prior knowledge,
the following theorem is proved in the Appendix:
Theorem 5: Under the prior knowledge that the source 10°
are rectilinear uncorrelated;RBL;.(0) is reduced w.r.t.

sto

CRBL-!(8). In contrast, the exploitation of fully coherency

sto

of the sources does not reduC®&B ;. (0):

sto

CRB™(9)<CRB™(6), CRBI*(9)=CRB™'(9). (18)

sto sto

Fig. 1. RatioCRBLS (61)/CRB ;! (01) for ¢1 —¢2=0.1rd.

sto

T
p=1

ratio of CRB
B
O‘

Note that similar properties have been proved for circuli
sources in [17] for uncorrelated sources and in [18] foryfull
coherent sources.

Finally, in the case of a single rectilinear source, we ha
proved after tedious algebraic manipulations that the SCR

of #; alone deduced from (11), (13) and (14) reduce to: 10 005 o1 015 02 025 03
DOA separation (rd)
1 o, o, Fig. 2. RatioCRBI°! (6;)/CRBES, (61) for ¢ — o = 0.1rd
CRBrSC(Gl) = 7 7 — ]-+ _n s (19) g. 2. sto ( 1 sto\V1l 1—¢2=0. .
sto 2Ta'TIL a) o2 202||a; |2

wherea; % a(6;) anda; < da(6;),/d6;. Comparing (19)
to the SCRB derived in [7] under the general noncirculi
assumption, we see th&RBZ(01) = CRBg, (01), i.e.,
the SCRB is not reduced by exploiting the rectilinear pric
knowledge.

To illustrate, the difference between the different CRB:
we consider now the case of two equal-power rectiline
sources of signal-to-noise ratit) log,,(02/02) = 10 dB
and correlatiorp, impinging on an ULA ofM = 6 sensors
with half-wavelength spacing. Figs 1-3 exhibit differen
ratios of CRB. Fig.1 shows that there are significant gay 0.05 01 0.15 02 025 03
between the DSCB and the SCRB for closely spaced a _ _ ooy Separaton 9 |
strongly correlated rectilinear sources. More generatly, Fig. 3. RatioCRB,y,° (61)/ CRBy, (61) for p = 0.
tensive numerical comparisons have shown that this gap
increases for low SNR, low phase and DOA separations V. APPENDIX
and high source correlation, but this gap will always vanighroof of theorem 1: (Detailed proofs of Theorem 1 are avail-
for high SNR. This proves that the conclusions baseble at [23]) SinceR is a (K x K) real symmetric matrix,
on the DCRB may be very optimistic for not too hight then follows from [19, rel.(7.18)] thatec(R;s) = Dgp

ratio of CRB




whereD g is a so-called duplication matrix, and hence [16&IM (6) associated with the noncircular zero-mean Gaussian
rel.(19)] becomes distribution ofy;. B B |
T2 R C1j2: Proof of theorem 4: Using R, > R,A”R ' AR, thanks to
V=(R; "A"@R; "A)Dx = WDk. [20, rel. B.6.37] and noting that} ) is positive semidef-
Then it follows from [19, Theorem 7.38], and some simpléite, we have(} | ®(Rs — H) > 0 from [19, th. 7.10].
algebraic manipulations using [19, Theorem 7.34, rel.(bJ]hen, noting thathHti is positive definite, we have

def

that [16, rel.(20)] becomes (f){jl‘[iﬁw) oG 1)oRs - ﬁ)) > 0 thanks to [20,
My =1- WU UNgW, rel. R.19, p.358], andCRB5S(0) < CRB“'(0) directly
follows. n

def 7 —1X . .
whereU = AR;'A and Ny is an (K x K) matrix  Consider the parametrizatiam,. = (67, ., 02)” associ-

defined in [19, Theorem 7.34]. By evaluating the derivativeged with the assumption of arbitrary noncircular sources
in G andu, and through some further algebra, one findsiy (7], where p,_ is the 2K2 + K vector made from

Ty g, =0, [Re(Rq)]ij Im(Ra)li g, [Re(Cy)li; and [Re(Cy)li,; for
1 < i < 53 < K, and [Rx]i,ir [RG(CJ)]LL and

whereg;, is thekth column of G given by g, = vec(Z;. + [Im(_Cz)]“- for 1 < i < K, whereR,, def E(x,x") and
ZH) and wherez, % R_'?Ar,,afR;Y? a, def Ty i def T ;

k k skdp g e = C, = E(xex;) with x4 = (x41,...,2¢,x)" . Consider
day/dwy, andr,j is the kth column of R,. This identity now the one to one mapping betweeti and o —
allows us to rewrite the individual elements of (10) as (9T 4T ,T )T ;2)T whered — (g1, .. ;k . ¢K3CT is

rYn

2 [CRB;«I)(‘*’)]M _ ngH%,gl. defined by2¢y, def Z[Coli i/ Rk, p1 IS tr)e_ vector made
T ’ from [Re(Rs));; for 1 <i < j < K, andp is the vector
By further calculations we get gathering[Im(R)];,;, [Im(Cy)];,; for 1 <i < j < K and
T , , _ 5 [RG(CS)]Z‘J forl1 <1 <j< K.
[CRBS}})(W)]k_lz—gRe((%Hﬂiéz)(erAHRglArs,l))- Let FIM;, FIM,,. and FIM,. be the FIM associated with
T % (20) the stochastic parametrizations (3y,. and o, respec-

Finally, we can write (20) in matrix form as in (11). m tively. From the one to one mapping,. <> oy, We get

Proof of theorem 2: (Detailed proofs of Theorem 1 arelFTMxclo = [FIMyc]o (where [], denotes the submatrix
available at [23]) We follow the steps similar to those if€términed by the firsk” rows and columns). Furthermore

the proof of theorem 1. SincR, = cc” and its derivative F1M1 = [FIM'nc]1 where[.], denotes the principal subma-
def trix determined by the rows and columns induced by the

w.rt. cis given byD,. = c®I+I®c =2Ng(c®1I), it o ! .
follows then thatV’ has the formV — WD,. After some parametrization of FIM. E:onsequently, taking the mvgrse,
ws S SOM® we get[FIM,]~! < [FIM' 1], [22, th. 7.7.8]. Then taking

2;Ig:§\t)vrsa[[(r:];?ampulatlon using [19, Theorem 7.34, rel.(d)], the principal submatrix determined by the fifstrows and
columns, we geCRB () <CRBL(0). ]

_ sto sto!
s C1- v(vEV) " IlVE = 1- v, VIVE Proof of theorem 5: Let FIM; be the FIM associated with the
def parametrizations (3) for whiclp = ([Rs]x x.1<k<x ). FoOr

. — def
with Vi = WNg(ec®I) andV = 1(k.U + uaul)  yectilinear uncorrelated sourcddMs = [FIM, 5, where[.]3
whereu, 4f Ue and Ke 4f <TUe. Thanks to the matrix denotes the principal submatrix determined by the rows and
1

inversion lemma, we havd/~! = %(U*1 — z—cc’).  columns induced by the parametrization of FlMaking

Through some further algebra using = vec(R;i) and the inverse, we gefFIMs]~! < [FIM;']; [22, th. 7.7.8].
def Then taking the principal submatrix determined by the first

- 7. +7Z7) whereZ;, < R-Y?AcaFR- Y2, one
gr = vec(Zp+Zy) k ] ca Ry K rows and columns, we g€&tRBI(0) < CRBI'(0). B

- = — def 7 —2% sto sto

fmdsl thatuHNVl = c"U whereU = A"R; 2{“’ u’’gy, — _Finally, by noting that for coherent rectilinear sources,
QCkékHR;QAC and Viig, = ck(Vék)uc + HCAHRglék) H = k.cc? in (11) givesCRBLSH(w) = CRBLS (w), It
where ") ¢ FHR-'Ac. By further calculations we follows then thatCRB.;;(6) = CRB;;'(9). =

arrive atu’TII{;g, = 0. This identity allows us to rewrite

the individual elements of (10) as VI. ConcLusion

Closed-form expressions of the SCRB of DOA estimation

2 [CRB;})(W)],C lzgfn%/gl - %kcl(é;flﬂiéﬂ for rectilinear sources have been directly derived form the
T ’ In extended Slepian-Bangs formula, including the case of prio
which can also be written in the matrix form (13). B knowledge of uncorrelated or coherent rectilinear sources
Proof of theorem 3. Noting that (7) becomeR; = Analytical and numerical comparisons with the DCRB and

Zszl o?aiall + 021, all the steps of the proof given the SCRB for noncircular sources have shown in particular
in [17, Appendix A] apply to the parametes with the that the DCRB may be very optimistic.
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