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Postural Optimization for an Ergonomic Human-Robot Interaction

Baptiste Busch1, Guilherme Maeda2, Yoan Mollard1, Marie Demangeat1 and Manuel Lopes3

Abstract— In human-robot collaboration the robot’s behavior
impacts the worker’s safety, comfort and acceptance of the
robotic system. In this paper we address the problem of
how to improve the worker’s posture during human-robot
collaboration. Using postural assessment techniques, and a
personalized human kinematic model, we optimize the model
body posture to fulfill a task while avoiding uncomfortable or
unsafe postures. We then derive a robotic behavior that leads
the worker towards that improved posture. We validate our
approach in an experiment involving a joint task with 39 human
subjects and a Baxter torso-humanoid robot.

I. INTRODUCTION

Humans and robots are starting to work in shared environ-
ments allowing an increasing diversity of tasks they can ac-
complish together. This also creates new challenges of safety,
and acceptability. New robotic assistants should be able to
prevent worker’s discomfort as well as more aggravated
work-related diseases. Some efforts have already been made
to improve acceptability by including social behaviors, like
proxemics, in the field of human-robot interaction [1]–[3].
Most advanced robotic planners combine multiple notions,
including safety and social acceptance, to create human-
aware robotic responses [4]. In contrast to a human-human
interaction, where both parties try to maximize their own
comfort, sometimes at the expense of the other, an assistive
robot should always maximize the comfort of its coworker.

A simple example arises when the robot passes, or
presents, an object to the human. When handing over an
object, the final object pose influences the way we can grasp
it [5], [6], and thus the comfort of that posture. One way
to solve this problem is to analyze how the human receiver
grasps a specific object and orient it to improve the receiving
posture [7]. Another way is to define a cost function that
captures all possible hand-over configurations and allows
to find the optimal comfortable solution. Common cost
functions comprise safety, visibility, and postural comfort
[4] or naturalness & appropriateness [8]. However, such
techniques rely on a generic human model which might not
capture the individual characteristics of each user. We believe
that having a personalized model to adapt to the specificity
of each user would greatly benefit the interaction. Recent
research addressed the problem of a personalized human
model to reason on human kinematics while planning the
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Fig. 1: Representation of the setup considered in the user
study. The robot presents to the user a spherical toy in which
multiple shapes can be inserted. Final pose of the object is
calculated from the user posture at his current location.

robot’s behavior [9]. On the other hand, the cost function
considered by the authors was chosen for its simplicity and
did not include social or postural cost. As they stated, using a
more biologically-plausible cost would yield strictly superior
results.

“Musculoskeletal disorders” (MSDs) are the single largest
category of work-related diseases in many industrial coun-
tries [10]. Over the years, many assessment techniques have
been developed to evaluate worker’s body posture at their
workstation [11]. Methods for postural assessment can be
classified according to the accuracy of data collection and
the degree of intrusion caused by the required sensors to
collect them [12], [13]. Observational methods, based on
observations of the worker, are straightforward to use and
applicable to a large variety of situations [14], [15]. Their
accuracy is however limited as they are mainly developed
for paper-based observations without the need of specific
tools or sensors. With the development of non-intrusive
human tracking system, like depth sensors, automatic pos-
tural assessment based on observational methods start to
emerge [16]. The development of such techniques will have a
significant impact in industry by drastically reducing the cost
of ergonomic solutions. Moreover, it will also benefit fields
like human-robot interaction by allowing a more thorough
analysis of the human coworker.

When we, humans, accomplish a task our body posture
is (partially) constrained. For example, acting on an object
constrains the pose of the hand relatively to the object and
the head faces the object we are acting upon [17]. But due to
the large number of degrees of freedom (DOF) of the human
body, other body parts are unconstrained and several body
postures are viable with respect to the task. However, not all
of them are viable in terms of ergonomics. Optimizing the
model body posture is then the logical next step to find an
ergonomically correct posture for the worker to accomplish



a specific task.
Most researches on human-robot interaction optimize the

robot’s placement and behaviors w.r.t specific cost functions
that acknowledge human needs [4], [18], [19]. Similarly, our
idea is to find an optimal human body posture to solve a task
considering three important aspects of the interaction that are
safety, acceptability and task constraints. Those three factors
were chosen according to their importance in the existing
literature and are very similar to previous researches in
the human-robot interaction field [8], [20]. Our hypotheses,
verified in this work, is that the user will intuitively behave
similarly to the predictions made by our algorithm. In the
case of handing over objects or joint manipulation, the robot
can induce the human location and posture by planning the
positioning of the object within the shared workspace.

In this paper we introduce a framework for postural
optimization of the human body. This framework respects
the three aspects of the interaction by introducing notions
derived from proxemics [1], subject laterality, and visibility
[17] for the notion of acceptability. Other measures such
as legibility could also be considered, as we did in our
previous work [21], but here we focus more on physical
comfort and not on the impact of perception of intentions
in the shared activity. Safety, only considered here as the
postural risk of MSDs, is handled by the Rapid Entire
Body Assessment (REBA) technique [15]. The choice of
this postural assessment technique was motivated by its
range of application and the fact that it provides quantitative
measures.

This work aims at being a study on the effects of
incorporating postural assessment techniques derived from
ergonomic researches in the human-robot interaction. The
main contribution of our work is the integration of the
REBA method in a planning framework to provide a realistic
estimate of a motion’s ergonomic cost. Second, we introduce
a solution to automatically assess the worker’s body posture
using the same REBA method and couple it to a graphical
interface to feedback the user on the risk of his or her
posture. This graphical interface is presented in Section IV.
Finally we have realized an extensive user study with 39
participants that validate the benefits of our approach on the
interaction. We have collected both the subject’s perception
of the system and quantitative measures provided by the
automatic assessment of the subject’s posture and analyzed
them in Section VI.

Closer to our work is the research of Sisbot et al. [4], [19],
[20] and the recent works from Bestick et al. [9] and Suay
et al. [22]. With the exception of [22], the cost function
we have chosen to respresent the human factor is more
biologically grounded and taken directly from the ergonomic
field. Moreover, our implementation of the visibility cost,
firstly introduced by Sisbot et al., also optimizes the object
orientation and not only its position. This is particularly
important for the object used in our user study, illustrated
in Fig. 1.

Details of the implementation are given in Section V. The
framework has been tested on a user study, introduced in

Section VI, by comparing different methods for handing over
the spherical object illustrated in Fig. 1.

II. AUTOMATIC POSTURAL ASSESSMENT

Automatic postural assessment, based on observational
methods, has started growing in interest with the develop-
ment of cheap and easy to use human tracking systems [23].
Although the REBA technique has been initially developed
for pen-paper observations [15], the fact that it handles static
as well as dynamic postures and that it relies on quantitative
values makes it suitable for an automatic assessment. The
technique is based on the observation of joints of the human
body. Each joint value is associated with a score which
corresponds to a risk of MSDs. The higher the score, the
higher the risk. As a high score on the upper arm is not
equivalent to the same score on the trunk, the method also
provides comparative tables to calculate the final score that
ranges from 1 (no risk of MSDs) to 12 (very high risk,
recommendation to change posture immediately).

To be fully automatized, the technique requires a human
kinematic model that returns the joint values from the
specific part of the human body (e.g. elbows, hands...). In
Section V we detail the process of creating a personalized
human model based on Kinect skeleton model. Joint values
and REBA score of the observed posture are calculated from
the tracked frames.

This assessment technique is the main component of our
framework for postural optimization detailed in Section III.
While other techniques for MSD assessment are available,
here we opt to use the REBA metric due to its generality
and the provision of a quantitative assessment.

III. POSTURAL OPTIMIZATION

To respect the three main aspects of interaction, that are
safety, acceptability, and task constraints, we define several
cost functions and constraints to find an optimal body posture
during the interaction. In the following paragraphs we detail,
for each aspect, the associated cost function or constraint.

A. Safety and Comfort

Human safety is a central piece of the interaction. In term
of body posture, safety corresponds to minimizing the risk
of MSDs. To achieve this we find the body posture that
minimizes the score returned by the postural assessment
technique REBA [15].

In its original formulation, the REBA method does not
show suited for numerical optimization due to the discrete
grading and the presence of plateaus. Thus, we approximate
the discontinuous nature of the scores by a sum of weighted
polynomials, and optimize the weights to closely reproduce
the score in the continuous domain,

Cposture(q) =

n∑
i=1

wiQi(q) (1)

Where n is the number of joints considered in the REBA
techniques and Qi(q) is a 2nd order polynomial of joint
i. Coefficients of the polynomials are calculated from the



original REBA score of each joint. The weights wi are
learned from the total REBA score calculated on several
body configurations. For learning the weights, we define
a set of random poses, ensuring each class of the original
REBA cost (from 1 to 12) are evenly represented. We then
find the weights that minimize the difference between the
original REBA cost and its polynomial approximation for
all the posture of the set.

The posture of the body, represented by its vector of joints
q is considered as being static and independent from the
initial body configuration. We only consider static postures.
This choice was motivated by the fact that any initial body
configuration might be ergonomically incorrect and therefore
should not interfere with the final posture.

Although the cost function (1) is an approximation of
the REBA score, postures that minimize it also minimizes
the original score as the minima of the two functions are
identical. In the rest of this paper we use the score function
(1) to optimize the body posture but assess the obtained
posture with the original REBA method.

In its implementation the REBA method also takes the
weight of the load into consideration. For the moment, we
have discarded it in our experiments as it was considered as
negligible. However, this is an important notion to add in the
future.

B. Task constraints

For some tasks, the pose of a specific body part, like the
hand, is constrained to a specific location. For example when
we use a tool our hand is tied to it, which itself is linked to
the object we are acting upon. This part of the framework
is the only specific part that needs to be specified for each
task. Most common task constraints would be to set parts of
the worker’s body to a certain pose.

Considering the forward kinematic of our human model
FK, the pose in Cartesian space of body part i is represented
as FKi. Constraining a body part to a certain location
in space is equivalent to minimizing the distance between
the forward kinematic and the desired pose FKdes

i . This
distance is expressed as two subcomponents, one for the
position as Euclidean distance and one for the orientation
as distance between two quaternions. The distance between
two quaternions is defined as (Q1, Q2) = 1 − 〈Q1, Q2〉2.
Constraining multiple body parts is performed by summation
of the distances,

Ctask(FK,FK
des) =

∑
i

(‖FKi,pos − FKdes
i,pos‖

+ k(1− 〈FKi,rot, FK
des
i,rot〉2)). (2)

Because position and orientation distances do not share
the same unit, it requires the addition of a scaling factor
k ∈ R. In practice, we have set k ≈ π. As the quaternion
distance varies between 0 and 1, this then corresponds to the
distance between the two angles traveled on the unit circle.
We also note that FKdes might be expressed w.r.t the object

frame. This is particularly interesting when the object is free
to move in space and its pose is part of the optimization.

C. Acceptability

The concept of acceptability is not easy to define. It is usu-
ally divided into social acceptability: How does the society
perceive robotic systems?, and practical acceptability: How
do people perceive the robot when interacting with it? [24].
In this paper we focus on the latter. We incorporate visibility,
proxemics and user’s laterality (right or left-handed) in our
framework in order for the worker to feel at ease during the
interaction.

Visibility: Visibility is an important notion to consider.
When the robot moves an object, it should always do so in the
worker’s field of view. Otherwise, it might surprise the user.
We have put the visibility notion under acceptability although
it does not uniquely belong to this category. For example, a
non trained worker would most probably look at the object
he is acting upon in order to fulfill his task (task constraints).
Such as novices in computers look at their keyboard when
typing. Another one might get hurt if he uses some tools and
cannot visually verify the results of his actions (safety).

To optimize for visibility, the model’s head pose is directly
linked to the pose of the object Xobj acted upon. Pose of
the object can be considered as fixed, attached to the model’s
hand by a predefined transformation or set as a variable of
the optimization. We denote the sight vector coming from
the head as ~Hx, H corresponding to the forward kinematic
of the head FKhead. We consider that this vector originates
from the center of the head and is parallel to the ground
when the head is straight. The visibility cost corresponds to
the angle between the vector from the center of the head
to the object ~XobjH and ~Hx. It is calculated using the dot
product between them as arccos( ~Hx · ~XobjH). This way we
ensure that the object is approximately at the center of the
vision cone when this cost is close to 0.

For some objects, the orientation also matters. For exam-
ple, the handle of a tool should be directed toward the user
to ease the grasping. To represent this we consider a feature
vector ~vobj that need to be aligned with the directional vector
of the head ~Hx. At the moment, this vector is predefined for
each object used in the experiments. The corresponding cost
is also defined by the dot product arccos( ~Hx · ~vobj). The
final cost for visibility corresponds to the sum of the two
dot products,

Cvisibility(FKHead, Xobj) = arccos( ~Hx · ~XobjH)

+ arccos( ~Hx · ~vobj). (3)

Proxemics: People have special concerns about their
personal space either in terms of intimacy and safety. We
consider proxemics – physical and psychological distancing
from others [25] – to address such concerns. Close inter-
action like handing-over an object would be socially unac-
ceptable and create uncomfortable situations if it happens
too close to the worker, especially for non-trained ones.



In our framework we have added the proxemics notion as
a constraint to ensure that the optimized posture will not
violate the worker’s intimate space. The proxemics constraint
corresponds to the minimal distance from the human waist
to the object. Only planar distance (x and y coordinates) are
here constrained. This limit correspond to the boundary of
the subject’s intimate space, i.e 0.45m [26],

XObj ∈ proxemics constraints. (4)

Laterality: Every worker is unique. Some are right-
handed, other left-handed. Therefore, the model should also
take into account this specificity. We leave the possibility
to select the worker’s laterality. This impacts which hand is
constrained to act upon an object.

D. Framework definition
Finally, we group all the previous cost functions and

constraints (1-3) to define a parameterized framework, whose
pseudocode is detailed in algorithm 1, for optimizing the
human body posture while solving a task. Our formalism
is very generic and considers many tasks beyond the ones
presented in this paper. The task constraint function and its
parameters are the parts that have to be redefined depending
on the specific task to solve.

Algorithm 1 Postural Optimization Framework

1: procedure OPTIMAL BODY POSTURE(laterality, w,
FKdes, obj dof , HXobj)

2: model laterality ← laterality
3: q ← random model joint values
4: p← []
5: if obj dof is “fixed” then
6: p←H Xobj

7: else if obj dof is “position” then
8: p← random position
9: else if obj dof is “orientation” then

10: p← random orientation
11: else if obj dof is “full” then
12: p← random pose
13: f(q, p) = w1 Cposture(q)

+w2 Ctask(FK(q), FKdes)
+w3 Cvisibility(FKHead(q), p)

14: qopt,
H popt ← min f(q, p)

subject to p ∈ proxemics constraints
15: return qopt, Hpopt

The final cost function is a weighted sum of the different
elements, some of them with different units for which we
need different weights wi ∈ R. This weights will most
probably be task dependent. For example, in some industrial
tasks, visibility might be a critical aspect. In this case
increasing the weight that account for visibility will lead
to the desired behavior. The outputs of the algorithm qopt
and Hpopt correspond to the optimal human posture in joint
space and the optimal object pose w.r.t the human reference
frame respectively.

female model, front view male model, back view

Fig. 2: Screenshots of the graphical interface in two possible
configurations. The same body posture is used in both
pictures. In front view, by contrast with the back view, the
body configuration mirrors the real posture.

IV. FEEDBACK INTERFACE

Most of the time, workers are unaware of the risk induced
by a wrong posture. Dangerous postures might not have
a direct effect on the body but it is the repetition that
increases the risk of MSDs. Therefore, a direct feedback is
an interesting feature that could help workers maintaining a
good posture at their workstation. To that extent, we have
developed a graphical interface to animate a model with the
user’s observed body posture. The projection on the model
is almost real-time. We also evaluate the risk of his or her
posture, using the REBA assessment technique, and displays
it with spheres located at the evaluated body joints. The
color of each sphere represents the risk at its corresponding
location. It ranges from “green” (no risk) to “red” (high
risk) according to the REBA method. In Fig. 2 we show
two screenshots of the graphical interface. Using the buttons
on the right side, the user can choose to display a male or
a female version of the model. He or she can also switch
between a front or a back view. After some trials with test
subjects, it has been decided that the front view should
mirror the user’s body configuration, i.e rising the right arm
translates to a rising of the model left arm. In back view,
however, the body configuration is normally displayed.

V. IMPLEMENTATION DETAILS

In this section we define the implementation choices we
have made to track the human body for the automatic
assessment of Section II and to optimize the body posture
using the framework defined in Section III.

A. Model generation and human tracking

The automatic postural assessment requires a human
model that returns joint values from pose of body segments.
To this end, we calibrate a personalized human model as
a URDF with 32 degrees of freedom (DOF) by calculating
the length of each body segments on the observed subjects
skeleton using Kinect cameras. This personalized model is
then used during the optimization described in Section III.
While during the calibration of the model the environment
can be setup such that the human can stand directly in front
the camera, during the execution, we found that the presence
of the robot, constant occlusions, and space constraints make



it difficult to reliably assess the REBA score using the same
camera.

Thus, currently, at runtime we opted to track the human
using optical markers.1 Each subject has been equipped with
a suit covered by OptiTrack markers to track the main body
segments (head, hands, elbows, torso and waist). The models
frames are recorded during the whole interaction. To obtain
the model joint values we compute its inverse kinematic on
the recorded data. As the legs are not tracked, we set them
in rest position, i.e. with joint values leading to the minimal
REBA score.

The waist frame is the most important frame of the
OptiTrack suit. It corresponds to the model base frame. We
also use it to express the position and orientation of the
subject in the robot workspace.

B. Optimization of the cost functions

To minimize the costs defined in Algorithm 1 we use a
simple gradient descent algorithm from scipy library. This
is sufficient as we consider only static postures and not
trajectories.

C. From human to robot space

The solution provided by Algorithm 1 corresponds to the
optimal body posture in joint space, qopt and the optimal
object pose Hpopt in the human space. We must now generate
a robot trajectory that positions and orients the object in its
optimal location Hpopt such that the human is in the optimal
posture qopt. The relation between qopt and Hpopt is defined
as the forward kinematic FK. The robot trajectory can be
designed by expressing the pose of the object w.r.t the robot’s
reference frame, Rpopt. To this end, at runtime we locate the
current position of the human w.r.t the robot’s frame using,
for example, optical markers or depth cameras to compute
a transformation RTH . This process is illustrated in the left
part of Fig. 3.

Transformed into the robot’s space, the optimized solution
represents the optimal posture for the human to interact
with the robot. For simplicity, take the case where Rpopt
needs to be satisfied only at the end of the interaction (e.g.
in handover) and the robot starts from a pre-defined home
position Rpinit. Depending on the location of the human
w.r.t. the robot, and the degree of redundancy of the robot,
two situations are possible. If the final object position is
within the workspace of the robot, many possible robot
trajectories that lead to the satisfaction of Rpopt can be
designed. Conversely, if the final object position is outside
the workspace of the robot, no trajectory can be generated.

To account for both cases and quickly generate a trajectory,
we solve a motion planning problem where the initial and
final end-effector positions of the robot are connected by a
straight line (in Cartesian space), as an initial guess. The ori-
entation of the end-effector is interpolated by slerp between
the initial and final poses. If an IK solution on this straight

1We are working on replacing the optical markers by Kinect cameras also
during the execution, creating a less invasive measurement system that can
be seamlessly integrated in real industrial scenarios, for example.

Fig. 3: Left: finding the desired object pose in Cartesian
space w.r.t. the robot’s reference frame Rpopt given the
solution of the ergonomic optimization qopt and Hpopt.
Right: a straight trajectory is used as an initial guess to bring
the object from the robot’s home position to the handover
position. If a solution is not possible, stochastic optimization
is used to optimize the trajectory.

trajectory is not found, we use stochastic optimization to
slightly perturb the final desired position of the end-effector
and also to reshape the straight line to search for a valid
robot’s IK trajectory 2. Perturbing the final desired position
of the end-effector will make the exact reproduction of Rpopt
and force the human model to deviate from its optimal
posture qopt. Thus, we penalize deviations from the original
desired location to find a compromise between the optimal
posture of the human and a kinematically feasible robot
trajectory. This process is illustrated in the right part of
Fig. 3.

D. Graphical interface

The feedback graphical introduced in Section IV has been
developed using Unity software. The male and female model
were imported from Mixamo website without license nor
restriction of use. The code for the graphical interface is
available on a GitHub repository3.

VI. USER-STUDY EXPERIMENT

We apply the postural optimization framework on an
experiment with real users interacting with our Baxter torso-
humanoid robot. Two points are tested: Are the postures gen-
erated with our framework perceived better than other types
of postures? and Does the optimal robot’s behavior leads
the real user to a safer posture? During those experiments,
the feedback interface was not presented to the subjects to
avoid perceptual biases toward the postures generated by our
algorithm.

With the object illustrated in Fig. 1 we mimic an industrial
scenario where the robot helps the worker by positioning and
orienting an object in which the worker has to insert specific
shapes. In total five shapes were considered, located on the
blue side of the ball. Name of the shape to insert was written
on the robot’s screen. Between each insertion the robot was
sent back to a neutral pose to let the user prepare the next
shape.

We have conducted an extensive user study with 39
participants (18 females and 21 males, 2 left-handed, aged
35 ± 11.26). Before the experiment, subjects were asked to
rate their experience with robotic systems on a scale from 1
(no experience) to 5 (daily usage). Result is 2.18 ± 1.27.

2details of this method can be found in [27]
3https://github.com/3rdHand-project/PosturalFeedbackInterface



Relative pose Optimized pose

Fig. 4: Difference between the pose obtained with the relative
(left picture) and the optimized conditions (right picture).

Three robot’s behaviors have been compared. We refer
to them as fixed, relative and optimized conditions. Each
participant has been presented a sequence of two behaviors
from the set of all permutations. Each run of a behavior is
composed by the five shapes to insert in a random sequence.
Behaviors are detailed in the following paragraphs:

Fixed: In this behavior the robot does not take into
account the worker position and deliver the object to a fixed
pose. We have used this behavior as a baseline.

Relative: Research from ergonomics tells us that
handing-over an object should happen at torso height at two-
third of the receiver’s arm maximum elongation [6], [28]. For
orientation, we constrained the insertion hole to face the user.
At execution, the user’s torso frame is tracked and the pose
of the object on the reference frame of the robot is computed
using the required homogeneous transformations.

Optimized: Using our framework from Sec. III we
optimize the user’s body posture to receive the object and
calculate where to deliver it with reference frame transfor-
mations. Computing the optimization of the receiving pose is
achieved within ∼ 5s on a i7-3720QM 2.60GHz computer.

After observing the two behaviors, the subjects were
asked to order them according to their preferences and to
complete a survey composed of a 12 Likert scale items for
each observed behavior. Affirmations were ranked from 1
(I strongly disagree) to 5 (I totally agree). They are based
on the System Usability Scale methodology [29] with one
affirmation over two written with the negative form. The
survey was divided in three subcategories representing the
considered aspect of the interaction, i.e safety, acceptability
and task constraints. This separation was not made visible
to the subjects for whom the 12 affirmations were shown in
a random order. After answering the 12 items, subjects had
the possibility to leave comments on the observed behaviors.
Complete results and survey questions are detailed in Fig.5.
For clarity, the affirmations in the negative form are drawn
with negative values from −5 to −1. Subjects’ body poses
were recorded, using the OptiTrack suit, to evaluate their
posture during accomplishment of the task.

The data of the experiment are available on a Zenodo
repository4 alongside a GitHub repository that contains all
the necessary materials to read them5. A video of the

4https://doi.org/10.5281/zenodo.321599
5https://github.com/3rdHand-project/PosturalOptimizationDataReader

Fig. 5: Average results and standard error of the mean for
the responses to the survey. Each subject have observed two
of the three behaviors in a random order. Affirmations are
Likert scale items, based on the SUS methodology, ranked
from 1 to 5 [29]. The negative values for the affirmations
in negative form only appear in the figure for clarity mat-
ters. Significance have been tested using Mann-Whitney U
test and noted according to the standard defined by the
APA(American Psychological Association).

experiment is available on our Vimeo channel6.

Qualitative Results

From the survey results Fig.5 and the recorded data we
want to validate the three following hypotheses:

- The Fixed condition should have the lower rank for all
the considered aspects as it does not respect the task
constraints and do not account for user’s safety (H0).

- In terms of task constraints and acceptability the relative
and optimized conditions should produce similar results.
Main differences between them should arise from safety
related affirmations (H1).

- On the recorded data the optimized condition should
have the lowest REBA value (H2).

Almost all subjects who have observed the optimized con-
dition have put it first in their preference ordering. Only one
person, who got the relative and the optimized conditions,
has chosen the relative one first. Second preferred method
is the relative condition. The Fixed condition has never
been ranked first. For all the affirmations in Fig.5 there is a

6https://vimeo.com/163699896



tendency for the optimized condition to be preferred over the
two other ones. Results have been compared using Mann-
Whitney U test and show a significant preference for the
optimized condition when summing up all the affirmations
(p−values < 0.05 for the three combinations). The order of
the conditions does not influence the results (p− values ≈
0.5 for the three method). Due to the small number of
left-handed people we cannot check for any significant
differences between laterality.

Considering the results for the three subcategories, there
is no significant differences between the optimized and the
relative conditions for the questions on task constraints and
acceptability (p− values = 0.19 and 0.33 respectively). All
the other combinations are significantly different.

Fig. 4 shows the difference between the pose obtained
with the relative and the optimized conditions. In the relative
condition, we observe that the interaction happens at a higher
level and forces the subject to bend his wrist.

Quantitative Results

During all the process the subjects’ body motions have
been recorded and their posture evaluated using the REBA
method. We only consider the moment of insertion and
average over the few time-steps it has taken the subject to
do this action. The moment of insertion was automatically
detected from the Cartesian distance between the subject’s
dominant hand (the one that have been used to insert the
shape) and the center of the ball. We arbitrarily set that
distance to be less than 20cm for the time-step to be accepted
as an insertion. Fig.6 shows the averaged REBA score over
all the subjects for the three behaviors for some parts of
the body. Differences between the conditions have been
tested using a paired t-test on paired data from subjects,
merging conditions in opposite order. For example, statistical
differences between the fixed and the optimized conditions
have been obtained from people that have observed the fixed
then the optimized conditions and people that have observed
the optimized then the fixed conditions.

The data in Fig.6 show a significantly lower score on
shoulder, wrist and total values for the optimized condition.
The Relative condition presents the highest wrist score. In
their comments some subjects have written that their wrist
was not in a correct pose when they had to insert the shapes.
Especially one subject that had a wrist tendinitis said he felt
some discomfort.

Analysis

From the results of the user study we validate the three
hypotheses enunciated previously. The fixed condition is the
worst possible behavior both in terms of subject’s perception
and REBA score (H0). Although relative condition seems to
be an acceptable solution it produces a significantly higher
body posture score, especially on the wrist. In terms of
acceptability and task constraints it is perceived similarly
to the optimized solution returned by the framework. Yet in
terms of user’s safety it performs significantly worst (H1).

Fig. 6: Average score and standard error of the mean of
the recorded body posture using the REBA method. Only
dominant arm have been included in the figure for clarity,
but data for the opposite arm are also available. Significance
have been tested using Wilcoxon test on paired data. The
recorded postures for the optimized condition present a lower
REBA score. The relative condition leads to an higher wrist
score that can create some discomfort.

From the analysis of the recorded data, we observe that the
optimized condition significantly reduces the body posture
cost. There is 1.1 point of reduction (3.35 to 2.21 in average)
compared to the fixed condition and 0.4 point (2.63 to
2.21) compared to the relative condition. Although this is
not a huge improvement, we have to note that only the
dominant arm is used to solve this task. We can expect
better results for some task that put a strain on all the body
parts. Nevertheless, the repetition of a suboptimal posture
can increase the risk of MSDs. Interestingly, the higher wrist
score for the relative condition can be linked to the comments
made by the subjects. During the insertion their wrist was put
in extension due to the orientation of the insertion hole. This
have been correctly detected by the assessment technique and
it is the main weakness of the relative condition.

Obviously the relative condition results could be improved
by changing the orientation that causes the wrist discomfort.
But then this would require to empirically find a “correct” so-
lution for each task considered. For some of them this might
be not trivial. Therefore, the genericity of our framework
allows to automatically find better postures in any task.

VII. CONCLUSION

For a safe and comfortable human-robot interaction it is
important to respect three aspects of the interaction: task
constraints, safety and acceptability. The growing number
of MSDs shows that people might be unaware of the risk of
their working posture. By optimizing the human posture to
minimize that risk, we can deduce robotic behaviors that are
safer in the long-term.

In our work, we introduce a postural optimization frame-
work that account for task constraints and acceptability



while minimizing the risk of MSDs. For the latest we rely
on a personalized human model and postural assessment
techniques developed for ergonomic, mainly the REBA as-
sessment method [15]. Coupled to a motion tracking system
we also assess the worker’s posture during the interaction.
We have validated our approach in a user study with 39
volunteers interacting with a Baxter torso-humanoid robot.

Results of the user study prove the efficiency of our frame-
work. It successfully generates body postures to solve the
considered task. Moreover, not only are the obtained posture
perceived as better solution compared to naive approaches,
the real subject’s posture are also rated better with the REBA
method. The main strength of the framework is to not provide
an a priori knowledge on the object pose in order to solve the
task. By only defining the task constraints, the framework
provides the optimal object location for interaction. How-
ever, some limitations are worth noting. One of the actual
limitation arises when the robot cannot reach the desired
position. For a mobile robot this problem can probably be
solved by moving the robot to another location. For a fixed
robot the solution would be to reorganized the working cell.
If the worker can move in the workspace, then we should
find his optimal placement. Second limitation is that our
method only consider static posture, although motions with
a high dynamic present a high risk of MSDs. Finally, a
current limitation of the method is the use of marker tracking,
which may hinder the application in real industrial scenarios.
Thus, we are currently investigating alternative non-intrusive
methods that work in close range.

The graphical feedback interface presented in the paper
also requires an extensive study to validate its usage. To
avoid potential biases it was turned off during the conducted
user study. Therefore, an extension of the work is to analyze
how it impacts the worker’s posture during the execution of
a task.
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