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SYMMETRIC UPWIND SCHEME FOR DISCRETE WEIGHTED TOTAL VARIATION

Sonia Tabti , Julien Rabin, Abderrahim Elmoataz

Normandie Univ, ENSICAEN, CNRS, GREYC, 6 Bd du Marchal Juin, Caen, France

ABSTRACT

This paper is devoted to the study of the discrete formula-
tions of the weighted Total Variation (TV) based on upwind
schemes that have been proposed for imaging problems in a
local setting in [1] and in a non-local setting for graphs and
point-clouds in [2]. We focus on two new symmetric formula-
tions based on the ¢2 and /> norms respectively and propose
a dedicated optimization algorithm to solve convex problems
based on such TV penalties. We demonstrate the theoretical
and practical interest of such formulations for image process-
ing tasks.

Index Terms— Weighted Total Variation, Upwind scheme,
image denoising, isotropy preservation, co-area formula.

1. INTRODUCTION

Context In this paper, we are interested in the discrete
formulation of Total Variation (TV) in image processing and
computer vision as a prior for piecewise constant images.
This topic has been widely studied since it has been proposed
by Rudin-Osher-Fatemi (ROF) [3] and remains an active re-
search field; as an example, non-local formulations have been
proposed in [4], [S] and a combination of TV with Non-Local
means has been proposed in [6], all in order to preserve tex-
tures and thin structures. The Total-Generalized-Variation
(TGV) studied in [7] and the method in [8] are variants that
reduce the staircasing effect observed with TV.

Total Variation is applied in many imaging and computer
vision problems such as segmentation [9], inpainting, decon-
volution and motion estimation [10], optical flow [11], filter-
ing [12], point cloud processing [13] and classification [14].
Most studies are based on continuous formulations that are
then approximated to solve the discrete problem. In this work,
we consider directly the discrete setting.

Motivation In [1], a new discrete TV formulation is pro-
posed, referred to in the following as TV,, and inspired by
upwind finite difference schemes used in the numerical reso-
lution of Partial Differential Equations. Despite the upwind
scheme [1] ability to better preserve isotropy in comparison
with the usual ones, Condat shows in [15] that it is not in-
variant to contrast inversion. Consequently, some artifacts

The authors thank ANR-14-CE27-0001 GRAPHSIP and FEDER/FSE
2014/2020 (GRAPHSIP project) for funding.

tends to appear with TV, such as light isolated dots, which
are not suitable especially for filtering purpose. Condat also
proposes a new dual formulation of the Total Variation, de-
noted here by TV, which avoids this issue. However, the
price to pay is that this formulation is not explicit. Note in
addition that both schemes do not check the discrete co-area
formula. This formula, verified by the usual anisotropic TV
definition, allows to solve some non-convex problems by con-
vex relaxation such as segmentation, see for example [9].

Contributions In this paper, we study two non-local TV
formulations on graphs. This type of graph-based formulation
was initially proposed in [2]. The proposed formulations rely
on a symmetric definition combining an upwind scheme with
a downwind scheme expressed in an £*° and ¢2 norms respec-
tively. We propose an efficient way to express these norms
allowing us to solve convex optimization problems with these
regularization terms and illustrate their properties on some
numerical experiments. These properties are: isotropy preser-
vation, bias reduction in comparison with TV,,, better filtering
results in comparison with variational approaches of the same
type and the versatility of the non-local ¢>° formulation that
can mimic other formulations.

Outline In Section 2, we first recall the local, non-local
and upwind formulations of the Total Variation, then, we in-
troduce the proposed symmetric formulations. In Section 3,
the optimization algorithm to solve convex variational prob-
lems based on these regularization terms is described. Some
comparative experiments in Section 4 illustrate the interest of
the proposed framework.

2. DISCRETE UPWIND FORMULATIONS OF
TOTAL VARIATION

2.1. Notations

A graph G(V, £, w) is defined by a set of vertices V con-
nected by edges £ C V x V and a weight function w : £ —
R . A graph is symmetric, or undirected if w(v, u) = w(u, v)
V(u,v) € £. In practice, this property is usually satisfied for
applications in imagery except in the domain borders because
of special conditions such as Neumann or Dirichlet condi-
tions. In the sequel, we consider a scalar image f defined on
a regular cartesian grid Q C Z%, u : z € Q — f(z) € R.
The border of the domain is denoted by 0f2. The associated n-



connexity graphis G(£2, €, w), where: £ = {(z,z+t), Va €
OO, t € N,,}. In practice, we use: No = {(1,0),(0,1)}
or:

Ny = {(1,0),(=1,0),(0,1), (0, —1)} withw = 1,

or: Ng = {u = (4,j)st.i,j € {0,1,

w(i, j) = 1/1£ (i) — f(§)|I? orw = 1.
For a field p : £ — R, the inner product is defined by:
(p, q) = Z(U wee P(v;u)q(v, u) and the canonical norm by:

Ipl = +/(p, p). We also define the composed norm |. |1 x:

—1}} with either

1
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which will be useful to unify the different formulations of the
total variation studied here. The dual norm is:

max (p, q) =
lal <1< )

. 1 1
with EJr,?*fl.
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We note 1 (respectively 0) the vector fields where each
component is equal to 1 (resp. 0). The adjoint of a linear op-
erator K is noted K*, such that: (Kp, q) = (p, K*q). The
operators (p)4+ = max{0,p} and (p)— = min{0,p} apply a
thresholding to each component of p. The inequality: p > 0,
implies that each component of p is non-negative. The charac-
teristic function of a set C is denoted by x¢, and the indicator
function 1. The proximal operator of an application f is:
Prox(z) := argmin 1|z — y| + f(y).

Il = 1P o -

Yy
2.2. Upwind and downwind difference operators

We recall here the definition of difference operators on
graphs as proposed in [2]. Without loss of generality and for
sake of simplicity, we consider in the sequel fully connected
graphs £ = V x V, where the lack of an edge is represented
by a zero weight w. The centered difference operator of a
vectorial function on G:

e RY.
(3)

The upwind and downwind uncentered difference operators
are then respectively defined as follow:

V.fiveV ( (v, a)(f(u) — f(v)))

uey

Vo f:
VEif:

VeV (V,f(v)_
veVis (Vf(v),

(upwind)
(downwind)

“

The adjoint of the difference operator V¥ : R — RV is

defined in the general case by:
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w(v,u)p(v,u).
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2.3. Usual formulations of TV and properties

Discrete co-area formula As mentioned in the introduction,
an important property satisfied by the continuous formulation
of the Total Variation is the co-area formula which allows for
instance to establish a link between the notion of perimeter
and the TV norm. In practice, it is interesting to check that the
discrete formulation of TV also statisfies this property which
is written as follows in our framework:

TV(f) = /RTV (xX(r>1y) dt. (6)

TV formulations Most of usual discrete formulations can be
written this way:

TVoR() =1Vl withoe{,+ -} (@

If we consider the local definition of the scalar Total Variation
on an n-connexity graph G(Q2, £, w) with w = 1, we get the
following definitions: !

° TV‘2 with n = 2 : isotropic Total Variation [3],

° TV‘1 with n = 2 : anisotropic Total Variation,

o TV, =TV, with n = 4: upwind isotropic Total Vari-
ation [1].

In the more general case of Non-Local formulations (NL-
TV), with any weight function w, we get:

o TV, : isotropic Non-Local Total Variation [4, 13],
o TV TV, and TVI‘
Note that, among all previous definitions, only TV|; and
TVZl1 check the discrete co-area formula (6).

Bias of uncentered upwind (and downwind) schemes Next
proposition shows that, unlike usual centered formulations
TVw|k, uncentered schemes, that is to say upwind and down-
wind schemes, are biased except in the case of undirected
graphs with & = 1.

. with k € [1,00) [2] .

Proposition 1 (Contrast inversion). We have the contrast-
inversion property¥N k > 1 and ¥ w:

TV (=) = TV (F) # TV . (f)- 8)

If k = 1, uncentered schemes verify:
TV = 5TV, + 5TV, 9)
TV (f) = 3TV (f) = 5(f, Vi) (10)

where the second term is equal to zero in the undirected graph
case.

The lack of invariance to contrast inversion is illustrated in
[15] where light pixels have a lower value of TV|72 than dark
pixels, which produces noticeable denoising artifacts.

lup to a normalization factor related to the choice of the neighborhood

Na.



2.4. Symmetric uncentered formulation

Inspired by the equation (9) which shows that bias can
be removed by defining an uncentered symmetric scheme, we
focus on a symmetric definition of Total Variation with the
¢> and the 2 norms.

Definition We consider the following formulation:
TVS = 3TV, + 3TV

w w|k

fork € {2,00}. (11

This definition has been proposed in [16] in the case k = oo
but has never been used in practice. Notice also that the case
k = 1 is not interesting as we have, according to equation
9): val1 =TV,

Properties of the proposed formulations The symmetric
formulation (11) is a semi-norm and verifies the next propo-
sition in the case k = oo.

Proposition 2 (Co-area [16]). A constant weight w(v,u) in
eachvertexv € V is a sufficient condition for TVflOO to verify
the discrete co-area formula (6).

Using the definitions in section 2.1, and in particular (2), we
can show the next proposition:

Proposition 3 (Dual formulation of TVj e (1),

Tvi % <vwfv - 7“2>

w|k(f) =

T XIS T Xlrall o, <1

max
r120,7220

* . 1 1 _
where k™ verifies ¢+ + 7= = L.

3. APPLICATION AND OPTIMIZATION

3.1. Inverse problems

In order to demonstrate the practical interest of the un-
centered symmetric formulations proposed, we focus on the
resolution of inverse problems as in the ROF model [3] :

min 3 |f — g + ATV, (). (12)

where ¢ is an image corrupted with Gaussian noise, f is the
image to be estimated and ) the regularization parameter.

3.2. Dual formulation

Using proposition 3, we obtain the following primal-dual
problem:
: 1 2
min max z|f— +(Kf, 1) — XreS.» 13
jnin, max | slf =gl + (Kf, 1) — xres, (13)
where K = 4 [Vu; —Vy] so that |K|? < 8\ with neigh-
borhood N5 (see [17]) and |K|? < 16\ with neighborhood
N;. The convex set Sy~ is defined as follows:

S :{(Tl,TQ)STiERf_,”Ti" SIVZE{I,Q}}

0o, k*

3.3. Algorithm

Problem (13) can be solved with the Chambolle-Pock al-
gorithm [10] by following these steps at each iteration ¢:

'r(t""l) = Projsk* (rr(t) —+ /y(t) Kf(t))
F+D = PI‘OXﬁH guz(f(t) — 7O Frp (D)
2 1=

JF(t+1) _ f(t+1) + 9(t)(f(t+1) _ f(t))

where 00 = 1/\/T4 297, 7(H1) — ) () A(t+1) — (1) /(1)

(14)
with these conditions and parameters setting:
7_0370 > 0, 0% € [07 ]-L fo =9,p= 0'7/)‘77—0 - 099/”K”7
rOy K2 < 1.
The proximal operator is (see for example [10]):

PTOX%H__gHZ(f) = p%r(f +179).

Next proposition proves that, in order to perform the projec-
tion on Sk~, one should perform a projection onto the non-
negative portion of the £*" unit ball. Due to lack of space, the
proof of this proposition does not appear in this paper.

Proposition 4 (Projection on Sy+). For k* € {1,2}

Projs,, (r1,72) = (71,72) where 7;(v) = Proj; | . <1 ((r;(v))+),

For i € {1,2}. Hence, for k* = 2, we obtain the same result
as [1] with: Projy <1 (2) = (i ary - For k* = 1, the pro-
jection on the /1 -ball can be computed with linear complexity
(see for example [20]).

4. EXPERIMENTS AND DISCUSSION

4.1. Study of shape preservation

Figure 2 shows the regularization results of a synthetic
image for the various definitions of TV considered previ-
ously. Each shape represents an ¢* ball and corresponds to
the structural element of the adjoint TV, formulation stud-
ied here (see e.g. [21] for TV ;). As expected, the proposed
isotropic formulation TVﬂE2 provides a satisfying result on the
disc shape, like TV, and TV,.. In contrast, TV‘2 produces
some blur in a particular direction, as already reported in
[1, 15]. This observation stands for the other symmetric for-
mulation considering the diamond for Tfo>O (in comparison
with TV, ). Even more interestingly, the result obtained
with TVfIOO for a larger neighborhood (Vg instead of Njy)
and a well chosen weight distribution, w = W, ”mimic” the
behavior of TV‘iQ. Last, observe that the contrast is better pre-

served with TVlj([>O in comparison with all these approaches.

4.2. Denoising application: Bias removal

Figure 1 illustrates the interest of the proposed formula-
tions in the context of a simple application: the denoising



Noisy image TV.,, 25.55dB 2>

Fig. 1. Denoising results with Gaussian noise (¢ = 20), using 1000 iterations, A = 0.05 and w = 1/|| f(u)

Tvi 25.76 dB

Tvi 27.87 dB

NL|2°

Tvi 27.37 dB

NL|H®

= f()|]*. The

proposed symmetric formulations do not suffer from artefacts, unlike the upwind scheme TV,,, which results in a better PSNR
espeially with the Non-Local (NL) weight computed computed as in [18]. Staircasing effect is reduced by using TV y, the

Huber TV, see for instance [19]. Note that the results obtained with TVli2 and TVE

oo Can be improved with a higher value of A

but the PSNR obtained with the NL weight will still be the highest.

TV|2, NQ Tv\oo7 N2

TVe, Na[15] TV, Nyl TV, Ny

NB TVE; N4 ‘007

w\oo’

Fig. 2. Regularizations of the image f with 4000 iterations
and A = 6.

Clean image Noisy, o = 30

TV, 30.7dB

TV, 30.47 dB 2

Fig. 3. Color image denoising results with zooms at the bot-
tom left parts with 1000 iterations and A = 0.16.

problem (12). In fact, as mentioned in Section 2.2, we ob-
serve that TV,, produces a bias represented by light isolated
pixels. The proposed regularization terms as well as TV,
do not suffer from such bias and manage to provide a better
PSNR in comparison with the other schemes in most cases.
We can also observe that the result obtained with the Non-
local formulation is really improved visually and textures are
well preserved. Moreover, with Huber TV, the staircasing ef-
fect is well reduced. The same benefits are also observed for
color images (Figure 3). The vectorial TV definition used is
described in [22].

5. CONCLUSION

In this paper, we proposed two uncentered and symmetric
discrete TV schemes on weighted graphs with an /5 and an
¢~ norm respectively. We also developed an efficient opti-
mization algorithm to adress generic problems that may ben-
efit from such new formulations. These terms are semi-norms
with an explicit formula unlike the framework proposed in
[15]. We illustrated in a denoising application that both pro-
posed formulations remove the bias observed with TV, [1].
An extension to color image filtering has also been proposed
in the case of the /> norm with the same advantages as the
grayscale version. Our formulations are generic in the sense
that the neighborhood A, and the weights w can be defined
arbitrarily and adapted to specific problems. This property al-
lows the £°° formulation to be able to mimic the properties
of other formulations. We also recall that TVf|<>o verifies the
co-area formula which allows to solve some non-convex op-
timization problems.
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