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. We focus on two new symmetric formulations based on the 2 and ∞ norms respectively and propose a dedicated optimization algorithm to solve convex problems based on such TV penalties. We demonstrate the theoretical and practical interest of such formulations for image processing tasks.

INTRODUCTION

Context In this paper, we are interested in the discrete formulation of Total Variation (TV) in image processing and computer vision as a prior for piecewise constant images. This topic has been widely studied since it has been proposed by Rudin-Osher-Fatemi (ROF) [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and remains an active research field; as an example, non-local formulations have been proposed in [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF], [START_REF] Li | Smoothing the finite differences defining the non-local total variation and application in image restoration[END_REF] and a combination of TV with Non-Local means has been proposed in [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF], all in order to preserve textures and thin structures. The Total-Generalized-Variation (TGV) studied in [START_REF] Bredies | Total generalized variation[END_REF] and the method in [START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF] are variants that reduce the staircasing effect observed with TV.

Total Variation is applied in many imaging and computer vision problems such as segmentation [START_REF] Tony F Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF], inpainting, deconvolution and motion estimation [START_REF] Chambolle | A first-order primaldual algorithm for convex problems with applications to imaging[END_REF], optical flow [START_REF] Ranftl | Non-local total generalized variation for optical flow estimation[END_REF], filtering [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF], point cloud processing [START_REF] Hidane | Nonlinear multilayered representation of graph-signals[END_REF] and classification [START_REF] Bresson | Multiclass total variation clustering[END_REF]. Most studies are based on continuous formulations that are then approximated to solve the discrete problem. In this work, we consider directly the discrete setting.

Motivation In [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF], a new discrete TV formulation is proposed, referred to in the following as TV u , and inspired by upwind finite difference schemes used in the numerical resolution of Partial Differential Equations. Despite the upwind scheme [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF] ability to better preserve isotropy in comparison with the usual ones, Condat shows in [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] that it is not invariant to contrast inversion. Consequently, some artifacts tends to appear with TV u such as light isolated dots, which are not suitable especially for filtering purpose. Condat also proposes a new dual formulation of the Total Variation, denoted here by TV c , which avoids this issue. However, the price to pay is that this formulation is not explicit. Note in addition that both schemes do not check the discrete co-area formula. This formula, verified by the usual anisotropic TV definition, allows to solve some non-convex problems by convex relaxation such as segmentation, see for example [START_REF] Tony F Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF].

Contributions In this paper, we study two non-local TV formulations on graphs. This type of graph-based formulation was initially proposed in [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF]. The proposed formulations rely on a symmetric definition combining an upwind scheme with a downwind scheme expressed in an ∞ and 2 norms respectively. We propose an efficient way to express these norms allowing us to solve convex optimization problems with these regularization terms and illustrate their properties on some numerical experiments. These properties are: isotropy preservation, bias reduction in comparison with TV u , better filtering results in comparison with variational approaches of the same type and the versatility of the non-local ∞ formulation that can mimic other formulations.

Outline In Section 2, we first recall the local, non-local and upwind formulations of the Total Variation, then, we introduce the proposed symmetric formulations. In Section 3, the optimization algorithm to solve convex variational problems based on these regularization terms is described. Some comparative experiments in Section 4 illustrate the interest of the proposed framework.

DISCRETE UPWIND FORMULATIONS OF TOTAL VARIATION

Notations

A graph G(V, E, ω) is defined by a set of vertices V connected by edges E ⊆ V × V and a weight function

ω : E → R + . A graph is symmetric, or undirected if ω(v, u) = ω(u, v) ∀(u, v) ∈ E.
In practice, this property is usually satisfied for applications in imagery except in the domain borders because of special conditions such as Neumann or Dirichlet conditions. In the sequel, we consider a scalar image f defined on a regular cartesian grid Ω ⊂ Z 2 , u :

x ∈ Ω → f (x) ∈ R.
The border of the domain is denoted by ∂Ω. The associated n-

connexity graph is G(Ω, E, ω), where: E = {(x, x + t), ∀ x ∈ Ω\∂Ω, t ∈ N n }.
In practice, we use: N 2 = {(1, 0), (0, 1)} or:

N 4 = {(1, 0), (-1, 0), (0, 1), (0, -1)} with ω = 1, or: N 8 = {u = (i, j) s.t. i, j ∈ {0, 1, -1}} with either ω(i, j) = 1/ f (i) -f (j) 2 or ω = 1.
For a field p : E → R, the inner product is defined by: p, q = (v,u)∈E p(v, u)q(v, u) and the canonical norm by: ||p|| = p, p . We also define the composed norm ||.|| 1,k :

||p|| 1,k :=        v∈V u s.t (u,v)∈E |p(v, u)| k 1 k , if 1 k < ∞ v∈V max u s.t (u,v)∈E |p(v, u)|, if k = ∞
(1) which will be useful to unify the different formulations of the total variation studied here. The dual norm is:

||p|| * 1,k = max ||q|| 1,k 1 p, q = ||p|| ∞,k * with 1 k + 1 k * = 1.
(2) We note 1 (respectively 0) the vector fields where each component is equal to 1 (resp. 0). The adjoint of a linear operator K is noted K * , such that: Kp, q = p, K * q . The operators (p) + = max{0, p} and (p) -= min{0, p} apply a thresholding to each component of p. The inequality: p 0, implies that each component of p is non-negative. The characteristic function of a set C is denoted by χ C , and the indicator function 1 C . The proximal operator of an application f is:

Prox f (x) := argmin y 1 2 ||x -y|| + f (y).

Upwind and downwind difference operators

We recall here the definition of difference operators on graphs as proposed in [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF]. Without loss of generality and for sake of simplicity, we consider in the sequel fully connected graphs E = V × V, where the lack of an edge is represented by a zero weight ω. The centered difference operator of a vectorial function on G:

∇ ω f : v ∈ V → ω(v, u)(f (u) -f (v)) u∈V ∈ R V .
(3) The upwind and downwind uncentered difference operators are then respectively defined as follow:

∇ - ω f : v ∈ V → (∇ ω f (v)) - (upwind) ∇ + ω f : v ∈ V → (∇ ω f (v)) + (downwind) (4) 
The adjoint of the difference operator ∇ * ω : R E → R V is defined in the general case by:

∇ * ω p(v) = u∈V ω(u, v)p(u, v) - u∈V ω(v, u)p(v, u).
(5)

Usual formulations of TV and properties

Discrete co-area formula As mentioned in the introduction, an important property satisfied by the continuous formulation of the Total Variation is the co-area formula which allows for instance to establish a link between the notion of perimeter and the TV norm. In practice, it is interesting to check that the discrete formulation of TV also statisfies this property which is written as follows in our framework:

TV(f ) = R TV χ {f t} dt. (6) 
TV formulations Most of usual discrete formulations can be written this way:

TV ω|k (.) := ||∇ ω .|| 1,k with ∈ { , +, -}. ( 7 
)
If we consider the local definition of the scalar Total Variation on an n-connexity graph G(Ω, E, ω) with ω = 1, we get the following definitions:1 

• TV |2 with n = 2 : isotropic Total Variation [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF],

• TV |1 with n = 2 : anisotropic Total Variation,

• TV u = TV - |2 with n = 4: upwind isotropic Total Variation [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF].

In the more general case of Non-Local formulations (NL-TV), with any weight function ω, we get:

• TV ω|2 : isotropic Non-Local Total Variation [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF][START_REF] Hidane | Nonlinear multilayered representation of graph-signals[END_REF],

• TV ω|k , TV - ω|k and TV + ω|k with k ∈ [1, ∞) [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF] . Note that, among all previous definitions, only TV |1 and TV ω|1 check the discrete co-area formula [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF]. Bias of uncentered upwind (and downwind) schemes Next proposition shows that, unlike usual centered formulations TV ω|k , uncentered schemes, that is to say upwind and downwind schemes, are biased except in the case of undirected graphs with k = 1.

Proposition 1 (Contrast inversion). We have the contrastinversion property ∀ k 1 and ∀ ω:

TV - ω|k (-f ) = TV + ω|k (f ) = TV - ω|k (f ). (8) 
If k = 1, uncentered schemes verify:

TV ω|1 = 1 2 TV - ω|1 + 1 2 TV + ω|1 (9) TV - ω|1 (f ) = 1 2 TV ω|1 (f ) -1 2 f, ∇ * ω 1 (10) 
where the second term is equal to zero in the undirected graph case.

The lack of invariance to contrast inversion is illustrated in [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] where light pixels have a lower value of TV - |2 than dark pixels, which produces noticeable denoising artifacts.

Symmetric uncentered formulation

Inspired by the equation ( 9) which shows that bias can be removed by defining an uncentered symmetric scheme, we focus on a symmetric definition of Total Variation with the ∞ and the 2 norms. Definition We consider the following formulation:

TV ± ω|k := 1 2 TV - ω|k + 1 2 TV + ω|k for k ∈ {2, ∞}. (11) 
This definition has been proposed in [START_REF] Tenbrinck | Solving minimal surface problems on surfaces and point clouds[END_REF] in the case k = ∞ but has never been used in practice. Notice also that the case k = 1 is not interesting as we have, according to equation ( 9): TV ± ω|1 = TV ω|1 . Properties of the proposed formulations The symmetric formulation ( 11) is a semi-norm and verifies the next proposition in the case k = ∞.

Proposition 2 (Co-area [START_REF] Tenbrinck | Solving minimal surface problems on surfaces and point clouds[END_REF]). A constant weight ω(v, u) in each vertex v ∈ V is a sufficient condition for TV ± ω|∞ to verify the discrete co-area formula [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF].

Using the definitions in section 2.1, and in particular (2), we can show the next proposition: Proposition 3 (Dual formulation of TV ± ω|k [START_REF] Ranftl | Non-local total generalized variation for optical flow estimation[END_REF]).

TV ± ω|k (f ) = max r1 0,r2 0 1 2 ∇ ω f, r 1 -r 2 -χ ||r1|| ∞,k * ≤1 -χ ||r2|| ∞,k * ≤1
where k * verifies 1 k + 1 k * = 1.

APPLICATION AND OPTIMIZATION

Inverse problems

In order to demonstrate the practical interest of the uncentered symmetric formulations proposed, we focus on the resolution of inverse problems as in the ROF model [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] :

min f 1 2 ||f -g|| 2 + λTV ± ω|k (f ). ( 12 
)
where g is an image corrupted with Gaussian noise, f is the image to be estimated and λ the regularization parameter.

Dual formulation

Using proposition 3, we obtain the following primal-dual problem:

min f ∈R V max r=(r1,r2) 1 2 ||f -g|| 2 + Kf, r -χ r∈S k * , (13) 
where K = λ 2 ∇ w ; -∇ w so that ||K|| 2 8λ with neighborhood N 2 (see [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]) and ||K|| 2 16λ with neighborhood N 4 . The convex set S k * is defined as follows:

S k * = {(r 1 , r 2 ) : r i ∈ R E + , ||r i || ∞,k * ≤ 1 ∀ i ∈ {1, 2}}.

Algorithm

Problem ( 13) can be solved with the Chambolle-Pock algorithm [START_REF] Chambolle | A first-order primaldual algorithm for convex problems with applications to imaging[END_REF] by following these steps at each iteration t:

           r (t+1) = Proj S k * (r (t) + γ (t) K f (t) ) f (t+1) = Prox τ (t) 2 ||.-g|| 2 (f (t) -τ (t) K * r (t+1) ) f (t+1) = f (t+1) + θ (t) (f (t+1) -f (t) )
where

θ (t) = 1/ 1 + 2ρτ (t) , τ (t+1) = θ (t) τ (t) , γ (t+1) = γ (t) /θ (t) (14) 
with these conditions and parameters setting:

τ 0 , γ 0 > 0, θ 0 ∈ [0, 1], f 0 = g, ρ = 0.7/λ, τ 0 = 0.99/||K||, τ (t) γ (t) ||K|| 2 < 1.
The proximal operator is (see for example [START_REF] Chambolle | A first-order primaldual algorithm for convex problems with applications to imaging[END_REF]):

Prox τ 2 ||.-g|| 2 (f ) = 1 1+τ (f + τ g).
Next proposition proves that, in order to perform the projection on S k * , one should perform a projection onto the nonnegative portion of the k * unit ball. Due to lack of space, the proof of this proposition does not appear in this paper.

Proposition 4 (Projection on S k * ). For k * ∈ {1, 2} Proj S k * (r 1 , r 2 ) = (r 1 , r2 ) where ri (v) = Proj ||.|| k * 1 ((r i (v)) + ) ,
For i ∈ {1, 2}. Hence, for k * = 2, we obtain the same result as [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF] with: Proj ||.|| 1 (x) = x max{1,||x||} . For k * = 1, the projection on the 1 -ball can be computed with linear complexity (see for example [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]).

EXPERIMENTS AND DISCUSSION

Study of shape preservation

Figure 2 shows the regularization results of a synthetic image for the various definitions of TV considered previously. Each shape represents an k ball and corresponds to the structural element of the adjoint TV |k * formulation studied here (see e.g. [START_REF] Chan | Recent developments in total variation image restoration[END_REF] for TV |2 ). As expected, the proposed isotropic formulation TV ± |2 provides a satisfying result on the disc shape, like TV u and TV c . In contrast, TV |2 produces some blur in a particular direction, as already reported in [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF][START_REF] Condat | Discrete total variation: New definition and minimization[END_REF]. This observation stands for the other symmetric formulation considering the diamond for TV ± |∞ (in comparison with TV |∞ ). Even more interestingly, the result obtained with TV ± ω|∞ for a larger neighborhood (N 8 instead of N 4 ) and a well chosen weight distribution, ω = 1 ||.|| 2 , "mimic" the behavior of TV ± |2 . Last, observe that the contrast is better preserved with TV ± |∞ in comparison with all these approaches. 

Denoising application: Bias removal

= 1/ f (u) -f (v) 2 .
The proposed symmetric formulations do not suffer from artefacts, unlike the upwind scheme TV u , which results in a better PSNR espcially with the Non-Local (NL) weight computed computed as in [START_REF] Buades | A non-local algorithm for image denoising[END_REF]. Staircasing effect is reduced by using TV |H , the Huber TV, see for instance [START_REF] Nikolova | Local strong homogeneity of a regularized estimator[END_REF]. Note that the results obtained with TV ± |2 and TV ± |∞ can be improved with a higher value of λ but the PSNR obtained with the NL weight will still be the highest. problem [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]. In fact, as mentioned in Section 2.2, we observe that TV u produces a bias represented by light isolated pixels. The proposed regularization terms as well as TV c , do not suffer from such bias and manage to provide a better PSNR in comparison with the other schemes in most cases.

f TV |2 , N 2 TV |∞ , N 2 TV c , N 4 [15] TV u , N 4 [1] TV - |∞ , N 4 TV ± ω|∞ , N 8 TV ± |2 , N 4 TV ± |∞ , N 4
We can also observe that the result obtained with the Nonlocal formulation is really improved visually and textures are well preserved. Moreover, with Huber TV, the staircasing effect is well reduced. The same benefits are also observed for color images (Figure 3). The vectorial TV definition used is described in [START_REF] Bresson | Fast dual minimization of the vectorial total variation norm and applications to color image processing[END_REF].

CONCLUSION

In this paper, we proposed two uncentered and symmetric discrete TV schemes on weighted graphs with an 2 and an ∞ norm respectively. We also developed an efficient optimization algorithm to adress generic problems that may benefit from such new formulations. These terms are semi-norms with an explicit formula unlike the framework proposed in [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF]. We illustrated in a denoising application that both proposed formulations remove the bias observed with TV u [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF]. An extension to color image filtering has also been proposed in the case of the 2 norm with the same advantages as the grayscale version. Our formulations are generic in the sense that the neighborhood N n and the weights ω can be defined arbitrarily and adapted to specific problems. This property allows the ∞ formulation to be able to mimic the properties of other formulations. We also recall that TV ± 1|∞ verifies the co-area formula which allows to solve some non-convex optimization problems.
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 11 Figure 1 illustrates the interest of the proposed formulations in the context of a simple application: the denoising
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 23 Fig. 2. Regularizations of the image f with 4000 iterations and λ = 6.

up to a normalization factor related to the choice of the neighborhood Nn.
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