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Abstract—The paper provides 3 main contributions

for the analysis and simulation of fractionally inte-

grated stochastic image fields. The first two contribu-

tions are dedicated to the definition of fields either

directly on discrete spatial grids or by referring to

continuous spatial frameworks. For the discrete spatial

grid framework, the paper proposes a new class of

fractionally integrated fields and derives their spectral

characterizations, as well as a procedure for stochastic

simulation of their samples. Concerning the continuous

spatial framework, the paper proposes a stochastic inte-

gration framework for providing a sense to some classes

of generalized fractional Brownian fields. For both con-

tinuous and spatial frameworks, a practical challenge is

the determination of model intrinsic dimension in terms

of minimum description length. In this respect, the

paper addresses the identification of fractional singular

frequency points (called poles), that is the number of

interacting fractional integral operators, by designing

a deep convolutional neural network trained on spectra

of simulated multi-fractional textures. Dimensioning

these multiple interactions is shown intricate due to

the fact that fractionally integrated fields may exhibit

infinite variances at several frequency points, leading

to almost undistinguishable situations.

Keywords { Fractional integration, Stochastic �elds,

Spectral analysis, Texture synthesis, Spectral learning.

I. Introduction

V ISUAL information is a concept where the notion

of variation plays a central role: for both static

and dynamic vision systems, perceptual information is

associated with edges and changes in optical ow in order

to infer shapes of objects (in a single image or a static

scene) or scene recon�guration (in a video or a dynamic

vision system). When edges are abundant in a given scene,

the observation refers to the notion of texture and the
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scene under consideration is more complex for visual anal-

ysis/compression/interpretation due to a large amount

of variations to handle. A theory of visual information

has to take into consideration, parsimonious descriptions

for textures in terms of their descriptions with as few

parameters as possible.

The issue addressed in this paper is some contributions

in visual information theory by the proposal of a parsimo-

nious framework for synthesizing non-trivial textures: 1)

from basic inputs such as white noise samples and 2) when

considering fractional integration operating on very few

parameters. White noise has, by de�nition, a at spectral

response whereas natural images exhibit wide spectral

variability, speci�cally in presence of texture. Starting

from a white noise, one can build integration procedures

so as to constrain the output for presenting shapes, forms

and textures that deserve interests in visual perception.

Most relevant integration solutions in terms of deriving

rich spectral content and visual texture impact involve

stochastic fractional order frameworks [1], [2], [3], [4].

Early works in the 1980s have concerned feature extraction

from a one-dimensional fractional Brownian motion model

[5], [6], [7]. The 1990s decade has established the founda-

tions of the �rst spatial extensions in terms of isotropic

fractional Brownian �elds [8], [9], [10] or estimating a

fractal dimension from object and scene observations [11],

[12]. In the following decade (2000s), e�orts have been con-

centrated on di�erent issues raised by fractional integral

image processing, for instance: synthesis schemes in cases

of either isotopic guidelines [13] or anisotropic concerns

(limited to a pre-speci�ed elliptical form) [14], but also

the highlights and bene�ts of fractional order modeling

for biomedical applications [15], [16], [17]. The 2010s have

been ages of:

• optimization of algorithms for simulating [3] and char-

acterizing transformations [18] of the oldest but \con-

sistent" isotropic fractional Brownian �eld model;

• investigations of di�erent methods for parameter es-

timation [19], [20], [21];

• spreading out fractional analysis to image processing

applications such as feature enhancements [4], [22],

[23], [24] and feature extraction for clustering, seg-

mentation or pattern recognition purposes [25], [26],
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[27], [28].

This paper provides 3 types of contributions. First, it

proposes new explicit discrete domain fractional integra-

tion models that ease deriving structured image content

from few parameters. Second, it provides a mathematical

sense to a general class of continuous domain integration

models introduced in the conference paper [1]. Third, it

addresses counting multi-fractional interactions in images

from deep learning of integral operator interactions and

provides an attractive solution that can handle moderately

the curse of power observed when non-linearity implies

multiple spectral explosions and overlays of mutual spec-

tral grows.

The paper is organized as follows. Section II provides,

in a discrete 2D framework, some preliminary results on

discrete fractional integration and a new class of multi-

fractional parametric forms that makes possible the syn-

thesis of textures with rich visual content. Section III

recall some extensions of continuous domain generalized

fractional order Brownian �elds introduced in [1] and

provides a mathematical sense to their de�nition. Section

IV addresses estimation of the number of multi-fractional

interactions from a simulated database of order frac-

tional textures. Section concludes the paper. The overall

presentation is centered on presenting the speci�city of

discrete and continuous domain integration models, prior

to addressing multi-fractional interaction count.

II. Fractional order stochastic 2D integral

fields

In this section, t, s are discrete time variables, t, s ∈
N,Z, . . .. The section starts (Section II-A) with a presen-

tation of the framework described in [29, In French] for

discrete domain fractional order image integration before

proposing (Section II-B), from this framework, a new class

of parametric forms that have their energy concentrated

in few spectral frequencies.

A. Discrete domain fractional order spatio-stochastic

integration

1) Basics on discrete spatial fractional order integra-

tion: An integrated �eld X can be seen as combinations

of spatial contributions of an elementary �eld Z (white

noise in general) measured via a spatial shift operator B.

Discrete domain integrated �elds involve sums:

• that depend only on integer powers of B (integer order

integrals) or

• may depend on non-integer real values at the power

of B (fractional order integrals).

The shifts associated with operator B require computing

a sub-pixel measure for the latter case.

In practice, not any sum forms an integrated process: for

integration terminology, operator Bmust be chosen so that

(1l − B)f(t, s) behaves approximately as a discrete partial

spatial derivative of the function f(t, s). The following

provides spatial operators B that respect this requirement.

De�nition 1 (Gradient shift operators): Operators

BGrad-V : X(t, s) 7−→ X(t− 1, s) (1)

BGrad-H : X(t, s) 7−→ X(t, s− 1) (2)

BGrad-D : X(t, s) 7−→ X(t− 1, s− 1) (3)

are associated with Vertical (Grad-V), Horizontal (Grad-

H) and Diagonal (Grad-D) gradient components.

These gradient based operators apply strict \back-

shifts" and one can check that since BGrad-VX(t, s) =

X(t−1, s), then (1l−BGrad-V)f(t, s) = f(t, s)−f(t−1, s) is

the standard discrete partial derivative of function f with

respect to variable t. Note also that

BkGrad-Vf(t, s) = BGrad-VBGrad-V . . . BGrad-V︸ ︷︷ ︸
k terms

f(t, s)

= f(t− k, s)

so that shifting to position t− k involves k times compo-

sition of the elementary operator BGrad-V.

Because the gradient operators BGrad-V, BGrad-H,

BGrad-D apply back-shifts, they are called causal (their

shifting does not involve an f(t ′, s ′) with t ′ > t or s ′ > s).

Shift operator B can also be chosen anti-causal or \nei-

ther causal, nor anti-causal" with possible neighborhood

consideration: for instance, since the standard Laplace

operator satis�es:

∆f = f(t+1, s)+f(t−1, s)+f(t, s+1)+f(t, s−1)−4f(t, s)

then one can derive, by seeking BLap such that (1 −

BLap)f(t, s) ∝ ∆f(t, s):

De�nition 2 (Laplace shift operator): The operator

BLap de�ned by:

BLapX(t, s) =
1

4

(
X(t+ 1, s) + X(t− 1, s)

+X(t, s+ 1) + X(t, s− 1)
)

(4)

is called Laplace shift operator.

The Laplace shift operator BLap is a combination that

applies on the 4 closest variables pertaining to the neigh-

borhood of X(t, s), without taking the latter into consid-

eration. The following shift operators called Canny and

Prewitt are compositions including the random variable

X(t, s) and are neither causal, nor anti-causal.

De�nition 3 (Canny shift operators): Canny Vertical

(Can-V) and Horizontal (Can-H) shift operators are de-

�ned by:

BCan-V : X(t, s) 7−→ X(t, s) + X(t− 1, s)

− X(t+ 1, s) (5)



3

BCan-H : X(t, s) 7−→ X(t, s) + X(t, s− 1)

− X(t, s+ 1) (6)

De�nition 4 (Prewitt shift operators): Prewitt Verti-

cal (Pre-V) and Horizontal (Pre-H) shifts consist in:

BPre-VX(t, s) = X(t, s) +

1∑
k=−1

X(t− 1, s− k)

−

1∑
k=−1

X(t+ 1, s− k) (7)

and

BPre-HX(t, s) = X(t, s) +

1∑
k=−1

X(t− k, s− 1)

−

1∑
k=−1

X(t− k, s+ 1) (8)

Remark 1 (From derivation to integration): For

B = BGrad-V de�ned by Eq. (1), we have seen that

(1 − BGrad-V)f(t, s) = f(t, s) − f(t − 1, s) is a discrete

partial derivative. When considering the inverse (thus

integral) operator (1 − BGrad-V)
−1, we obtain, provided

that function g used below is chosen so that the following

sum exists:

(1− BGrad-V)
−1g(t, s) =

∑
k>0

BkGrad-Vg(t, s)

=
∑
k>0

g(t− k, s)

Remark 1 above illustrates that one can switch from

partial derivation induced by the di�erence operator (1−

B) to partial integration by inverting the latter and this,

for any of the shift operators given by Eqs. (1), (2), (3),

(4), (5), (6), (7) and (8).

More generally, we can consider a derivation scheme

represented by a function of operator, say G(B), and equa-

tions having the form G(B)f(t, s) = h(t, s). The following

properties then holds true: if G(B) is a derivation operator,

then f is an integral of h and vice versa. Note that

G(B) can operate integer or fractional order derivation,

for instance:

• (1 − BGrad-V)f [from integer power \1" at the power

of (1 − BGrad-V)] is the integer order derivation of f

whereas

• (1−BGrad-V)
1/2f is the fractional order \1/2" deriva-

tion of f with respect to B.

Finally, when h is the solution of (1 − BGrad-V)
λf = h

where 0 < λ < 1, then f is said to be associated with a

fractional order λ integral of h.

2) Fractional order spatio-stochastic K-factor

Gegenbauer series: In the following, we consider

equations with the form G(B)X(t, s) = Z(t, s) where X,Z

: N×N×Ω −→ R are random �elds and G(B) behaves as

a fractional order derivation operator (see Section II-A1).

Field X will be said fractional integral of Z.

De�nition 5 (K-factor Gegenbauer �eld): Field X(t, s)

will be called spatial (2D) K-factor B-Gegenbauer (K−B−

G) �eld if it satis�es:

K∏
k=1

(
1l− 2νkB+ B2

)bk
X(t, s) = Z(t, s) (9)

where |νk| 6 1 for any k = 1, 2, . . . , K and Z(t, s) is

assumed to be a zero-mean white Gaussian �eld.

In Eq. (9), a term
(
1l− 2νB+ B2

)b
behaves as (1l− B)

2b

when ν is close to 1. Hence K-factor Gegenbauer �elds

include standard fractionally integrated �elds especially

when one among the νk, k = 1, 2, . . . , K is close to

one. Assuming a revertible power series expansion of any(
1l− 2νkB+ B2

)bk , synthesis of a K-factor Gegenbauer

involves computing:

X(t, s) =

K∏
k=1

(
1l− 2νkB+ B2

)−bk
Z(t, s) (10)

where: (
1l− 2νkB+ B2

)−bk
=

+∞∑
`=0

(
bk

`

)†
(νk) B

` (11)

and the Gegenbauer function
(
bk
`

)†
(•) being:(

bk

`

)†
(x) =

b`/2c∑
m=0

(2x)
`−2m (−1)mΓ(bk + `−m)

m! (`− 2m)! Γ(bk)
(12)

with bc denoting the oor function (bzc is the largest

integer less than or equal to z) and the Gamma function

is de�ned by:

Γ(x) =

∫
R+

ux−1e−udu (13)

Samples of K-factor B-Gegenbauer �elds are given by

Figure 1 when B is one among the operators de�ned by

Eqs. (4), (5), (6), (7) and (8). Depending on the operator

used, one can obtain either a stochastic texture without

any privileged orientation (case of B-Gegenbauer) or tex-

tures associated with a main Vertical/Horizontal/Diagonal

edge orientation. Note that white noise shows no edge

and the texture properties is driven by the operator B

selected. More precisely, these texture feature orientations

can be inferred from the spectral properties of K-factor B-

Gegenbauer �elds given below.

Proposition 1 (Power Spectral Densities, PSD, of

K−B−G �elds [29]): The PSD associated with K-factor B-

Gegenbauer �elds are given below (PSD notation γK−B−G
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XLap XCan-V XCan-H XPre-V XPre-H

Fig. 1. 5-factor Gegenbauer (see Eq. (9)) Laplacien (see Eqs. 4), Canny (see Eqs. (5) and (6)) and Prewitt (see Eqs. (7) and (8)).

for �eld notation XK−B−G) respectively for the gradient,

Laplace, Canny and Prewitt operators, where θk = 1+νk
and ξk = 1− νk.

(i) PSD of XK−B−G for gradient shift operators (see Eqs.

(1), (2), (3), respectively):

γK−BGrad-V−G(ω1,ω2) =
σ2
∏K
k=1 2

−2bk

K∏
k=1

|cosω1 − νk|
2bk

(14)

γK−BGrad-H−G(ω1,ω2) =
σ2
∏K
k=1 2

−2bk

K∏
k=1

|cosω2 − νk|
2bk

(15)

γK−BGrad-D−G(ω1,ω2) =
σ2
∏K
k=1 2

−2bk

K∏
k=1

|cos(ω1+ω2) − νk|
2bk

(16)

(ii) PSD of XK−B−G for Laplace shift operator (see Eq.

(4)):

γK−BLap−G(ω1,ω2)

=
σ2

K∏
k=1

∣∣∣∣(cos2(ω12 )+cos2
(ω2
2

)
− θk

)2
+ θkξk

∣∣∣∣2bk
(17)

(iii) PSD of XK−B−G for Canny shift operators (see Eqs.

(18), (19), respectively):

γK−BCan-V−G(ω1,ω2)

=
σ2
∏K
k=1 2

−2bk

K∏
k=1

∣∣∣4 sin4ω1 − 4 νk ξk sin2ω1 + ξ
2
k

∣∣∣bk (18)

γK−BCan-H−G(ω1,ω2)

=
σ2
∏K
k=1 2

−2bk

K∏
k=1

∣∣∣4 sin4ω2 − 4 νk ξk sin2ω2 + ξ
2
k

∣∣∣bk (19)

(iv) PSD of XK−B−G for Prewitt shift operators (see Eqs.

(20) and (21), respectively):

γK−BPre-V−G(ω1,ω2)

=
σ2
∏K
k=1 2

−2bk

K∏
k=1

∣∣∣4(1+ 2 cosω2)2 sin2ω1 − ξ2k∣∣∣2bk
(20)

γK−BPre-H−G(ω1,ω2)

=
σ2
∏K
k=1 2

−2bk

K∏
k=1

∣∣∣4(1+ 2 cosω1)2 sin2ω2 − ξ2k∣∣∣2bk
(21)

Directed vertical, horizontal or diagonal edges occur

when a given PSD has its energy concentrated on certain

frequency bands or varies only across one single variable

(case for gradient and Canny operators). In particular,

gradient �elds exhibit an in�nite number of poles along

many axes but in the same direction towards:

• frequencies{
(ω1,ω2) ∈ R2/ω1 = acos(νk), k = 1, 2, . . . , K

}
for �eld XK−BGrad-V−G,

• frequencies{
(ω1,ω2) ∈ R2/ω2 = acos(νk), k = 1, 2, . . . , K

}
for �eld XK−BGrad-H−G and

• frequencies{
(ω1,ω2) ∈ R2/ω1 +ω2 = acos(νk), k = 1, . . . , K

}
for �eld XK−BGrad-D−G.

K-factor Canny-Gegenbauer �elds present strong similari-

ties with their analog gradient �elds by construction, but

they admit no pole when |νk| < 1 for any k.

From Proposition 1, only Laplace and Prewitt �elds

show more complex PSD. However, K-factor Laplace-

Gegenbauer �elds XK−BLap−G have no pole (dominant

frequency) when the absolute value of every νk is < 1 and

are isotropic up to the mapping: ωi 7→ cos(ωi/2) (same

property whatever the direction). The motivation of the

following section is the proposal of spatial �eld models

with richer PSD content in terms of spectral variability as

well as limiting the number of poles.
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B. Fractionally integrated �elds from double indexed

Gegenbauer polynomials

For being able to generate textures with parsimonious

spectral information, we need to control PSD behavior in

speci�c frequencies of interest. This cannot be achieved

straightforwardly when using De�nition II-A2. To over-

come this limitation, the main contribution of this sec-

tion is the construction of double indexed spatial multi-

fractional integral models.

De�nition 6 (K-factor doubly indexed Gegenbauer

�eld):

Field X(t, s) will be called K-factor Doubly Indexed

Gegenbauer (K-DI-G) �eld if it satis�es one of the equa-

tions given below:

K∏
k=1

(
ε1B

−2
1

(
1l− 2µkB1 + B

2
1

)2
+

ε2B
−2
2

(
1l− 2νkB2 + B

2
2

)2)bk
X(t, s) = Z(t, s) (22)

or

K∏
k=1

(
ε1B

2
2

(
1l− 2µkB1 + B

2
1

)2
+

ε2B
2
1

(
1l− 2νkB2 + B

2
2

)2 )bk
X(t, s) = Z(t, s) (23)

where |µk| 6 1 and |νk| 6 1 for any k = 1, 2, . . . , K; B1 and

B2 are spatial shift operators chosen conveniently; Z(t, s)

is a zero-mean white Gaussian noise and ε1, ε2 are positive

real valued parameters.

Eqs. (22) and (23) show a balance between two Gegen-

bauer polynomials, the balance being governed by param-

eters ε1 and ε2. When B1 and B2 are causal operators

(gradient operators for instance), then Eq. (22) presents

backward and forward shifts whereas Eq. (23) highlights

only backward shifts.

Synthesis of sample X(t, s) satisfying Eq. (22) requires

computing:

X(t, s) =

K∏
k=1

(
ε1B

−2
1

(
1l− 2µkB1 + B

2
1

)2
+

ε2B
−2
2

(
1l− 2νkB2 + B

2
2

)2 )−bk
Z(t, s) (24)

thus, decomposing the fractional double indexed polyno-

mial as series involving integer powers of B1 and B2 (�eld

Z(t, s) is available only for t, s ∈ Z in the discrete domain

framework). For this purpose, we write:

X(t, s) =

K∏
k=1

(
ε1

(
B−1
1 + B1
2

− µk

)2
+

ε2

(
B−1
2 + B2
2

− νk

)2)−bk

Z(t, s) (25)

and set, for i = 1, 2,

Bi =
√
εi(B

−1
i + Bi)/2 (26)

In this respect, we are concerned by:

X(t, s) =

K∏
k=1

( (
B1 −

√
ε1µk

)2
+
(
B2 −

√
ε2νk

)2 )−bk
Z(t, s) (27)

which amounts, by noting µk =
√
ε1µk, νk =

√
ε2νk and

ck = µ2k + ν
2
k, to:

X(t, s) =

K∏
k=1

(
ck − 2µkB1

− 2νkB2 + B
2

1 + B
2

2

)−bk
Z(t, s) (28)

The latter is an extension of the Gegenbauer polynomial

introduced in [30, Eqs. (1) and (18)].

Denote, for k = 1, 2, . . . , K,

Xk(t, s) =
(
ck − 2µkB1

− 2νkB2 + B
2

1 + B
2

2

)−bk
Xk−1(t, s) (29)

with the convention X0 = Z. The recursive Eq. (29)

implies XK = X and we have:

Proposition 2: Xk(t, s) = limM,N→+∞ Xk,M,N(t, s)

with

Xk,M,N(t, s) =

M∑
m,n=0

Cbkm,n(µk, νk)B
m

1 B
n

2Xk−1(t, s) (30)

where function Cbm,n is de�ned by:

Cbm,n(µ, ν) =

bm/2c∑
p=0

bn/2c∑
q=0

(−1)p+qΓ(b+m+ n− p− q)

Γ(b)p! q! (m− 2p)! (n− 2q)!

× (2µ)m−2p(2ν)n−2q

cm+n−p−q+b
(31)

and the Gamma function is given by Eq. (13).

Proof: See Appendix A.

At this stage, we should specify B1 and B2 in Eq. (30)

before continuing. When B1 = B
r1
Grad-V and B2 = B

r1
Grad-H,

we have from Eq. (26),

B1B2Y(t, s) =
√
ε2B1

(
Y(t, s− r2) + Y(t, s+ r2)

2

)
thus:

B1B2Y(t, s) =√
ε1
√
ε2

4

(
Y(t− r1, s− r2) + Y(t+ r1, s− r2)

+Y(t− r1, s+ r2) + Y(t+ r1, s+ r2)
)
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In practice, computing B
m

1 B
n

2Y(t, s) consists in ` recursive

applications of operator B1B2 followed by either m − `

compositions with B1 or n−` applications of B1, where ` =

min{m,n}. Textures given in Figure 2 have been obtained

by using r1 = r2 = 1.

Figure 2 highlights that the doubly indexed polynomials

of Eq. (22) yield a more powerful texture synthesis frame-

work than the single one given by Eq. (9). In order to give

a more formal proof of the latter assertion, let us derive

the PSD associated with K-DI-G. We have:

Proposition 3: For B1 = Br1Grad-V and B2 = Br1Grad-H,

the PSD associated with a K-DI-G given by either Eq. (22)

or (23) is:

γ(ω1,ω2) =

σ2
∏K
k=1 2

−2bk

K∏
k=1

(
ε1 (cos(r1ω1) − µk)

2
+ε2 (cos(r2ω2) − νk)

2
)bk(32)

Proof: The proof follows from straightforward com-

putations, by taking the moduli of Eqs. (22), (23) and by

replacing in these quantities, B` by e
ir`ω` for ` = 1, 2.

The PSD of Eq. (32) shows poles at frequencies

(ω1,ω2) =
(
acosµk
r1

, acosνk
r2

)
for k = 1, 2, . . . , K. Thus,

we can specify speci�c frequency points associated with

energy concentration, which makes K-DI-G a more concise

framework for the synthesis of textures with multiple

orientated features.

III. Continuous spatial domain fractional order

integration models

In this section, t, s are continuous time variables, t, s ∈
R+,R, . . . and X : (t, s) 7→ X(t, s) = Xω(t, s) =

Xt,s(ω) ∈ R or C is a spatial stochastic �eld assumed

to be centered in what follows. We recall that a stochastic

�eld X = (X(•, •)) is Gaussian if the random variable

X(t, s) is Gaussian for every couple (t, s) pertaining to

the domain of interest. Assuming that X is Gaussian,

we can focus on its second-order statistics and since X

has been assumed centered, then this �eld is entirely

characterized by its autocorrelation function. Thus, for

synthesizing sample realizations of X, we only need to

know the analytic form of this autocorrelation function.

As in previous section (dedicated to discrete domain

models), the aim addressed in reference [1] was the deriva-

tion of a continuous domain fractional �eld framework

associated with parsimonious spectral contents. This aim

has led [1] to propose a class of generalized fractional

Brownian �elds, the generalization concerning a model

with 1) an arbitrary number of Hurst parameters and

2) an arbitrary number of spectral singularity points.

However, the mathematical sense of these generalized

fractional Brownian �elds remains unspeci�ed at present

time. This section proposes a sense to these �elds as a

main contribution.

Section recalls the construction that has led to gener-

alize fractional Brownian �elds and Section shows that

the convolution involved in their construction converges

in quadratic mean sense.

A. Generalized Fractional Brownian Fields (GFBF)

GFBF are associated to spatial domain convolution and

modulation operators over a sequence of Fractional Brow-

nian Fields (FBF). Process GH,(u0,v0) is calledModulated

Fractional Brownian Field (MFBF) if it can be written

in the form:

GH,(u0,v0)(x1, x2) = e
iu0x1eiv0x2FH(x1, x2) (33)

where FH is a centered isotropic FBF with autocorrelation

RFH(x1, x2, y1, y2)

=
σ2

2

(
(x21 + x

2
2)
H + (y21 + y

2
2)
H

−
[
(x1 − y1)

2 + (x2 − y2)
2
]H)

(34)

Field GH,(u0,v0) is complex valued and results as the

interaction between a stochastic FBF (see �rst row of

Figure 3) and a deterministic phase term (see second

row of Figure 3). Field GH,(u0,v0) is centered and its

autocorrelation

RGH,(u,v)(x1, x2, y1, y2)

= E[GH,(u,v)(x1, x2)GH,(u,v)(y1, y2)] (35)

simpli�es as

RGH,(u0,v0)(x1, x2, y1, y2)

= RFH(x1, x2, y1, y2)e
iu0(x1−y1)eiv0(x2−y2) (36)

where RFH(x1, x2, y1, y2) is given by Eq. (34). Thus,

RGH,(u,v)(x1, x2, y1, y2)

=
σ2

2
eiu(x1−y1)eiv(x2−y2)

(
(x21 + x

2
2)
H

+(y21 + y
2
2)
H −

[
(x1 − y1)

2 + (x2 − y2)
2
]H)

(37)

The GFBF is an integral representation involving in-

teractions of several MIFBF: consider two sequences, the

�rst

HQ = {H1,H2, . . . ,HQ}

composed of Hurst parameters and the second

{(u1, v1), (u2, v2), . . . , (uQ, vQ)}

associated with modulation parameters (poles) of Q in-

dependant MIFBF
(
GHs,(us,vs)

)
s=1,2,...,Q

having auto-

correlations:
(
RGHs,(us,vs)

)
s=1,2,...,Q

. A GFBF EHQ has
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X1 X2 X3 X4 X5

Fig. 2. 1 to 5-DI-G �elds generated from random selection of µk, νk by using Eq. (30) with B1 = BGrad-V and B2 = BGrad-H de�ned by Eq.
(1) and (2) respectively.

H = 0.2 H = 0.5 H = 0.8

Fig. 3. Examples of MFBF samples. Row 1: isotropic FBF FH associated with di�erent Hurst parameters H.. Row 2: phase terms of
GH,(u0,v0).

||EH2 || ||EH3 || ||EH4 || ||EH5 || ||EH6 ||

Fig. 4. GFBF samples EHq for q = 2, 3, 4, 5, 6. Texture EH6 includes all features issued from EHq , q 6 5, whether these features are visible
or not.

been de�ned in [1] as the stochastic Gaussian process with

autocorrelation given by the convolution:

RHQ = FQ
s=1RGHs,(us,vs) (38)

GFBF EHQ can be seen as the spatial convolution, with

respect to spatial variables, of Q independent MIFBF:

EHQ = FQ
s=1GHs,(us,vs) (39)

and this makes synthesis possible from convolution of

samples of MIFBF (see examples of GFBF given by Figure

4). However, this convolution cannot be understood as a

standard function operator since otherwise, non-regularity

(due to stochasticity) and in�nite energies (autocorre-

lation of MIFBF has fractional polynomial form) make

straightforward calculus ine�cient. The following section

provides a mathematical sense to the convolution of two

MIFBF in terms of integrals associated to kernel based

measures.

B. On convolution of MIFBF (to GFBF)

The MIFBF is GH,(u0,v0)(x, y) = e
i(u0x+v0y)FH(x, y),

a zero-mean Gaussian process with autocorrelation given

by Eq. (37). We want to provide a sense to

GH1,(u1,v1) ? GH2,(u2,v2)(t, s)

=

∫
R

GH1,(u1,v1)(x, y)GH2,(u2,v2)(t− x, s− y)dµ(x, y)
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This sense will be associated to quadratic mean conver-

gence. For the monovariate stochastic process case the

complete steps of proof are given in Appendix B. Here-

after, we focus on the speci�c extension of Appendix B

to the multivariate spatial case. The extension will be

performed by:

• considering stochastic integrals

Yk(t, s) =

∫
R

GHk,(uk,vk)(x, y)dµΦ(t,s)
(x, y) (40)

• providing a quadratic mean sense to the following

convolution of these integrals

Y1 ? Y2(t, s) =

∫
R

Y1(x, y)Y2(t− x, s− y)dxdy

• associating the quadratic mean convergence of

GH1,(u1,v1) ? GH2,(u2,v2) to that of Y1 ? Y2 from

properties of Φ.

The convergence of Y1 ? Y2 will be obtained hereafter

by considering in De�nition of Eq. (40), a separable mea-

sure dµΦ(α,β)
(x, y) = φα(x)φβ(y)dxdy where φ is the

function described in Appendix B-A (having su�ciently

fast decay in time and frequency). From this measure and

by imposing that φ̂ annihilates at frequencies ±(uk, vk):
φ̂(±uk) = φ̂(±vk) = 0, we obtain:

1) Field Y(t, s) de�ned by Eq. (40) is a second order

stochastic process : Indeed,

RY(x, y, t, s)

=

∫
R4
RGH,(u,v)(x1, x2, y1, y2)

dµΦ(x,y)
(x1, y1)dµΦ(t,s)

(x2, y2)

=

∫
R4
RGH,(u,v)(x1, x2, y1, y2)φx(x1)φy(y1)

φt(x2)φs(y2)dx1dx2dy1dy2 (41)

where RGH,(u,v) is given by Eq. (37) and (u, v) ∈
{(u1, v1), (u2, v2)}. Let us analyze the 3 additive terms

involved by expanding Eq. (37) in Eq. (41) separately.

First∫
R4
eiu(x1−y1)eiv(x2−y2)

(
x21 + x

2
2

)H
φx(x1)φy(y1)

φt(x2)φs(y2)dx1dx2dy1dy2

= Constant× φ̂y(u)φ̂s(v)
= Constant× e−iyue−isvφ̂(u)φ̂(v)
= 0 (42)

Second∫
R4
eiu(x1−y1)eiv(x2−y2)

(
y21 + y

2
2

)H
φx(x1)φy(y1)

φt(x2)φs(y2)dx1dx2dy1dy2

= Constant× φ̂x(−u)φ̂t(−v)
= Constant× e−ixue−itvφ̂(−u)φ̂(−v)
= 0 (43)

Thus, RY reduces to the contribution of the third term,

that is:

RY(x, y, t, s) = (44)

−

∫
R4

dx1dx2dy1dy2e
iu(x1−y1)eiv(x2−y2)

φx(x1)φy(y1)φt(x2)φs(y2)[
(x1 − y1)

2 + (x2 − y2)
2
]H

(45)

and from a change of variable:

RY(x, y, t, s)= (46)

−

∫
R4
dz1dz2dy1dy2e

iuz1eivz2
[
z21 + z

2
2

]H
φx(z1 + y1)φy(y1)φt(z2 + y2)φs(y2) (47)

which exists and is �nite provided that z2φ(z) ∈ L1(R) ∪
L2(R) (fast decay required for φ). In addition, after some

steps of calculus similar to those of Appendix B-B, we

derive:

RY(x, y, t, s)

=
1

4π2

∫
R2
ei(x−t)ω1ei(y−s)ω2γH,(u,v)(ω1,ω2) (48)∣∣∣φ̂(ω1)∣∣∣2 ∣∣∣φ̂(ω2)∣∣∣2 dω1dω2

where

γH,(u,v)(ω1,ω2) =
σ221+2H sin(πH)Γ2(1+H)
((ω1 − u)2 + (ω2 − v)2)

H+1
(49)

Thus, RY(x, y, t, s) = RY(x− t, y− s) so that stationarity

holds true for Y and we can use the following two-

dimensional version for its autocorrelation:

RYk(t, s) =
1

4π2

∫
R2
eitω1eisω2γH,(u,v)(ω1,ω2)∣∣∣φ̂(ω1)∣∣∣2 ∣∣∣φ̂(ω2)∣∣∣2 dω1dω2 (50)

associated to the following PSD:

γY(ω1,ω2)

= γH,(u,v)(ω1,ω2)
∣∣∣φ̂(ω1)∣∣∣2 ∣∣∣φ̂(ω2)∣∣∣2 (51)

2) Convolution Y1 ? Y2 is a second order stochas-

tic process: The convolution Y1 ? Y2 being with

zero-mean, it is a well-de�ned second order process if

RY1 ? RY2(x1, x2, y1, y2) exists and is �nite for every
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x1, x2, y1, y2 ∈ R. Indeed, in this case:

E [Y1 ? Y2(x1, x2)Y1 ? Y2(y1, y2)]

= E

[ ∫
R2

Y1(x, y)Y2(x1 − x, x2 − y)dxdy∫
R2

Y1(t, s)Y2(y1 − t, y2 − s)dtds

]
=

∫
R4

dxdydtdsE[Y1(x, y)Y1(t, s)]

E[Y2(x1 − x, x2 − y)Y2(y1 − t, y2 − s)]

=

∫
R4

dxdydtdsRY1(x, y, t, s)

RY2(x1 − x, x2 − y, y1 − t, y2 − s)

, RY1 ? RY2(x1, x2, y1, y2) (52)

The existence of the convolution RY1 ? RY2 of autocor-

relation functions is thus the main criteria for providing

a sense to the existence of Y1 ? Y2. Since Y1 and Y2
are stationary (see Section III-B1), we can focus on the

two-dimensional versions of their autocorrelations. The

problem then becomes the existence of:

RY1 ?RY2(x, y) =

∫
R2
RY1(t, s)RY2(x−t, s−y)dtds (53)

where RYk is given by Eq. (50). To solve this problem,

we thus impose, in addition to annihilating frequencies

±(uk, vk), that φ̂ is well localized in such a way that γY
de�ned by Eq. (51) belongs to L1(R2) ∩ L2(R2). In this

respect, both RY1 and RY2 pertain to L1(R2)∩L2(R2) and
we can conclude that Y1 ?Y2 is a second order stochastic

�eld that converges in quadratic mean.

Moreover, we have from Eq. (53):

γY1?Y2(ω1,ω2)

= γY1(ω1,ω2)× γY2(ω1,ω2)
= γH1,(u1,v1)(ω1,ω2)× γH2,(u2,v2)(ω1,ω2)∣∣∣×φ̂(ω1)∣∣∣4 × ∣∣∣φ̂(ω2)∣∣∣4 (54)

The quadratic mean sense of GH1,(u1,v1) ? GH2,(u2,v2)
follows from the fact that we can provide a sequence(
φ

[n]
t

)
n

(of wavelets for instance) where every φ
[n]
t ∈

L1(R)∩L2(R) which converges to a Dirac distribution: the

result follows as a limit case and makes PSD association

to GH1,(u1,v1) ? GH2,(u2,v2) as (set φ̂ = 1 in Eq. (54)):

γGH1,(u1,v1)?GH2,(u2,v2)(ω1,ω2)

=
σ212

1+2H1 sin(πH1)Γ2(1+H1)
((ω1 − u1)2 + (ω2 − v1)2)

H1+1

× σ222
1+2H2 sin(πH2)Γ2(1+H2)

((ω1 − u2)2 + (ω2 − v2)2)
H2+1

(55)

Moreover, by iterating convolutions, we derive the PSD

associated with a GFBF:

γEHQ (ω1,ω2)

=

Q∏
k=1

σ2k2
1+2Hk sin(πHk)Γ2(1+Hk)

Q∏
k=1

[
(ω1 − uk)

2 + (ω2 − vk)
2
]Hk+1 (56)

PSD which highlights Q spectral poles when all couples

(uk, vk) for k = 1, 2, . . .Q are di�erent.

IV. Multi-fractional PSD pole identification

Fractionally integrated �elds presented in Sections II

and III share one common property: they have PSD

admitting many frequency points associated with in�nite

variances called poles. In practical applications requiring

multi-fractional model selection, determining the number

of interacting �elds requires counting the number of fre-

quency points with very high energy (exponential growth

near the pole). Several solutions can be investigated for

this problem. The easiest one involves selecting local max-

ima of the PSD and a�ecting them to poles. This has many

drawbacks in terms of under- and over-determination (not

any local maximum is e�ectively a pole and some poles can

be squeezed when they are located near a pole with very

high exponential growth).

We propose hereafter, after a long run search, a so-

lution based on Convolutional Neural Network (CNN).

The experimental setup concerns associating an observed

multi-fractional GFBF1 �eld to a category indexed by

Q ∈ {1, 2, . . .} corresponding to the number Q of poles

used for sample generations.

The database generated for experimental tests contains

1200 images per speci�ed value of Q: thus a total of

4800 GFBF images when the number of poles pertains to

the category labels {1, 2, 3, 4}. For any category, poles and

Hurst parameters are generated randomly, following the

gamma distribution so as to impose a signi�cant energy

concentration in ]0, π/2[×]0, π/2[ for poles and ]0, 1/2[ for

Hurst exponents. An overview of this database2, denoted

D hereafter, is given by Figure 5.

A. Direct learning of multi-fractional texture features

Because multi-fractional interactions are obtained by

convolution operators (�ltering white noise so as to im-

pose a desired structure), deep CNN architectures seems

1GFBF are chosen because their synthesis on the basis of fast
Fourier transform requires less computational cost than the deluge
of Γ computations for synthesis of K-DI-G �elds.

2The complete database is available for download at: http://am.
atto.free.fr/AlbumTexturesGFBF.htm.



10

GH1−→
= EH1

‖EH1−•‖

GH1
?GH2−→

= EH2

‖EH2−•‖

EH2
?GH3
−→

= EH3

‖EH3−•‖

EH3
?GH4
−→

= EH4

‖EH4−•‖

Fig. 5. Sample elements of GFBF database D, where every EHQ is associated with a number Q of distinct poles.
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adapted per nature3 to their discrimination. In this re-

spect, we have �rst investigated several existing architec-

tures that are trained on millions of images to discriminate

textures in D after retraining only the last convolutional

layer. But none of them outruns more than 16% of good

classi�cation, the architecture achieving these 16% being

\AlexNet" CNN [31] (trained on ImageNet [32], a database

with 1000 categories and 1.2 million training images)

which is known to yield more than 90% accuracy in

standard image classi�cation tasks!

These poor results are due to that multi-fractional tex-

tures are not objects with deterministic geometries: for the

latter, feature recognition implies identifying similar struc-

tures up to elementary transformations whereas multi-

fractional textures can present similar structures (Figure

5 shows almost more visual inter-category similarities

than intra-category similarities), while having a di�erent

number of interactions: the issue is not thus a standard

pattern recognition, but counting the number of visible

pseudo-patterns.

We have thus been forced to retrain full CNNs by

varying di�erent features of the network. The most rel-

evant architecture is still very close to [31], but with a

signi�cant improvement of convolution �lter lengths to

ensure the results given in Table I. These results are

unsatisfactory and the conclusion has been seeking multi-

fractional feature interactions from an indirect learning

(see next section).

B. Indirect learning from PSD as inputs

As highlighted in the previous section, we have to force

learning in not focusing on a recognized fractional feature

since the same feature can appear in textures pertaining

to di�erent categories. For this purpose, we propose to

perform learning of multi-fractional interactions from PSD

features. Table II presents the best relevant results derived

from the CNN described in Appendix C.

It follows from Table II that counting the number of

multi-fractional interactions can be performed with good

performance from CNN based approach associated with

spectral inputs. A study of the �rst convolutional layer

of the CNN shows specializations in 3 main convolution

categories (see Figure 6):

• very selective �lters in frequency and fast decay near

the frequency selected (40% of �rst level convolution

�lters),

• selective �lters in compact frequency blocks (rounded

and wide support near the central frequency, 30% of

�rst level convolution �lters),

• multiple frequency selection �lters (30% of �rst level

convolution �lters).

3Because they involve many layers of convolution �lters and sev-
eral non-linear transfer functions

Note that from Table II, increasing the number of

interactions leads to a signi�cant loss of performance. The

reason is linked to the spectral content estimated from

GFBF textures: 4 interactions means that 4 frequency

points are associated with in�nite variance (energy for

zero-mean �eld) in ]0, π/2[×]0, π/2[. In addition, because

of the exponential decays near these singular points, cer-

tain poles dominate others (the latter become almost non-

visible in spectra as illustrated in Figure 7). Moreover,

Figure 7 highlights that when the number of interactions

is large, then:

• only few poles (bright values dominating their sur-

rounding neighborhoods) are `visible' in the PSD,

• the overlays of poles yield bright intersections that

can be confused with poles.

V. conclusion

The paper has shown that fractional order stochastic

integration is a powerful tool for modeling with few param-

eters, image edge and texture information. Two categories

of fractional �eld models corresponding to discrete and

continuous domain integrals have been studied.

For discrete domain modeling, the main contribution

proposed by the paper is the derivation of a category

of �elds where any �eld is associated with an arbitrary

number of poles having their location controlled by a

double indexed Gegenbauer polynomial.

For continuous domain modeling, the main contribution

proposed by the paper is the proposal of a mathematical

framework that provides a concise sense to convolutions of

modulated fractional Brownian �elds, any term involved

in the convolution having the role of creating a spectral

pole.

Because both discrete and continuous domain models

can admit a pre-speci�ed number of spectral poles, they

are multi-fractional (a Holder exponent is associated with

every pole) and this property raises the issue of counting

the number of poles, given an image observation and for

model selection purpose.

The paper has then proposed a third contribution con-

sisting in providing a deep neural network architecture

involving spectral information inputs and large size con-

volution �lters at �rst network layers so as to make pole

identi�cation possible. This network is shown e�cient for

discriminating up to 4 neighbor poles, which is a good

performance in a tricky problem: every pole is a spectral

point associated with an in�nite theoretical variance and

its presence a�ects signi�cantly the observability of other

poles located in a close neighborhood.

Appendix A

Spatial Gegenbauer Fields

The problem expressed by Eq. (28) is expanding(
c− 2µT − 2νS+ T2 + S2

)−λ
as a discrete series involv-
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Selective filters in frequency (fast decay)

Selective filters in frequency (slow decay)

Filters with multiple selection of frequencies

Fig. 6. First convolutional layer of the CNN network described in C when learning has been addressed from GFBF PSD features.
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‖EH1‖ ‖EH2‖ ‖EH3‖ ‖EH4‖ ‖EH5‖

‖EH6‖ ‖EH7‖ ‖EH8‖ ‖EH9‖ ‖EH10‖

〈EH1〉 〈EH2〉 〈EH3〉 〈EH4〉 〈EH5〉

〈EH6〉 〈EH7〉 〈EH8〉 〈EH9〉 〈EH10〉

γEH1 γEH2 γEH3 γEH4 γEH5

γEH6 γEH7 γEH8 γEH9 γEH10

Fig. 7. Curse of power for GFBF EHQ associated with PSD γEHQ
: PSD is displayed as log(1+log(1+WP Spectrum)) to allow observing some

poles. But when the number of interactions is high, only the few dominant poles are visible in the PSD! [Sizes] / Input GFBF: 4092×4092
; GFBF PSD: 1024×1024 ; Supports displayed: 64× 64 7−→ [0, π/16]× [0, π/16].
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ing integer powers of T and S. This can be done by

noting that the Gamma function given by Eq. (13)

has equivalent expression (change of variable u →(
c− 2µT − 2νS+ T2 + S2

)
x):

Γ(λ) =
(
c− 2µT − 2νS+ T2 + S2

)λ
×
∫+∞
0

e−(c−2µT−2νS+T
2+S2)xxλ−1dx (57)

so that we can write:(
c− 2µT − 2νS+ T2 + S2

)−λ
=

1

Γ(λ)

∫+∞
0

e−cxxλ−1e(2µT−T
2)xe(2νS−S

2)xdx

The latter can be written in terms of the Hermite-Kamp�e

de F�eriet polynomials [33]:(
c− 2µT − 2νS+ T2 + S2

)−λ
=

1

Γ(λ)

∞∑
m=0

∞∑
n=0

1

m! n!
TmSn×(∫+∞

0

e−cxxλ−1Hm(2µx,−x)Hn(2νx,−x)dx

)
where

Hk(x, y) = k!

bk/2c∑
j=0

xk−2jyj

(k− 2j)! j!
(58)

Thus (
c− 2µT − 2νS+ T2 + S2

)−λ
=

∞∑
m=0

∞∑
n=0

Cλm,n(µ, ν)T
mSn (59)

with

Cλm,n(µ, ν)

=
1

m! n!

1

cλ+m+n

1

Γ(λ)
×(∫+∞

0

e−xxλ−1Hm(2µx,−cx)Hn(2νx,−cx)dx

)
(60)

Now, by using Eq. (58), we derive that:∫+∞
0

e−xxλ−1Hm(2µx,−cx)Hn(2νx,−cx)dx

= m! n!

bm/2c∑
p=0

bn/2c∑
q=0

(2µ)m−2p(2ν)n−2q(−c)p+q

(m− 2p)! (n− 2q)! p! q!
×

∫+∞
0

e−xxλ+m−p+n−q−1dx

which, by noting that∫+∞
0

e−xxλ+m−p+n−q−1dx = Γ(λ+m+ n− p− q)

leads us to conclude that Eq. (60) is equivalent to:

Cλm,n(µ, ν) =
1

cλ+m+n

1

Γ(λ)
×

bm/2c∑
p=0

bn/2c∑
q=0

Γ(λ+m+ n− p− q)×

(−1)p+qcp+q(2µ)m−2p(2ν)n−2q

p! q! (m− 2p)! (n− 2q)!
(61)

In particular, when b=1, we note C1m,n , Cm,n, which
reduces to:

Cm,n(µ, ν)=
1

c1+m+n
×

bm/2c∑
p=0

bn/2c∑
q=0

(m+ n− p− q)! ×

(−1)p+qcp+q(2µ)m−2p(2ν)n−2q

p! q! (m− 2p)! (n− 2q)!
(62)

since Γ(1) = 1 and Γ(k+ 1) = k! when k is a non-negative

integer.

Appendix B

On convolutions of modulated fractional

Brownian motions

A. Context

Consider a stochastic zero-mean process: X : (t, λ) ∈
R×Ω or Z×Ω 7−→ X(t,ω) = X(t, λ) = Xt(λ) = Xλ(t) ,
X(t) ∈ R. Assuming that X is a second-order stochastic

means, for all t:

‖X(t)‖2L2(Ω) = E
[
|X(t)|2

]
=

∫
Ω

|X(t)|2dP(λ) <∞ (63)

where Ω = R in the following and P is a probability

measure on elements of B(R). Under property given by Eq.
(63), functions [mean]: t 7→ EX(t) and [autocorrelation]

(t, s) 7→ E[X(t)X(s)] = R(t, s) are well-de�ned and real

valued.

For a second-order stochastic process, continuity (that

is X(t) → X(s) as t → s) is related to the so-called

quadratic mean sense (use of the norm associated to

L2(Ω)) and consists in:

lim
t→s ‖X(t) − X(s)‖2L2(Ω) = lim

t→sE|X(t) − X(s)|2 = 0

A consequence of using the quadratic norm is the fol-

lowing: X is continuous (in quadratic mean) if functions

t 7→ EX(t) and (t, s) 7→ E[X(t)X(s)] = R(t, s) are

continuous (standard function continuity). We assume

that X is with zero-mean in what follows.

A second-order zero-mean stochastic Gaussian process

is completely speci�ed by its autocorrelation function.

For the Fractional Brownian Motion (FBM) denoted XH
with Hurst exponent/parameter H, 0 < H < 1, this

autocorrelation function is given by:

RH(t, s) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
(64)
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The FBM Modulation (FBMM) by a deterministic ex-

ponential wave, denoted XH,u0(x) = eiu0xXH(x) is a

Gaussian process with zero-mean (as a consequence of

zero-mean assumption on XH) and autocorrelation:

RXH,u0 (t, s) = E[XH,u0(t)XH,u0(s)]

= eiu0(t−s)RH(t, s) (65)

where RH is given by Eq. (64).

Consider now two independent FBMM XH1,u1 and

XH2,u2 . We want to provide a quadratic mean sense to

the following convolution operator between FBMM:

XH1,u1 ? XH2,u2(t)

?
=

∫
R

XH1,u1(x)XH2,u2(t− x)dµ(x) (66)

In practice, if we assume that µ is the Lebesgue's measure,

it would have been su�ced that RXH1,u1 and RXH2,u2
pertain to L2(R2). However, this is not true for FBMM

as it can be observed by taking Eq. (64) and Eq. (65)

into account. Nevertheless, we can go beyond these func-

tional limitations by selecting an appropriate parametric

measure that transforms XH1,u1 and XH2,u2 into Y1 and

Y2:

Yk(t) ,
∫
R

XHk,uk(x)dµt(x) (67)

for k = 1, 2 and with convergence of the latter integrals

in quadratic mean sense. Note that for the convergence

of Eq. (67) to hold true, it su�ces to provide a kernel φ

satisfying

• φ ∈ L1(R) ∪ L2(R),
• (1+ x2)φ(x) ∈ L1(R) ∪ L2(R),

and let dµt(x) = φt(x)dx where φt(x) = φ(x − λt). For

such a measure,∫
R2
eiu0(x−y)|x|2Hkφt(x)φs(y)dxdy

and ∫
R2
eiu0(x−y)|x− y|2Hkφt(x)φs(y)dxdy

exists and are �nite, thus,

‖Yk(t)‖2L2(Ω) ,

∥∥∥∥∫
R

XHk,uk(x)dµt(x)

∥∥∥∥2
L2(Ω)

=

∫
R2
RXHk,uk (x, y)φt(x)φs(y)dxdy

<∞
in case where RXHk,uk has the form given by Eq. (65).

The quadratic mean sense of XHk,uk follows from this

last property as a limit case, given that we can provide

sequence
(
φ

[n]
t

)
n

such as wavelets where every φ
[n]
t ∈

L1(R) ∩ L2(R) and parameterized by an upper index n

which makes them converge to Dirac distributions.

B. PSD association to FBMM XHk,uk via that of Yk

In the following, we assume that the following property

holds true for k=1, 2:

[Blocking frequency ±uk] function φ introduced in

section above satis�es at the speci�c real values ±uk:
φ̂(uk) = φ̂(−uk) = 0

where we have used the following de�nition of the Fourier

transform:

φ̂(ω) =

∫
R
e−iωxφ(x)dx (68)

Consider the autocorrelation function RYk of Yk:

RYk(t, s) =

∫
R2
RXHk,uk (x, y)φt(x)φs(y)dxdy

=
σ2

2

∫
R2

(
|x|2Hk + |y|2Hk − |x− y|2Hk

)
eiuk(x−y)φt(x)φs(y)dxdy (69)

Under frequency ±uk blocking by φ, we obtain:

RYk(t, s) = −
σ2

2

∫
R2
eiuk(x−y)|x− y|2Hkφt(x)φs(y)dxdy

This integral can be re-written, from a change of variable:

RYk(t, s) = −
σ2

2

∫
R2
eiukz|z|2Hkφt(z+ y)φs(y)dzdy

By decomposing |z|2Hk with respect to [34], we deduce:

RYk(t, s) = −
σ2

2

Γ(2H + 1) sin(πH)
π

×∫
R2
eiukz

(∫
R

1− cos(zξ)

|ξ|2Hk+1
dξ

)
φt(z+ y)φs(y)dzdy (70)

and by noting:

γH(ξ) =
σ2Γ(2H + 1) sin(πH)

|ξ|2H+1
(71)

we derive:

RYk(t, s) =

−
1

2π

∫
R
γ(ξ)dξ×∫
R2
eiukz (1− cos(zξ))φt(z+ y)φs(y)dzdy (72)

By taking again into account, the kernel φ frequency ±uk
blocking property, we have:∫
R2
eiukzφt(z+y)φs(y)dzdy = eiuk(t−s)φ̂(−uk)φ̂(uk) = 0

and thus:

RYk(t, s) =
1

2π
×∫

R
dξγ(ξ)

∫
R2
eiukzcos(zξ)φt(z+ y)φs(y)dzdy (73)

which is equivalent to

RYk(t, s) =
1

2π
×∫

R
dξγ(ξ)

∫
R2
eiukz

eizξ + e−izξ

2
φt(z+ y)φs(y)dzdy
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The latter corresponds, after some Fourier based calculus:

RYk(t, s) =

1

2π

∫
R
dξγ(ξ)

1

2
×(

φ̂t(−ξ− uk)φ̂s(−ξ− uk) + φ̂t(ξ− uk)φ̂s(ξ− uk)
)

thus,

RYk(t, s) =
1

2π

∫
R
γ(ξ+ uk)φ̂t(ξ)φ̂s(ξ)dξ

Now, since we have assumed that t in notation φt denotes

a translation parameter, then: φ̂t(ξ) = e−ictξφ̂(ξ) and

φ̂s(ξ) = e
−icsξφ̂(ξ) so that:

RYk(t, s) =
1

2π

∫
R
γ(ξ+ uk)e

−ic(t−s)ξ
∣∣∣φ̂(ξ)∣∣∣2 dξ

and �nally:

RYk(t, s) =
1

2π

∫
R
γ(ξ− uk)e

ic(t−s)ξ
∣∣∣φ̂(ξ)∣∣∣2

which converges provided that sup|ξ−uk|6η

∣∣∣φ̂(ξ)/ξ∣∣∣ <∞ for some η > 0. In this case, Yk is a stationary4

stochastic process with autocorrelation in the reduced one-

dimensional form:

RYk(t) =
1

2π

∫
R
γ(ξ− uk)

∣∣∣φ̂(ξ)∣∣∣2 eictξdξ
and associated with PSD (derived from inverse Fourier

identi�cation in the latter form):

γYk(ξ) = γ(ξ− uk)
∣∣∣φ̂(ξ)∣∣∣2

Assuming that ideal φ behaves approximately as a Dirac

distribution (limit case as discussed at the end of the

previous section), we can associate the following PSD to

Xk:

γXk(ξ) = γ(ξ− uk) =
σ2Γ(2H + 1) sin(πH)

|ξ− uk|2H+1

C. Convolution between FBMM XH1,u1 ,XH2,u2 via

characterization of Y1 ? Y2

The sole condition required for the convolution∫
R

Y1(x)Y2(t− x)dx , Y1 ? Y2(t)

4For a zero-mean second order stochastic process X, stationarity
(second-order or Wide Sense Stationarity, WSS) holds true if:

RX(t, s) = RX(t − s, 0) ≡ RX(t − s = x)

to make sense as the de�nition of a second order stochastic

process Y1 ? Y2 is the existence of:∫∫
E[Y1(x)Y2(t− x)Y1(y)Y2(s− y)]dxdy

=

∫∫
E[Y1(x)Y1(y)]E[Y2(t− x)Y2(s− y)]dxdy

=

∫∫
RY1(x, y)RY2(t− x, s− y)dxdy

= RY1 ? RY2(t, s) (74)

If RY1 , RY2 ∈ L2(R2), then this condition is satis�ed. The

latter is not very restrictive since φ can be chosen well-

localized in time frequency.

Furthermore, under the stationarity induced by φ-

measure on Y1,Y2, then:

• from the change of variable t← t− s and x← x− y,

we can write:

RY1?Y2(t) =

∫
RY1(x)RY2(t− x)dx

• and, provided that RY1?Y2 obtained just above ad-

mits a Fourier transform, we can deduce the PSD

γY1?Y2 of Y1 ? Y2 as:

γY1?Y2(ξ) =

∫
RY1 ? RY2(t)e

−iξtdt

= γY1(ξ)γY2(ξ)

= γ(ξ− u1)γ(ξ− u2)
∣∣∣φ̂(ξ)∣∣∣4 (75)

Finally, the PSD associated5 to XH1,u1 ? XH2,u2 via

kernel φ is:

γXH1,u1?XH2,u2 (ξ)

= γ(ξ− u1)γ(ξ− u2)

= γXH1,u1 (ξ)× γXH2,u2 (ξ)

=
σ21σ

2
2Γ(2H1 + 1)Γ(2H2 + 1) sin(πH1) sin(πH2)

|ξ− u1|2H1+1|ξ− u2|2H2+1

Appendix C

Convolutional Neural Network (CNN)

architecture for multi-fractional pole

identification

The CNN proposed for multi-fractional interaction

count is presented in Table III. This CNN is characterized

by a �rst convolution layer with long-size impulse response

�lters so as to possibly allows for a concise frequency

selection and surprisingly, up to 40% of the �lters have

been specialized (starting from a white noise initialization)

in frequency selection (see Figure 6).

In the CNN of Table III, sizes of convolution �lters have

been decreased progressively, from layer to layer, in order

5Deduction must be understood as a limit case involving an

L1(R) ∩ L2(R) sequence
(
φ
[n]
t

)
n
that converges to a Dirac distri-

bution, thus

(
φ̂
[n]
t

)
n

tends to constant function 1.



17

to limit the overall CNN complexity. From Table III, we

have the following correspondences:

• Recti�ed Linear Unit (ReLU), function

x 7→ (x)+ =

{
x if x > 0

0 if x 6 0

• Normalization (cross-channel):

xm 7→ ym = xm

κ+ αmax{N−1,m+n/2}∑
max{0,m−n/2}

x2`

−β

where N is the number of kernels used in the layer

and n is the normalization neighborhood size (same

spatial position, n adjacent channels);

• Softmax:

X = (Xi)
n
i=1 7→

(
eXi/

n∑
i=1

eXi

)n
i=1

this loss function is used for the prediction of a single

category between Q mutually exclusive Q-fractional

categories.
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TABLE I
Test confusion matrix from a direct learning: average retrieval per texture category and average inter-category

confusion (in %). The D3 database is composed by 3 GFBF categories (1800 textures for training, 1800 for learning). The D4
database is composed by 4 GFBF categories (2400 textures for training, 2400 for learning). The CNN used is described in

Appendix C.

Test on D3 Test on D4

X 1-GFBF 2-GFBF 3-GFBF

1-GFBF 94.50 3.83 1.67

2-GFBF 89.17 8.33 2.50

3-GFBF 85.00 10.50 4.50

Mean accuracy 35.78

X 1-GFBF 2-GFBF 3-GFBF 4-GFBF

1-GFBF 94.83 0 0.17 5.00

2-GFBF 89.33 0 1.33 9.33

3-GFBF 84.50 0 1.83 13.67

4-GFBF 84.83 0 2.00 13.17

Mean accuracy 27.46

TABLE II
Indirect learning (PSD feature extraction prior to deep learning stage): the confusion matrix (average retrieval per
texture class and average inter-class confusion, in %) shows relevant performance. The D3 database is composed by 3

GFBF categories (1800 textures for training, 1800 for learning). The D4 database is composed by 4 GFBF categories (2400
textures for training, 2400 for learning).

Test on D3 Test on D4

X 1-GFBF 2-GFBF 3-GFBF

1-GFBF 100.00 0.00 0.00

2-GFBF 2.08 84.59 13.33

3-GFBF 0.00 16.67 83.33

Mean accuracy 89.31

X 1-GFBF 2-GFBF 3-GFBF 4-GFBF

1-GFBF 98.75 1.25 0.00 0.00

2-GFBF 2.50 77.92 19.16 0.42

3-GFBF 0.00 7.92 67.92 24.16

4-GFBF 0.00 6.25 32.08 61.67

Mean accuracy 76.56

TABLE III
Rectified Linear Unit (ReLU), Architecture: CNN, type AlexNet / full training

# of Layer Content #N of Elements Element size n× n # of Channels

1 `Fractional Images' 4800 448×448 1

2 `Convolution' 96 16×16 1

3 `ReLU' Element-wise (one to one)

4 `Normalization' Cross channel with 5 channels/element and (α = 1, β = 0.75, κ = 1)

5 `Max Pooling' Sub-sampling: maximum over a 3×3 spatial neighborhood
6 `Convolution' 128 9×9 96

7 `ReLU' Element-wise (one to one)

8 `Normalization' Cross channel with 5 channels/element and (α = 1, β = 0.75, κ = 1)

9 `Max Pooling' Sub-sampling: maximum over a 3×3 spatial neighborhood
10 `Convolution' 384 7×7 128

11 `ReLU' Element-wise (one to one)

12 `Convolution' 192 5×5 384

13 `ReLU' Element-wise (one to one)

14 `Convolution' 128 3×3 192

15 `ReLU' Element-wise (one to one)

16 `Max Pooling' Sub-sampling: maximum over a 3×3 spatial neighborhood
17 `Fully Connected' Neuron matrix [Input size 8192 / Output size 16 ]

18 `ReLU' Element-wise (one to one)

19 `Fully Connected' Neuron matrix [Input size 16 / Output size 4 ]

20 `Softmax' Probability distribution with respect to 4 outputs

21 `Classi�cation' Cross-entropy loss function with 4 categories as output


