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Fractional Order Stochastic Image Integration Models and Deep Learning of Multi-Fractional Interactions

I. Introduction

V ISUAL information is a concept where the notion of variation plays a central role: for both static and dynamic vision systems, perceptual information is associated with edges and changes in optical ow in order to infer shapes of objects (in a single image or a static scene) or scene reconguration (in a video or a dynamic vision system). When edges are abundant in a given scene, the observation refers to the notion of texture and the scene under consideration is more complex for visual analysis/compression/interpretation due to a large amount of variations to handle. A theory of visual information has to take into consideration, parsimonious descriptions for textures in terms of their descriptions with as few parameters as possible.

The issue addressed in this paper is some contributions in visual information theory by the proposal of a parsimonious framework for synthesizing non-trivial textures: 1) from basic inputs such as white noise samples and 2) when considering fractional integration operating on very few parameters. White noise has, by denition, a at spectral response whereas natural images exhibit wide spectral variability, specically in presence of texture. Starting from a white noise, one can build integration procedures so as to constrain the output for presenting shapes, forms and textures that deserve interests in visual perception.

Most relevant integration solutions in terms of deriving rich spectral content and visual texture impact involve stochastic fractional order frameworks [START_REF] Atto | -stationary texture synthesis from random eld modeling[END_REF], [START_REF] Polisano | \Texture modeling by gaussian elds with prescribed local orientation[END_REF], [START_REF] Kroese | \Spatial process generation[END_REF], [START_REF] Pu | \Fractional dierential mask: A fractional dierential-based approach for multiscale texture enhancement[END_REF]. Early works in the 1980s have concerned feature extraction from a one-dimensional fractional Brownian motion model [START_REF] Lundahl | \Fractional brownian motion: A maximum likelihood estimator and its application to image texture[END_REF], [START_REF] Kube | the imaging of fractal surfaces[END_REF], [START_REF] Stewart | \Fractional brownian motion models for synthetic aperture radar imagery scene segmentation[END_REF]. The 1990s decade has established the foundations of the rst spatial extensions in terms of isotropic fractional Brownian elds [START_REF] Kaplan | improved method for 2d self-similar image synthesis[END_REF], [START_REF] Pesquet-Popescu | \Wavelet packet decompositions for the analysis of 2-d elds with stationary fractional increments[END_REF], [START_REF] Kaplan | fractal analysis for texture classication and segmentation[END_REF] or estimating a fractal dimension from object and scene observations [START_REF] Penn | \Estimating fractal dimension with fractal interpolation function models[END_REF], [START_REF] Balghonaim | maximum likelihood estimate for two-variable fractal surface[END_REF]. In the following decade (2000s), eorts have been concentrated on dierent issues raised by fractional integral image processing, for instance: synthesis schemes in cases of either isotopic guidelines [START_REF] Pesquet-Popescu | \Synthesis of bidimensional α-stable models with long-range dependence[END_REF] or anisotropic concerns (limited to a pre-specied elliptical form) [START_REF] Eom | -correlation image models for textures with circular and elliptical correlation structures[END_REF], but also the highlights and benets of fractional order modeling for biomedical applications [START_REF] Jennane | \Fractal analysis of bone x-ray tomographic microscopy projections[END_REF], [START_REF] Campisi | texture modelling and synthesis using fractal processes[END_REF], [START_REF] Hollingsworth | \The best bits in an iris code[END_REF]. The 2010s have been ages of:

• optimization of algorithms for simulating [START_REF] Kroese | \Spatial process generation[END_REF] and characterizing transformations [START_REF] Atto | -d wavelet packet spectrum for texture analysis[END_REF] of the oldest but \consistent" isotropic fractional Brownian eld model; • investigations of dierent methods for parameter estimation [START_REF] Pu | \Fractional-order euler-lagrange equation for fractional-order variational method: A necessary condition for fractional-order xed boundary optimization problems in signal processing and image processing[END_REF], [START_REF] Combrexelle | \Bayesian estimation of the multifractality parameter for image texture using a whittle approximation[END_REF], [START_REF] Ivanovici | \Fractal dimension of color fractal images[END_REF]; • spreading out fractional analysis to image processing applications such as feature enhancements [START_REF] Pu | \Fractional dierential mask: A fractional dierential-based approach for multiscale texture enhancement[END_REF], [START_REF] Yu | denoising algorithm based on entropy and adaptive fractional order calculus operator[END_REF], [START_REF] Zachevsky | \Statistics of natural stochastic textures and their application in image denoising[END_REF], [START_REF] Zachevsky | \Single-image superresolution of natural stochastic textures based on fractional brownian motion[END_REF] and feature extraction for clustering, segmentation or pattern recognition purposes [START_REF] Uss | \Ecient rotation-scaling-translation parameter estimation based on the fractal image model[END_REF], [START_REF] Khan | fractional moments of multilook polarimetric whitening lter for polarimetric sar data[END_REF],

A. Discrete domain fractional order spatio-stochastic integration 1) Basics on discrete spatial fractional order integration: An integrated eld X can be seen as combinations of spatial contributions of an elementary eld Z (white noise in general) measured via a spatial shift operator B.

Discrete domain integrated elds involve sums:

• that depend only on integer powers of B (integer order integrals) or • may depend on non-integer real values at the power of B (fractional order integrals). The shifts associated with operator B require computing a sub-pixel measure for the latter case.

In practice, not any sum forms an integrated process: for integration terminology, operator B must be chosen so that (1l -B)f(t, s) behaves approximately as a discrete partial spatial derivative of the function f(t, s). The following provides spatial operators B that respect this requirement.

Denition 1 (Gradient shift operators): Operators

B Grad-V : X(t, s) -→ X(t -1, s) (1) B Grad-H : X(t, s) -→ X(t, s -1) (2) B Grad-D : X(t, s) -→ X(t -1, s -1) (3) 
are associated with Vertical (Grad-V), Horizontal (Grad-H) and Diagonal (Grad-D) gradient components.

These gradient based operators apply strict \backshifts" and one can check that since

B Grad-V X(t, s) = X(t -1, s), then (1l -B Grad-V )f(t, s) = f(t, s) -f(t -1, s)
is the standard discrete partial derivative of function f with respect to variable t. Note also that

B k Grad-V f(t, s) = B Grad-V B Grad-V . . . B Grad-V k terms f(t, s) = f(t -k, s)
so that shifting to position t -k involves k times composition of the elementary operator B Grad-V .

Because the gradient operators B Grad-V , B Grad-H , B Grad-D apply back-shifts, they are called causal (their shifting does not involve an f(t , s ) with t > t or s > s). Shift operator B can also be chosen anti-causal or \neither causal, nor anti-causal" with possible neighborhood consideration: for instance, since the standard Laplace operator satises:

∆f = f(t + 1, s) + f(t -1, s) + f(t, s + 1) + f(t, s -1) -4f(t, s)
then one can derive, by seeking B Lap such that (1 -

B Lap )f(t, s) ∝ ∆f(t, s):
Denition 2 (Laplace shift operator): The operator B Lap dened by:

B Lap X(t, s) = 1 4 X(t + 1, s) + X(t -1, s) +X(t, s + 1) + X(t, s -1) (4) 
is called Laplace shift operator.

The Laplace shift operator B Lap is a combination that applies on the 4 closest variables pertaining to the neighborhood of X(t, s), without taking the latter into consideration. The following shift operators called Canny and Prewitt are compositions including the random variable X(t, s) and are neither causal, nor anti-causal.

Denition 3 (Canny shift operators): Canny Vertical (Can-V) and Horizontal (Can-H) shift operators are dened by:

B Can-V : X(t, s) -→ X(t, s) + X(t -1, s) -X(t + 1, s) (5) B Can-H : X(t, s) -→ X(t, s) + X(t, s -1) -X(t, s + 1) (6) 
Denition 4 (Prewitt shift operators): Prewitt Vertical (Pre-V) and Horizontal (Pre-H) shifts consist in: [START_REF] Stewart | \Fractional brownian motion models for synthetic aperture radar imagery scene segmentation[END_REF] and

B Pre-V X(t, s) = X(t, s) + 1 k=-1 X(t -1, s -k) - 1 k=-1 X(t + 1, s -k)
B Pre-H X(t, s) = X(t, s) + 1 k=-1 X(t -k, s -1) - 1 k=-1 X(t -k, s + 1) (8)
Remark 1 (From derivation to integration): For B = B Grad-V dened by Eq. ( 1), we have seen that

(1 -B Grad-V )f(t, s) = f(t, s) -f(t -1, s) is a discrete partial derivative. When considering the inverse (thus integral) operator (1 -B Grad-V ) -1
, we obtain, provided that function g used below is chosen so that the following sum exists:

(1 -B Grad-V ) -1 g(t, s) = k 0 B k Grad-V g(t, s) = k 0 g(t -k, s)
Remark 1 above illustrates that one can switch from partial derivation induced by the dierence operator (1 -B) to partial integration by inverting the latter and this, for any of the shift operators given by Eqs. (1), ( 2), (3), (4), ( 5), ( 6), [START_REF] Stewart | \Fractional brownian motion models for synthetic aperture radar imagery scene segmentation[END_REF] and [START_REF] Kaplan | improved method for 2d self-similar image synthesis[END_REF].

More generally, we can consider a derivation scheme represented by a function of operator, say G(B), and equations having the form G(B)f(t, s) = h(t, s). The following properties then holds true: if G(B) is a derivation operator, then f is an integral of h and vice versa. Note that G(B) can operate integer or fractional order derivation, for instance:

• (1 -B Grad-V )f [from integer power \1" at the power of (1 -B Grad-V )] is the integer order derivation of f whereas • (1 -B Grad-V ) 1/2 f
is the fractional order \1/2" derivation of f with respect to B. Finally, when h is the solution of (1 -B Grad-V ) λ f = h where 0 < λ < 1, then f is said to be associated with a fractional order λ integral of h.

2) Fractional order spatio-stochastic K-factor Gegenbauer series: In the following, we consider equations with the form G(B)X(t, s) = Z(t, s) where X, Z : N × N × Ω -→ R are random elds and G(B) behaves as a fractional order derivation operator (see Section II-A1). Field X will be said fractional integral of Z.

Denition 5 (K-factor Gegenbauer eld): Field X(t, s) will be called spatial (2D) K-factor B-Gegenbauer (K-B-G) eld if it satises:

K k=1 1l -2ν k B + B 2 b k X(t, s) = Z(t, s) (9) 
where |ν k | 1 for any k = 1, 2, . . . , K and Z(t, s) is assumed to be a zero-mean white Gaussian eld.

In Eq. ( 9), a term 1l -2νB + B 2 b behaves as (1l -B) 2b when ν is close to 1. Hence K-factor Gegenbauer elds include standard fractionally integrated elds especially when one among the ν k , k = 1, 2, . . . , K is close to one. Assuming a revertible power series expansion of any 1l -2ν k B + B 2 b k , synthesis of a K-factor Gegenbauer involves computing:

X(t, s) = K k=1 1l -2ν k B + B 2 -b k Z(t, s) (10) 
where:

1l -2ν k B + B 2 -b k = +∞ =0 b k † (ν k ) B (11) 
and the Gegenbauer function b k † (•) being:

b k † (x) = /2 m=0 (2x) -2m (-1) m Γ (b k + -m) m! ( -2m)! Γ (b k ) (12) 
with denoting the oor function ( z is the largest integer less than or equal to z) and the Gamma function is dened by:

Γ (x) = R + u x-1 e -u du (13) 
Samples of K-factor B-Gegenbauer elds are given by Figure 1 when B is one among the operators dened by Eqs. ( 4), ( 5), ( 6), [START_REF] Stewart | \Fractional brownian motion models for synthetic aperture radar imagery scene segmentation[END_REF] and [START_REF] Kaplan | improved method for 2d self-similar image synthesis[END_REF]. Depending on the operator used, one can obtain either a stochastic texture without any privileged orientation (case of B-Gegenbauer) or textures associated with a main Vertical/Horizontal/Diagonal edge orientation. Note that white noise shows no edge and the texture properties is driven by the operator B selected. More precisely, these texture feature orientations can be inferred from the spectral properties of K-factor B-Gegenbauer elds given below.

Proposition 1 (Power Spectral Densities, PSD, of K-B-G elds [START_REF] Atto | et processus stochastiques[END_REF]): The PSD associated with K-factor B-Gegenbauer elds are given below (PSD notation γ

K-B-G X Lap X Can-V X Can-H X Pre-V X Pre-H
Fig. 1. 5-factor Gegenbauer (see Eq. ( 9)) Laplacien (see Eqs. 4), Canny (see Eqs. ( 5) and ( 6)) and Prewitt (see Eqs. [START_REF] Stewart | \Fractional brownian motion models for synthetic aperture radar imagery scene segmentation[END_REF] and ( 8)).

for eld notation X K-B-G ) respectively for the gradient, Laplace, Canny and Prewitt operators, where

θ k = 1 + ν k and ξ k = 1 -ν k .
(i) PSD of X K-B-G for gradient shift operators (see Eqs.

(1), ( 2), (3), respectively):

γ K-B Grad-V -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 |cos ω 1 -ν k | 2b k (14) γ K-B Grad-H -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 |cos ω 2 -ν k | 2b k (15) 
γ K-B Grad-D -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 |cos(ω 1 +ω 2 ) -ν k | 2b k (16) 
(ii) PSD of X K-B-G for Laplace shift operator (see Eq. ( 4)):

γ K-B Lap -G (ω 1 , ω 2 ) = σ 2 K k=1 cos 2 ω 1 2 +cos 2 ω 2 2 -θ k 2 + θ k ξ k 2b k (17) 
(iii) PSD of X K-B-G for Canny shift operators (see Eqs. [START_REF] Atto | -d wavelet packet spectrum for texture analysis[END_REF], [START_REF] Pu | \Fractional-order euler-lagrange equation for fractional-order variational method: A necessary condition for fractional-order xed boundary optimization problems in signal processing and image processing[END_REF], respectively):

γ K-B Can-V -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 4 sin 4 ω 1 -4 ν k ξ k sin 2 ω 1 + ξ 2 k b k (18) γ K-B Can-H -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 4 sin 4 ω 2 -4 ν k ξ k sin 2 ω 2 + ξ 2 k b k (19) 
(iv) PSD of X K-B-G for Prewitt shift operators (see Eqs. 

γ K-B Pre-V -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 4(1 + 2 cos ω 2 ) 2 sin 2 ω 1 -ξ 2 k 2b k (20) γ K-B Pre-H -G (ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 4(1 + 2 cos ω 1 ) 2 sin 2 ω 2 -ξ 2 k 2b k (21) 
Directed vertical, horizontal or diagonal edges occur when a given PSD has its energy concentrated on certain frequency bands or varies only across one single variable (case for gradient and Canny operators). In particular, gradient elds exhibit an innite number of poles along many axes but in the same direction towards:

• frequencies (ω 1 , ω 2 ) ∈ R 2 /ω 1 = acos(ν k ), k = 1, 2, . . . , K for eld X K-B Grad-V -G , • frequencies (ω 1 , ω 2 ) ∈ R 2 /ω 2 = acos(ν k ), k = 1, 2, . . . , K for eld X K-B Grad-H -G and • frequencies (ω 1 , ω 2 ) ∈ R 2 /ω 1 + ω 2 = acos(ν k ), k = 1, . . . , K for eld X K-B Grad-D -G .
K-factor Canny-Gegenbauer elds present strong similarities with their analog gradient elds by construction, but they admit no pole when |ν k | < 1 for any k.

From Proposition 1, only Laplace and Prewitt elds show more complex PSD. However, K-factor Laplace-Gegenbauer elds X K-B Lap -G have no pole (dominant frequency) when the absolute value of every ν k is < 1 and are isotropic up to the mapping: ω i → cos(ω i /2) (same property whatever the direction). The motivation of the following section is the proposal of spatial eld models with richer PSD content in terms of spectral variability as well as limiting the number of poles.

B. Fractionally integrated elds from double indexed Gegenbauer polynomials

For being able to generate textures with parsimonious spectral information, we need to control PSD behavior in specic frequencies of interest. This cannot be achieved straightforwardly when using Denition II-A2. To overcome this limitation, the main contribution of this section is the construction of double indexed spatial multifractional integral models. Denition 6 (K-factor doubly indexed Gegenbauer eld):

Field X(t, s) will be called K-factor Doubly Indexed Gegenbauer (K-DI-G) eld if it satises one of the equations given below: [START_REF] Zachevsky | \Statistics of natural stochastic textures and their application in image denoising[END_REF] where |µ k | 1 and |ν k | 1 for any k = 1, 2, . . . , K; B 1 and B 2 are spatial shift operators chosen conveniently; Z(t, s) is a zero-mean white Gaussian noise and 1 , 2 are positive real valued parameters.

K k=1 1 B -2 1 1l -2µ k B 1 + B 2 1 2 + 2 B -2 2 1l -2ν k B 2 + B 2 2 2 b k X(t, s) = Z(t, s) (22) or K k=1 1 B 2 2 1l -2µ k B 1 + B 2 1 2 + 2 B 2 1 1l -2ν k B 2 + B 2 2 2 b k X(t, s) = Z(t, s)
Eqs. ( 22) and [START_REF] Zachevsky | \Statistics of natural stochastic textures and their application in image denoising[END_REF] show a balance between two Gegenbauer polynomials, the balance being governed by parameters 1 and 2 . When B 1 and B 2 are causal operators (gradient operators for instance), then Eq. ( 22) presents backward and forward shifts whereas Eq. ( 23) highlights only backward shifts.

Synthesis of sample X(t, s) satisfying Eq. ( 22) requires computing:

X(t, s) = K k=1 1 B -2 1 1l -2µ k B 1 + B 2 1 2 + 2 B -2 2 1l -2ν k B 2 + B 2 2 2 -b k Z(t, s) (24)
thus, decomposing the fractional double indexed polynomial as series involving integer powers of B 1 and B 2 (eld Z(t, s) is available only for t, s ∈ Z in the discrete domain framework). For this purpose, we write:

X(t, s) = K k=1 1 B -1 1 + B 1 2 -µ k 2 + 2 B -1 2 + B 2 2 -ν k 2 -b k Z(t, s) (25)
and set, for i = 1, 2,

B i = √ i (B -1 i + B i )/2 (26) 
In this respect, we are concerned by:

X(t, s) = K k=1 B 1 - √ 1 µ k 2 + B 2 - √ 2 ν k 2 -b k Z(t, s) (27) 
which amounts, by noting

µ k = √ 1 µ k , ν k = √ 2 ν k and c k = µ 2 k + ν 2 k , to: X(t, s) = K k=1 c k -2µ k B 1 -2ν k B 2 + B 2 1 + B 2 2 -b k Z(t, s) ( 28 
)
The latter is an extension of the Gegenbauer polynomial introduced in [30, Eqs. ( 1) and ( 18)]. Denote, for k = 1, 2, . . . , K,

X k (t, s) = c k -2µ k B 1 -2ν k B 2 + B 2 1 + B 2 2 -b k X k-1 (t, s) (29) 
with the convention X 0 = Z. The recursive Eq. ( 29) implies X K = X and we have:

Proposition 2: X k (t, s) = lim M,N→+∞ X k,M,N (t, s) with X k,M,N (t, s) = M m,n=0 C b k m,n (µ k , ν k )B m 1 B n 2 X k-1 (t, s) (30) 
where function C b m,n is dened by:

C b m,n (µ, ν) = m/2 p=0 n/2 q=0 (-1) p+q Γ (b + m + n -p -q) Γ (b)p! q! (m -2p)! (n -2q)! × (2µ) m-2p (2ν) n-2q c m+n-p-q+b (31) 
and the Gamma function is given by Eq. ( 13).

Proof: See Appendix A.

At this stage, we should specify B 1 and B 2 in Eq. ( 30) before continuing. When

B 1 = B r 1 Grad-V and B 2 = B r 1 Grad-H ,
we have from Eq. ( 26),

B 1 B 2 Y(t, s) = √ 2 B 1 Y(t, s -r 2 ) + Y(t, s + r 2 ) 2 
thus:

B 1 B 2 Y(t, s) = √ 1 √ 2 4 Y(t -r 1 , s -r 2 ) + Y(t + r 1 , s -r 2 ) +Y(t -r 1 , s + r 2 ) + Y(t + r 1 , s + r 2 )
In practice, computing

B m 1 B n 2 Y(t, s)
consists in recursive applications of operator B 1 B 2 followed by either mcompositions with B 1 or n-applications of B 1 , where = min{m, n}. Textures given in Figure 2 have been obtained by using r 1 = r 2 = 1.

Figure 2 highlights that the doubly indexed polynomials of Eq. ( 22) yield a more powerful texture synthesis framework than the single one given by Eq. ( 9). In order to give a more formal proof of the latter assertion, let us derive the PSD associated with K-DI-G. We have:

Proposition 3: For B 1 = B r 1 Grad-V and B 2 = B r 1
Grad-H , the PSD associated with a K-DI-G given by either Eq. ( 22) or ( 23) is:

γ(ω 1 , ω 2 ) = σ 2 K k=1 2 -2b k K k=1 1 (cos(r 1 ω 1 ) -µ k ) 2 + 2 (cos(r 2 ω 2 ) -ν k ) 2 b k (32) 
Proof: The proof follows from straightforward computations, by taking the moduli of Eqs. ( 22), [START_REF] Zachevsky | \Statistics of natural stochastic textures and their application in image denoising[END_REF] and by replacing in these quantities, B by e ir ω for = 1, 2.

The PSD of Eq. ( 32) shows poles at frequencies

(ω 1 , ω 2 ) = acosµ k r 1 , acosν k r 2
for k = 1, 2, . . . , K. Thus, we can specify specic frequency points associated with energy concentration, which makes K-DI-G a more concise framework for the synthesis of textures with multiple orientated features.

III. Continuous spatial domain fractional order integration models

In this section, t, s are continuous time variables, t, s ∈ R + , R, . . . and X : (t, s) → X(t, s) = X ω (t, s) = X t,s (ω) ∈ R or C is a spatial stochastic eld assumed to be centered in what follows. We recall that a stochastic eld X = (X(•, •)) is Gaussian if the random variable X(t, s) is Gaussian for every couple (t, s) pertaining to the domain of interest. Assuming that X is Gaussian, we can focus on its second-order statistics and since X has been assumed centered, then this eld is entirely characterized by its autocorrelation function. Thus, for synthesizing sample realizations of X, we only need to know the analytic form of this autocorrelation function.

As in previous section (dedicated to discrete domain models), the aim addressed in reference [START_REF] Atto | -stationary texture synthesis from random eld modeling[END_REF] was the derivation of a continuous domain fractional eld framework associated with parsimonious spectral contents. This aim has led [START_REF] Atto | -stationary texture synthesis from random eld modeling[END_REF] to propose a class of generalized fractional Brownian elds, the generalization concerning a model with 1) an arbitrary number of Hurst parameters and 2) an arbitrary number of spectral singularity points. However, the mathematical sense of these generalized fractional Brownian elds remains unspecied at present time. This section proposes a sense to these elds as a main contribution.

Section recalls the construction that has led to generalize fractional Brownian elds and Section shows that the convolution involved in their construction converges in quadratic mean sense.

A. Generalized Fractional Brownian Fields (GFBF) GFBF are associated to spatial domain convolution and modulation operators over a sequence of Fractional Brownian Fields (FBF). Process G H,(u 0 ,v 0 ) is called Modulated Fractional Brownian Field (MFBF) if it can be written in the form:

G H,(u 0 ,v 0 ) (x 1 , x 2 ) = e iu 0 x 1 e iv 0 x 2 F H (x 1 , x 2 ) (33)
where F H is a centered isotropic FBF with autocorrelation

R F H (x 1 , x 2 , y 1 , y 2 ) = σ 2 2 (x 2 1 + x 2 2 ) H + (y 2 1 + y 2 2 ) H -(x 1 -y 1 ) 2 + (x 2 -y 2 ) 2 H (34)
Field G H,(u 0 ,v 0 ) is complex valued and results as the interaction between a stochastic FBF (see rst row of Figure 3) and a deterministic phase term (see second row of Figure 3). Field G H,(u 0 ,v 0 ) is centered and its autocorrelation

R G H,(u,v) (x 1 , x 2 , y 1 , y 2 ) = E[G H,(u,v) (x 1 , x 2 ) G H,(u,v) (y 1 , y 2 )] (35) simplies as R G H,(u 0 ,v 0 ) (x 1 , x 2 , y 1 , y 2 ) = R F H (x 1 , x 2 , y 1 , y 2 )e iu 0 (x 1 -y 1 ) e iv 0 (x 2 -y 2 ) (36)
where R F H (x 1 , x 2 , y 1 , y 2 ) is given by Eq. [START_REF] Bahr | \Inequalities for the rth moment of a sum of random variables, 1 r 2[END_REF]. Thus,

R G H,(u,v) (x 1 , x 2 , y 1 , y 2 ) = σ 2 2 e iu(x 1 -y 1 ) e iv(x 2 -y 2 ) (x 2 1 + x 2 2 ) H +(y 2 1 + y 2 2 ) H -(x 1 -y 1 ) 2 + (x 2 -y 2 ) 2 H (37)
The GFBF is an integral representation involving interactions of several MIFBF: consider two sequences, the rst

H Q = {H 1 , H 2 , . . . , H Q }
composed of Hurst parameters and the second

{(u 1 , v 1 ), (u 2 , v 2 ), . . . , (u Q , v Q )} associated with modulation parameters (poles) of Q in- dependant MIFBF G Hs,(us,vs) s=1,2,...,Q having auto- correlations: R G Hs ,(us ,vs ) s=1,2,...,Q . A GFBF E H Q has X 1 X 2 X 3 X 4 X 5 
Fig. 2. 1 to 5-DI-G elds generated from random selection of µ k , ν k by using Eq. ( 30) with B 1 = B Grad-V and B 2 = B Grad-H dened by Eq. ( 1) and ( 2) respectively. .

H = 0.2 H = 0.5 H = 0.8
||E H 2 || ||E H 3 || ||E H 4 || ||E H 5 || ||E H 6 ||
Fig. 4. GFBF samples E Hq for q = 2, 3, 4, 5, 6. Texture E H 6 includes all features issued from E Hq , q 5, whether these features are visible or not.

been dened in [START_REF] Atto | -stationary texture synthesis from random eld modeling[END_REF] as the stochastic Gaussian process with autocorrelation given by the convolution:

R H Q = Q s=1 R G Hs ,(us ,vs ) (38) 
GFBF E H Q can be seen as the spatial convolution, with respect to spatial variables, of Q independent MIFBF:

E H Q = Q s=1 G Hs,(us,vs) (39) 
and this makes synthesis possible from convolution of samples of MIFBF (see examples of GFBF given by Figure 4). However, this convolution cannot be understood as a standard function operator since otherwise, non-regularity (due to stochasticity) and innite energies (autocorrelation of MIFBF has fractional polynomial form) make straightforward calculus inecient. The following section provides a mathematical sense to the convolution of two MIFBF in terms of integrals associated to kernel based measures.

B. On convolution of MIFBF (to GFBF)

The MIFBF is G H,(u 0 ,v 0 ) (x, y) = e i(u 0 x+v 0 y) F H (x, y), a zero-mean Gaussian process with autocorrelation given by Eq. (37). We want to provide a sense to

G H 1 ,(u 1 ,v 1 ) G H 2 ,(u 2 ,v 2 ) (t, s) = R G H 1 ,(u 1 ,v 1 ) (x, y)G H 2 ,(u 2 ,v 2 ) (t -x, s -y)dµ(x, y)
This sense will be associated to quadratic mean convergence. For the monovariate stochastic process case the complete steps of proof are given in Appendix B. Hereafter, we focus on the specic extension of Appendix B to the multivariate spatial case. The extension will be performed by:

• considering stochastic integrals Y k (t, s) = R G H k ,(u k ,v k ) (x, y) dµ Φ (t,s) (x, y) (40)
• providing a quadratic mean sense to the following convolution of these integrals

Y 1 Y 2 (t, s) = R Y 1 (x, y)Y 2 (t -x, s -y)dxdy
• associating the quadratic mean convergence of

G H 1 ,(u 1 ,v 1 ) G H 2 ,(u 2 ,v 2 ) to that of Y 1 Y 2 from properties of Φ.
The convergence of Y 1 Y 2 will be obtained hereafter by considering in Denition of Eq. ( 40), a separable measure dµ Φ (α,β) (x, y) = φ α (x)φ β (y)dxdy where φ is the function described in Appendix B-A (having suciently fast decay in time and frequency). From this measure and by imposing that φ annihilates at frequencies ±(u k , v k ): φ(±u k ) = φ(±v k ) = 0, we obtain:

1) Field Y(t, s) dened by Eq. ( 40) is a second order stochastic process : Indeed,

R Y (x, y, t, s) = R 4 R G H,(u,v) (x 1 , x 2 , y 1 , y 2 ) dµ Φ (x,y) (x 1 , y 1 )dµ Φ (t,s) (x 2 , y 2 ) = R 4 R G H,(u,v) (x 1 , x 2 , y 1 , y 2 )φ x (x 1 )φ y (y 1 ) φ t (x 2 )φ s (y 2 )dx 1 dx 2 dy 1 dy 2 (41) 
where R G H,(u,v) is given by Eq. ( 37) and (u, v) ∈ {(u 1 , v 1 ), (u 2 , v 2 )}. Let us analyze the 3 additive terms involved by expanding Eq. (37) in Eq. (41) separately. First

R 4 e iu(x 1 -y 1 ) e iv(x 2 -y 2 ) x 2 1 + x 2 2 H φ x (x 1 )φ y (y 1 ) φ t (x 2 )φ s (y 2 )dx 1 dx 2 dy 1 dy 2 = Constant × φ y (u) φ s (v) = Constant × e -iyu e -isv φ(u) φ(v) = 0 (42) Second R 4
e iu(x 1 -y 1 ) e iv(x 2 -y 2 ) y 2 1 + y 2 2 H φ x (x 1 )φ y (y 1 )

φ t (x 2 )φ s (y 2 )dx 1 dx 2 dy 1 dy 2 = Constant × φ x (-u) φ t (-v) = Constant × e -ixu e -itv φ(-u) φ(-v) = 0 (43)
Thus, R Y reduces to the contribution of the third term, that is:

R Y (x, y, t, s) = (44) - R 4
dx 1 dx 2 dy 1 dy 2 e iu(x 1 -y 1 ) e iv(x 2 -y 2 ) φ x (x 1 )φ y (y 1 )φ t (x 2 )φ s (y 2 )

(x 1 -y 1 ) 2 + (x 2 -y 2 ) 2 H (45)
and from a change of variable:

R Y (x, y, t, s)= (46) - R 4 dz 1 dz 2 dy 1 dy 2 e iuz 1 e ivz 2 z 2 1 + z 2 2 H φ x (z 1 + y 1 )φ y (y 1 )φ t (z 2 + y 2 )φ s (y 2 ) (47)
which exists and is nite provided that z 2 φ(z) ∈ L 1 (R) ∪ L 2 (R) (fast decay required for φ). In addition, after some steps of calculus similar to those of Appendix B-B, we derive:

R Y (x, y, t, s) = 1 4π 2 R 2 e i(x-t)ω 1 e i(y-s)ω 2 γ H,(u,v) (ω 1 , ω 2 ) (48) φ(ω 1 ) 2 φ(ω 2 ) 2 dω 1 dω 2 where γ H,(u,v) (ω 1 , ω 2 ) = σ 2 2 1+2H sin(πH)Γ 2 (1 + H) ((ω 1 -u) 2 + (ω 2 -v) 2 ) H+1 (49) 
Thus, R Y (x, y, t, s) = R Y (x -t, y -s) so that stationarity holds true for Y and we can use the following twodimensional version for its autocorrelation:

R Y k (t, s) = 1 4π 2 R 2 e itω 1 e isω 2 γ H,(u,v) (ω 1 , ω 2 ) φ(ω 1 ) 2 φ(ω 2 ) 2 dω 1 dω 2 (50)
associated to the following PSD:

γ Y (ω 1 , ω 2 ) = γ H,(u,v) (ω 1 , ω 2 ) φ(ω 1 ) 2 φ(ω 2 ) 2 (51) 
2) Convolution Y 1 Y 2 is a second order stochastic process: The convolution Y 1 Y 2 being with zero-mean, it is a well-dened second order process if

R Y 1 R Y 2 (x 1 , x 2 , y 1 , y 2 )
exists and is nite for every x 1 , x 2 , y 1 , y 2 ∈ R. Indeed, in this case:

E [Y 1 Y 2 (x 1 , x 2 ) Y 1 Y 2 (y 1 , y 2 )] = E R 2 Y 1 (x, y)Y 2 (x 1 -x, x 2 -y)dxdy R 2 Y 1 (t, s)Y 2 (y 1 -t, y 2 -s)dtds = R 4 dxdydtdsE[Y 1 (x, y)Y 1 (t, s)] E[Y 2 (x 1 -x, x 2 -y)Y 2 (y 1 -t, y 2 -s)] = R 4 dxdydtdsR Y 1 (x, y, t, s) R Y 2 (x 1 -x, x 2 -y, y 1 -t, y 2 -s) R Y 1 R Y 2 (x 1 , x 2 , y 1 , y 2 ) (52)
The existence of the convolution R Y 1 R Y 2 of autocorrelation functions is thus the main criteria for providing a sense to the existence of Y 1 Y 2 . Since Y 1 and Y 2 are stationary (see Section III-B1), we can focus on the two-dimensional versions of their autocorrelations. The problem then becomes the existence of:

R Y 1 R Y 2 (x, y) = R 2 R Y 1 (t, s) R Y 2 (x-t, s-y)dtds (53)
where R Y k is given by Eq. (50). To solve this problem, we thus impose, in addition to annihilating frequencies ±(u k , v k ), that φ is well localized in such a way that γ Y dened by Eq. (51) belongs to L 1 (R 2 ) ∩ L 2 (R 2 ). In this respect, both R Y 1 and R Y 2 pertain to L 1 (R 2 )∩L 2 (R 2 ) and we can conclude that Y 1 Y 2 is a second order stochastic eld that converges in quadratic mean.

Moreover, we have from Eq. ( 53):

γ Y 1 Y 2 (ω 1 , ω 2 ) = γ Y 1 (ω 1 , ω 2 ) × γ Y 2 (ω 1 , ω 2 ) = γ H 1 ,(u 1 ,v 1 ) (ω 1 , ω 2 ) × γ H 2 ,(u 2 ,v 2 ) (ω 1 , ω 2 ) × φ(ω 1 ) 4 × φ(ω 2 ) 4 (54) 
The quadratic mean sense of

G H 1 ,(u 1 ,v 1 ) G H 2 ,(u 2 ,v 2 )
follows from the fact that we can provide a sequence

φ [n] t n
(of wavelets for instance) where every φ

[n] t ∈ L 1 (R)∩L 2 (R)
which converges to a Dirac distribution: the result follows as a limit case and makes PSD association to G H 1 ,(u 1 ,v 1 ) G H 2 ,(u 2 ,v 2 ) as (set φ = 1 in Eq. ( 54)):

γ G H 1 ,(u 1 ,v 1 ) G H 2 ,(u 2 ,v 2 ) (ω 1 , ω 2 ) = σ 2 1 2 1+2H 1 sin(πH 1 )Γ 2 (1 + H 1 ) ((ω 1 -u 1 ) 2 + (ω 2 -v 1 ) 2 ) H 1 +1 × σ 2 2 2 1+2H 2 sin(πH 2 )Γ 2 (1 + H 2 ) ((ω 1 -u 2 ) 2 + (ω 2 -v 2 ) 2 ) H 2 +1 (55)
Moreover, by iterating convolutions, we derive the PSD associated with a GFBF:

γ E H Q (ω 1 , ω 2 ) = Q k=1 σ 2 k 2 1+2H k sin(πH k )Γ 2 (1 + H k ) Q k=1 (ω 1 -u k ) 2 + (ω 2 -v k ) 2 H k +1 (56) 
PSD which highlights Q spectral poles when all couples (u k , v k ) for k = 1, 2, . . . Q are dierent.

IV. Multi-fractional PSD pole identification

Fractionally integrated elds presented in Sections II and III share one common property: they have PSD admitting many frequency points associated with innite variances called poles. In practical applications requiring multi-fractional model selection, determining the number of interacting elds requires counting the number of frequency points with very high energy (exponential growth near the pole). Several solutions can be investigated for this problem. The easiest one involves selecting local maxima of the PSD and aecting them to poles. This has many drawbacks in terms of under-and over-determination (not any local maximum is eectively a pole and some poles can be squeezed when they are located near a pole with very high exponential growth).

We propose hereafter, after a long run search, a solution based on Convolutional Neural Network (CNN). The experimental setup concerns associating an observed multi-fractional GFBF 1 eld to a category indexed by Q ∈ {1, 2, . . .} corresponding to the number Q of poles used for sample generations.

The database generated for experimental tests contains 1200 images per specied value of Q: thus a total of 4800 GFBF images when the number of poles pertains to the category labels {1, 2, 3, 4}. For any category, poles and Hurst parameters are generated randomly, following the gamma distribution so as to impose a signicant energy concentration in ]0, π/2[×]0, π/2[ for poles and ]0, 1/2[ for Hurst exponents. An overview of this database 2 , denoted D hereafter, is given by Figure 5.

A. Direct learning of multi-fractional texture features

Because multi-fractional interactions are obtained by convolution operators (ltering white noise so as to impose a desired structure), deep CNN architectures seems 1 GFBF are chosen because their synthesis on the basis of fast Fourier transform requires less computational cost than the deluge of Γ computations for synthesis of K-DI-G elds. 2 The complete database is available for download at: http://am. atto.free.fr/AlbumTexturesGFBF.htm.

G H 1 -→ = E H 1 E H 1-• G H 1 G H 2 -→ = E H 2 E H 2-• E H 2 G H 3 -→ = E H 3 E H 3-• E H 3 G H 4 -→ = E H 4 E H 4-•
Fig. 5. Sample elements of GFBF database D, where every E H Q is associated with a number Q of distinct poles.

adapted per nature 3 to their discrimination. In this respect, we have rst investigated several existing architectures that are trained on millions of images to discriminate textures in D after retraining only the last convolutional layer. But none of them outruns more than 16% of good classication, the architecture achieving these 16% being \AlexNet" CNN [START_REF] Krizhevsky | classication with deep convolutional neural networks[END_REF] (trained on ImageNet [START_REF] Deng | A large-scale hierarchical image database[END_REF], a database with 1000 categories and 1.2 million training images) which is known to yield more than 90% accuracy in standard image classication tasks! These poor results are due to that multi-fractional textures are not objects with deterministic geometries: for the latter, feature recognition implies identifying similar structures up to elementary transformations whereas multifractional textures can present similar structures (Figure 5 shows almost more visual inter-category similarities than intra-category similarities), while having a dierent number of interactions: the issue is not thus a standard pattern recognition, but counting the number of visible pseudo-patterns.

We have thus been forced to retrain full CNNs by varying dierent features of the network. The most relevant architecture is still very close to [START_REF] Krizhevsky | classication with deep convolutional neural networks[END_REF], but with a signicant improvement of convolution lter lengths to ensure the results given in Table I. These results are unsatisfactory and the conclusion has been seeking multifractional feature interactions from an indirect learning (see next section).

B. Indirect learning from PSD as inputs

As highlighted in the previous section, we have to force learning in not focusing on a recognized fractional feature since the same feature can appear in textures pertaining to dierent categories. For this purpose, we propose to perform learning of multi-fractional interactions from PSD features. Table II presents the best relevant results derived from the CNN described in Appendix C.

It follows from Table II that counting the number of multi-fractional interactions can be performed with good performance from CNN based approach associated with spectral inputs. A study of the rst convolutional layer of the CNN shows specializations in 3 main convolution categories (see Figure 6):

• very selective lters in frequency and fast decay near the frequency selected (40% of rst level convolution lters), • selective lters in compact frequency blocks (rounded and wide support near the central frequency, 30% of rst level convolution lters), • multiple frequency selection lters (30% of rst level convolution lters). 3 Because they involve many layers of convolution lters and several non-linear transfer functions Note that from Table II, increasing the number of interactions leads to a signicant loss of performance. The reason is linked to the spectral content estimated from GFBF textures: 4 interactions means that 4 frequency points are associated with innite variance (energy for zero-mean eld) in ]0, π/2[×]0, π/2[. In addition, because of the exponential decays near these singular points, certain poles dominate others (the latter become almost nonvisible in spectra as illustrated in Figure 7). Moreover, Figure 7 highlights that when the number of interactions is large, then:

• only few poles (bright values dominating their surrounding neighborhoods) are `visible' in the PSD, • the overlays of poles yield bright intersections that can be confused with poles.

V. conclusion

The paper has shown that fractional order stochastic integration is a powerful tool for modeling with few parameters, image edge and texture information. Two categories of fractional eld models corresponding to discrete and continuous domain integrals have been studied.

For discrete domain modeling, the main contribution proposed by the paper is the derivation of a category of elds where any eld is associated with an arbitrary number of poles having their location controlled by a double indexed Gegenbauer polynomial.

For continuous domain modeling, the main contribution proposed by the paper is the proposal of a mathematical framework that provides a concise sense to convolutions of modulated fractional Brownian elds, any term involved in the convolution having the role of creating a spectral pole.

Because both discrete and continuous domain models can admit a pre-specied number of spectral poles, they are multi-fractional (a Holder exponent is associated with every pole) and this property raises the issue of counting the number of poles, given an image observation and for model selection purpose.

The paper has then proposed a third contribution consisting in providing a deep neural network architecture involving spectral information inputs and large size convolution lters at rst network layers so as to make pole identication possible. This network is shown ecient for discriminating up to 4 neighbor poles, which is a good performance in a tricky problem: every pole is a spectral point associated with an innite theoretical variance and its presence aects signicantly the observability of other poles located in a close neighborhood.

Appendix A Spatial Gegenbauer Fields

The problem expressed by Eq. ( 28) is expanding c -2µT -2νS + T 2 + S 2 -λ as a discrete series involv- Filters with multiple selection of frequencies Fig. 6. First convolutional layer of the CNN network described in C when learning has been addressed from GFBF PSD features. ing integer powers of T and S. This can be done by noting that the Gamma function given by Eq. ( 13) has equivalent expression (change of variable u → c -2µT -2νS + T 2 + S 2 x):

E H 1 E H 2 E H 3 E H 4 E H 5 E H 6 E H 7 E H 8 E H 9 E H 10 E H 1 E H 2 E H 3 E H 4 E H 5 E H 6 E H 7 E H 8 E H 9 E H 10 γ E H 1 γ E H 2 γ E H 3 γ E H 4 γ E H 5 γ E H 6 γ E H 7 γ E H 8 γ E H 9 γ E H 10
Γ (λ) = c -2µT -2νS + T 2 + S 2 λ × +∞ 0 e -(c-2µT -2νS+T 2 +S 2 )x x λ-1 dx (57)
so that we can write:

c -2µT -2νS + T 2 + S 2 -λ = 1 Γ (λ) +∞ 0 e -cx x λ-1 e (2µT-T 2 )x e (2νS-S 2 )x dx
The latter can be written in terms of the Hermite-Kamp e de F eriet polynomials [START_REF] Appell | \Fonctions hyperg eomtriques et hypersph eriques polynômes d'hermite[END_REF]:

c -2µT -2νS + T 2 + S 2 -λ = 1 Γ (λ) ∞ m=0 ∞ n=0 1 m! n! T m S n × +∞ 0 e -cx x λ-1 H m (2µx, -x)H n (2νx, -x)dx
where

H k (x, y) = k! k/2 j=0 x k-2j y j (k -2j)! j! (58) Thus c -2µT -2νS + T 2 + S 2 -λ = ∞ m=0 ∞ n=0 C λ m,n (µ, ν)T m S n (59) 
with

C λ m,n (µ, ν) = 1 m! n! 1 c λ+m+n 1 Γ (λ) × +∞ 0 e -x x λ-1 H m (2µx, -cx)H n (2νx, -cx)dx (60)
Now, by using Eq. ( 58), we derive that:

+∞ 0 e -x x λ-1 H m (2µx, -cx)H n (2νx, -cx)dx = m! n! m/2 p=0 n/2 q=0 (2µ) m-2p (2ν) n-2q (-c) p+q (m -2p)! (n -2q)! p! q! × +∞ 0 e -x
x λ+m-p+n-q-1 dx which, by noting that

+∞ 0 e -x x λ+m-p+n-q-1 dx = Γ (λ + m + n -p -q)
leads us to conclude that Eq. ( 60) is equivalent to:

C λ m,n (µ, ν) = 1 c λ+m+n 1 Γ (λ) × m/2 p=0 n/2 q=0 Γ (λ + m + n -p -q)× (-1) p+q c p+q (2µ) m-2p (2ν) n-2q p! q! (m -2p)! (n -2q)! (61) 
In particular, when b=1, we note C 1 m,n C m,n , which reduces to:

C m,n (µ, ν)= 1 c 1+m+n × m/2 p=0 n/2 q=0 (m + n -p -q)! × (-1) p+q c p+q (2µ) m-2p (2ν) n-2q p! q! (m -2p)! (n -2q)! (62) 
since Γ (1) = 1 and Γ (k + 1) = k! when k is a non-negative integer.

Appendix B On convolutions of modulated fractional

Brownian motions

A. Context Consider a stochastic zero-mean process:

X : (t, λ) ∈ R×Ω or Z×Ω -→ X(t, ω) = X(t, λ) = X t (λ) = X λ (t) X(t) ∈ R.
Assuming that X is a second-order stochastic means, for all t:

X(t) 2 L 2 (Ω) = E |X(t)| 2 = Ω |X(t)| 2 dP(λ) < ∞ ( 63 
)
where Ω = R in the following and P is a probability measure on elements of B(R). Under property given by Eq. (63), functions [mean]: t → EX(t) and [autocorrelation] (t, s) → E[X(t) X(s)] = R(t, s) are well-dened and real valued.

For a second-order stochastic process, continuity (that is X(t) → X(s) as t → s) is related to the so-called quadratic mean sense (use of the norm associated to L 2 (Ω)) and consists in:

lim t→s X(t) -X(s) 2 L 2 (Ω) = lim t→s E|X(t) -X(s)| 2 = 0
A consequence of using the quadratic norm is the following: X is continuous (in quadratic mean) if functions t → EX(t) and (t, s) → E[X(t) X(s)] = R(t, s) are continuous (standard function continuity). We assume that X is with zero-mean in what follows.

A second-order zero-mean stochastic Gaussian process is completely specied by its autocorrelation function. For the Fractional Brownian Motion (FBM) denoted X H with Hurst exponent/parameter H, 0 < H < 1, this autocorrelation function is given by:

R H (t, s) = σ 2 2 |t| 2H + |s| 2H -|t -s| 2H (64) 
The FBM Modulation (FBMM) by a deterministic exponential wave, denoted X H,u 0 (x) = e iu 0 x X H (x) is a Gaussian process with zero-mean (as a consequence of zero-mean assumption on X H ) and autocorrelation:

R X H,u 0 (t, s) = E[X H,u 0 (t) X H,u 0 (s)] = e iu 0 (t-s) R H (t, s) (65) 
where R H is given by Eq. (64).

Consider now two independent FBMM X H 1 ,u 1 and X H 2 ,u 2 . We want to provide a quadratic mean sense to the following convolution operator between FBMM:

X H 1 ,u 1 X H 2 ,u 2 (t) ? = R X H 1 ,u 1 (x)X H 2 ,u 2 (t -x)dµ(x) (66)
In practice, if we assume that µ is the Lebesgue's measure, it would have been suced that R X H 1 ,u 1 and R X H 2 ,u 2 pertain to L 2 (R 2 ). However, this is not true for FBMM as it can be observed by taking Eq. (64) and Eq. (65) into account. Nevertheless, we can go beyond these functional limitations by selecting an appropriate parametric measure that transforms

X H 1 ,u 1 and X H 2 ,u 2 into Y 1 and Y 2 : Y k (t) R X H k ,u k (x) dµ t (x) (67) 
for k = 1, 2 and with convergence of the latter integrals in quadratic mean sense. Note that for the convergence of Eq. (67) to hold true, it suces to provide a kernel φ satisfying

• φ ∈ L 1 (R) ∪ L 2 (R), • (1 + x 2 )φ(x) ∈ L 1 (R) ∪ L 2 (R),
and let dµ t (x) = φ t (x)dx where φ t (x) = φ(x -λt). For such a measure,

R 2 e iu 0 (x-y) |x| 2H k φ t (x)φ s (y)dxdy and R 2 e iu 0 (x-y) |x -y| 2H k φ t (x)φ s (y)dxdy
exists and are nite, thus,

Y k (t) 2 L 2 (Ω) R X H k ,u k (x) dµ t (x) 2 L 2 (Ω) = R 2 R X H k ,u k (x, y)φ t (x)φ s (y)dxdy < ∞
in case where R X H k ,u k has the form given by Eq. ( 65). The quadratic mean sense of X H k ,u k follows from this last property as a limit case, given that we can provide sequence φ [n] t n such as wavelets where every φ 

[n] t ∈ L 1 (R) ∩ L 2 (R)
: φ(u k ) = φ(-u k ) = 0
where we have used the following denition of the Fourier transform:

φ(ω) = R e -iωx φ(x)dx (68) Consider the autocorrelation function R Y k of Y k : R Y k (t, s) = R 2 R X H k ,u k (x, y)φ t (x)φ s (y)dxdy = σ 2 2 R 2 |x| 2H k + |y| 2H k -|x -y| 2H k
e iu k (x-y) φ t (x)φ s (y)dxdy (69) Under frequency ±u k blocking by φ, we obtain:

R Y k (t, s) = - σ 2 2 R 2 e iu k (x-y) |x -y| 2H k φ t (x)φ s (y)dxdy
This integral can be re-written, from a change of variable:

R Y k (t, s) = - σ 2 2 R 2 e iu k z |z| 2H k φ t (z + y)φ s (y)dzdy
By decomposing |z| 2H k with respect to [START_REF] Bahr | \Inequalities for the rth moment of a sum of random variables, 1 r 2[END_REF], we deduce:

R Y k (t, s) = - σ 2 2 Γ (2H + 1) sin(πH) π × R 2 e iu k z R 1 -cos(zξ) |ξ| 2H k +1 dξ φ t (z + y)φ s ( 
y)dzdy (70) and by noting:

γ H (ξ) = σ 2 Γ (2H + 1) sin(πH) |ξ| 2H+1 (71) we derive: R Y k (t, s) = - 1 2π R γ(ξ)dξ× R 2 e iu k z (1 -cos(zξ)) φ t (z + y)φ s (y)dzdy (72)
By taking again into account, the kernel φ frequency ±u k blocking property, we have:

R 2 e iu k z φ t (z+y)φ s (y)dzdy = e iu k (t-s) φ(-u k ) φ(u k ) = 0
and thus:

R Y k (t, s) = 1 2π × R dξγ(ξ) R 2 e iu k z cos(zξ)φ t (z + y)φ s (y)dzdy (73) which is equivalent to R Y k (t, s) = 1 2π × R dξγ(ξ) R 2 e iu k z e izξ + e -izξ 2 φ t (z + y)φ s (y)dzdy
The latter corresponds, after some Fourier based calculus:

R Y k (t, s) = 1 2π R dξγ(ξ) 1 2 × φ t (-ξ -u k ) φ s (-ξ -u k ) + φ t (ξ -u k ) φ s (ξ -u k ) thus, R Y k (t, s) = 1 2π R γ(ξ + u k ) φ t (ξ) φ s (ξ)dξ
Now, since we have assumed that t in notation φ t denotes a translation parameter, then: φ t (ξ) = e -ictξ φ(ξ) and φ s (ξ) = e -icsξ φ(ξ) so that: 

R Y k (t, s) = 1 2π R γ(ξ + u k )e -ic
γ Y k (ξ) = γ(ξ -u k ) φ(ξ) 2 
Assuming that ideal φ behaves approximately as a Dirac distribution (limit case as discussed at the end of the previous section), we can associate the following PSD to X k :

γ X k (ξ) = γ(ξ -u k ) = σ 2 Γ (2H + 1) sin(πH) |ξ -u k | 2H+1 C. Convolution between FBMM X H 1 ,u 1 , X H 2 ,u 2 via characterization of Y 1 Y 2
The sole condition required for the convolution

R Y 1 (x)Y 2 (t -x)dx Y 1 Y 2 (t)
4 For a zero-mean second order stochastic process X, stationarity (second-order or Wide Sense Stationarity, WSS) holds true if: R X (t, s) = R X (t -s, 0) ≡ R X (t -s = x) to make sense as the denition of a second order stochastic process Y 1 Y 2 is the existence of:

E[Y 1 (x)Y 2 (t -x)Y 1 (y)Y 2 (s -y)]dxdy = E[Y 1 (x)Y 1 (y)]E[Y 2 (t -x)Y 2 (s -y)]dxdy = R Y 1 (x, y)R Y 2 (t -x, s -y)dxdy = R Y 1 R Y 2 (t, s) (74) If R Y 1 , R Y 2 ∈ L 2 (R 2 )
, then this condition is satised. The latter is not very restrictive since φ can be chosen welllocalized in time frequency.

Furthermore, under the stationarity induced by φmeasure on Y 1 , Y 2 , then:

• from the change of variable t ← t -s and x ← x -y, we can write:

R Y 1 Y 2 (t) = R Y 1 (x)R Y 2 (t -x)dx
• and, provided that R Y 1 Y 2 obtained just above admits a Fourier transform, we can deduce the PSD

γ Y 1 Y 2 of Y 1 Y 2 as: γ Y 1 Y 2 (ξ) = R Y 1 R Y 2 (t)e -iξt dt = γ Y 1 (ξ)γ Y 2 (ξ) = γ(ξ -u 1 )γ(ξ -u 2 ) φ(ξ) 4 (75) 
Finally, the PSD associated 5 to X H 1 ,u 1 X H 2 ,u 2 via kernel φ is:

γ X H 1 ,u 1 X H 2 ,u 2 (ξ) = γ(ξ -u 1 )γ(ξ -u 2 ) = γ X H 1 ,u 1 (ξ) × γ X H 2 ,u 2 (ξ) = σ 2 1 σ 2 2 Γ (2H 1 + 1)Γ (2H 2 + 1) sin(πH 1 ) sin(πH 2 ) |ξ -u 1 | 2H 1 +1 |ξ -u 2 | 2H 2 +1
Appendix C Convolutional Neural Network (CNN) architecture for multi-fractional pole identification

The CNN proposed for multi-fractional interaction count is presented in Table III. This CNN is characterized by a rst convolution layer with long-size impulse response lters so as to possibly allows for a concise frequency selection and surprisingly, up to 40% of the lters have been specialized (starting from a white noise initialization) in frequency selection (see Figure 6).

In the CNN of Table III, sizes of convolution lters have been decreased progressively, from layer to layer, in order 5 Deduction must be understood as a limit case involving an L 1 (R) ∩ L 2 (R) sequence φ [n] t n that converges to a Dirac distribution, thus φ [n] t n tends to constant function 1.

to limit the overall CNN complexity. From Table III, we have the following correspondences:

• Rectied Linear Unit (ReLU), function

x → (x) + =

x if x > 0 0 if x 0

• Normalization (cross-channel): where N is the number of kernels used in the layer and n is the normalization neighborhood size (same spatial position, n adjacent channels); • Softmax:

X = (X i ) n i=1 → e X i / n i=1 e X i n i=1
this loss function is used for the prediction of a single category between Q mutually exclusive Q-fractional categories.
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 20 and (21), respectively):

Fig. 3 .

 3 Fig. 3. Examples of MFBF samples. Row 1: isotropic FBF F H associated with dierent Hurst parameters H.. Row 2: phase terms of G H,(u 0 ,v 0 ) .

  Selective filters in frequency (fast decay)Selective filters in frequency (slow decay)

Fig. 7 .

 7 Fig. 7. Curse of power for GFBF E H Q associated with PSD γ E H Q : PSD is displayed as log(1+log(1+WP Spectrum)) to allow observing some poles. But when the number of interactions is high, only the few dominant poles are visible in the PSD! [Sizes] / Input GFBF: 4092×4092 ; GFBF PSD: 1024×1024 ; Supports displayed: 64 × 64 -→ [0, π/16] × [0, π/16].

x m → y m = x

  

  . PSD association to FBMM X H k ,u k via that of Y k In the following, we assume that the following property holds true for k=1, 2:[Blocking frequency ±u k ] function φ introduced in section above satises at the specic real values ±u k

and parameterized by an upper index n which makes them converge to Dirac distributions. B

  (t-s)ξ φ(ξ) ∞ for some η > 0. In this case, Y k is a stationary4 stochastic process with autocorrelation in the reduced onedimensional form:

			2	dξ
	and nally:		
	R Y k (t) =	1 2π R	γ(ξ -u k ) φ(ξ)

R Y k (t, s) = 1 2π R γ(ξ -u k )e ic(t-s)ξ φ(ξ) 2 which converges provided that sup |ξ-u k | η φ(ξ)/ξ < 2 e ictξ dξ

and associated with PSD (derived from inverse Fourier identication in the latter form):

Test confusion matrix from a direct learning: average retrieval per texture category and average inter-category confusion (in %). The D 3 database is composed by 3 GFBF categories (1800 textures for training, 1800 for learning). The D 4 database is composed by 4 GFBF categories (2400 textures for training, 2400 for learning). The CNN used is described in Appendix C.