Interval observer for LPV systems: Application to vehicle lateral dynamics
Sara Ifqir, Naima Ait Oufroukh, Dalil Ichalal, Saïd Mammar

To cite this version:
Sara Ifqir, Naima Ait Oufroukh, Dalil Ichalal, Saïd Mammar. Interval observer for LPV systems: Application to vehicle lateral dynamics. 20th World Congress of the International Federation of Automatic Control, Jul 2017, Toulouse, France. pp.7572–7577, 10.1016/j.ifacol.2017.08.995. hal-01629342

HAL Id: hal-01629342
https://hal.science/hal-01629342
Submitted on 29 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract: This paper presents a new method for guaranteed and robust estimation of sideslip angle and lateral tire forces with consideration of cornering stiffness variations resulting from changes in tire/road and driving conditions. An interval LPV observer with both measurable and unmeasurable time-varying parameters is proposed. The longitudinal velocity is treated as the online measured time-varying parameter and the cornering stiffness at front and rear tires are assumed to be unknown but bounded with a priori known bounds. The obtained results are no more punctual values but a set of acceptable values. The simulation is based on experimental data in order to prove the effectiveness of the proposed observers.

Keywords: Interval observer, uncertain systems, robustness, positive systems, eigenvalue assignment, state estimation, vehicle lateral dynamics.

1. INTRODUCTION

Accurate knowledge of state variables such as sideslip angle and tire forces is essential to improve the safety, handling, performance and comfort of vehicles. However, the complexity of the technical implementation and cost prohibitive for the installation of sensors to measure these important data make their integration into standard vehicles an unfeasible solution. Therefore, these variables must be estimated using observers and measurements from standard sensors such as gyro, accelerometer, etc.

In the literature, several studies have addressed the design of classic observers to estimate the vehicle lateral dynamic states using different approaches. For example, Luenberger observer, Kalman Filter (Venhouwens and Naa (1999)), Extended Kalman filter (Satria and Best (2005)), Unknown input proportional-integral observer (Mammar et al. (2006)) and sliding mode observer (Stéphant et al. (2007)). Most of these studies have been based on the assumption that the cornering stiffness parameters are constant. This assumption is verified only when the vehicle is operating in the linear region of lateral forces (Fig. 2) and the road conditions are nominal. However, when the road friction changes, the nonlinear region is generally reached. Consequently, the vehicle approaches to its operational limit conditions and its response to the driver’s inputs becomes less responsive making these parameters as an obstacle in developing a high performance estimator.

In (M’sirdi et al. (2005)), a sliding mode observer (SMO) has been used to identify the tire/road parameters. It is one of the popular robust approaches, in fact, the sliding surface ensures the robustness of the parameter variations. However, the main disadvantage of the sliding mode technique is the undesirable chattering phenomenon (Utkin et al. (2009)). Another popular approach is presented in (Hiraoka et al. (2004)) using adaptive observer. This method suffers from a significant disadvantage that is the existence of solution satisfying the sufficient conditions is not always guaranteed. Furthermore, an accurate estimate of the parameters requires that the system inputs to satisfy the conditions of persistent excitation. In (Ray (1997)), a extended Kalman-Bucy filtering (EKBF) is used to estimate lateral forces, which are treated as random variables. This method allows to achieve precise parameter estimates, but requires accurate knowledge of the model and noise statistics.

In the last decades, the development of the interval observer (Gonzé et al. (2000), Rapaport and Harmand (2002)) represent an alternative technique for robust estimation in the presence of parameter uncertainties, unknown inputs or measurement disturbances. It becomes, a popular successful robust approach especially in biotechnological domain (Rapaport and Dochain (2005), Meslem et al. (2008)). Note that, interval observers can be defined as a pair of estimators based on Luenberger structure which provide a guaranteed bounds covering all admissible trajectories of system, using a priori known bounds on uncertain parameters and/or exogenous disturbances. The synthesis of these observers often uses an additional assumptions to prove the stability of the estimated bounds, the monotony and cooperativity (Smith (2008)). These properties keep the partial order between lower and upper trajectories.

Several interval observers are proposed in the literature. For instance, in Rami et al. (2008), Bolajraf et al. (2010) and Rami et al. (2013), interval observers for linear uncertain systems are presented. The necessary and sufficient conditions have been formulated in terms of linear programming. The case of the LPV and nonlinear systems
are treated in Raïssi et al. (2010), Efimov et al. (2012) and Efimov et al. (2013) using the Lyapunov theory and linear matrix inequalities (LMIs). In this paper, an interval observer for LPV systems which contain unmeasured and measured uncertain parameters is proposed. The observer is based on a robust pole assignment depending on the parameter variation.

The present paper is organized as follows. Some preliminaries are given in section 2. In section 3, we present the uncertain LPV system of the vehicle lateral dynamics. The section 4 is devoted to the main result. The Experimental results are provided in section 5. A conclusion is drawn in section 6 and end the technical note.

2. PRELIMINARIES

The objective of this section is to provide some notations and basic definitions that are used throughout the paper.

- A vector with null components is denoted by 0.
- The absolute value of \(x \) is denoted by \(|x| \).
- The norm \(L_\infty \) of \(x \) is denoted by \(\|x\| \).
- The left and right endpoints of an interval \([x^- , x^+]\) (resp. \([M^- , M^+]\)) such as \(x = [x^-, x^+] \) (resp. \(M = [M^-, M^+] \)).
- All the inequalities must be interpreted element wise.
- Let a vector \(x \in \mathbb{R}^n \) or a matrix \(A \in \mathbb{R}^{n \times n} \), one denotes \(\overline{x} = \max \{0, x\} \), \(\underline{x} = \overline{x} - x \) or \(\overline{A} = \max \{0, A\} \), \(\underline{A} = \overline{A} - A \).
- The eigenvalues of a matrix \(A \) are denoted \(\lambda \).
- A real matrix \(A \) is called Hurwitz if all its eigenvalues have strictly negative real part \(\Re(\lambda < 0) \).
- A real matrix \(A \) is called Metzler if all its elements outside the main diagonal are positive \((a_{ij} \geq 0, \forall i \neq j) \).
- A continuous-time linear system is cooperative if its state matrix \(A \) is a Metzler matrix.

Lemma 1 (Gouzé et al. (2000)) For a Metzler matrix \(A \), the cooperative system:

\[
\dot{x}(t) = Ax(t) + d(t)
\]

with \(x \in \mathbb{R}^n \) and \(d : \mathbb{R} \rightarrow \mathbb{R}_n \) is said to be positive if \(x(0) > 0 \) then \(x(t) > 0 \), \(\forall t > 0 \).

Lemma 2 (Efimov et al. (2012)) Let \(x \in [x^-, x^+] \) be a variable vector, then for a variable matrix \(\Delta A \in \mathbb{R}^{n \times n} \) such as \(\Delta A^- \leq \Delta A \leq \Delta A^+ \) for some \(\Delta A^- , \Delta A^+ \in \mathbb{R}^{n \times n} \), then

\[
\Delta A^+ x^+ - \Delta A^+ x^- - \Delta A^- x^+ + \Delta A^- x^- \leq \Delta A x \leq \Delta A^+ x^+ - \Delta A^+ x^- - \Delta A^- x^+ + \Delta A^- x^- .
\]

3. VEHICLE LATERAL MODEL

Vehicle lateral dynamics could be modeled by a bicycle model which a two degree of freedom (2-DOF) vehicle model with sideslip angle and yaw rate as the states. The dynamics equations can be represented by (Rajamani (2011)):

\[
\begin{align*}
mv_y (\beta + r) &= F_{yf} + F_{yr} \\
I_x \dot{r} &= l_f F_{yf} - l_r F_{yr}
\end{align*}
\]

where \(m \), \(I_x \), \(l_r \), \(l_f \) denote respectively the mass of the vehicle, the yaw moment and the distances from the rear

and the front axle to the center of gravity. \(v_z \) is a time-varying longitudinal velocity, \(\beta \) is the sideslip angle of the vehicle and \(r \) is the yaw rate. \(F_{yr} \) and \(F_{yf} \) are the lateral rear and front forces respectively.

The nonlinear forces \(F_{yf} \) and \(F_{yr} \) are usually functions of the wheel sideslip angle and wheel longitudinal slip (Dugoff et al. (1970), Pacejka and Bakker (1991), Burkhardt (1993), Kiencke and Nielsen (2000)). Using Pacejka’s magic formula (Pacejka and Bakker (1991)), the lateral forces are given by:

\[
F_{yi} = D_i \sin(\zeta \beta_i (1 - E_i \alpha_i + E_i \tan^{-1}(B_i \alpha_i)))
\]

where \(i \in \{r, f\} \) denotes rear and front of the vehicle. \(D_i, C_i, B_i \) and \(E_i \) are the characteristic constants of the tires. \(\alpha_f \) and \(\alpha_r \) are respectively the front and rear sideslip angles of the tires expressed by (Cheng et al. (2011)):

\[
\begin{align*}
\alpha_f &= \delta_f - \beta - \tan^{-1}(\frac{f_{yf}}{v_z r_c}) \\
\alpha_r &= -\beta + \tan^{-1}(\frac{f_{yr}}{v_z r_c})
\end{align*}
\]

For small variations of the sideslip angle \((\leq 8^\circ) \), (4) may be simplified as follows:

\[
\begin{align*}
\alpha_f &= \delta_f - \beta - \frac{f_{yf}}{v_z r_c} \\
\alpha_r &= -\beta + \frac{f_{yr}}{v_z r_c}
\end{align*}
\]

\(F_{yf} \) and \(F_{yr} \) are nonlinear forces but in this work the forces are considered linear with respect to the sideslip angles of the tires (linear approximation of (3)):

\[
\begin{align*}
F_{yf} &= c_f \alpha_f \\
F_{yr} &= c_r \alpha_r
\end{align*}
\]

\(c_f \) and \(c_r \) denote respectively the cornering stiffness of front and rear tires and they correspond to the slope at the origin (Fig. 2). These parameters are closely related to road friction. If road friction changes or if the nonlinear tire region is reached, cornering stiffness varies. Consequently, we consider in this study that the cornering stiffness in (6) are expressed as a linear part (denoted \(c_0 \)) and an uncertainty term (denoted \(\Delta c_i \) assumed to be unknown but bounded with a priori known bounds (Fig. 2)):

\[
\begin{align*}
F_{yf} &= (c_{f_0} + \Delta c_f) \alpha_f \\
F_{yr} &= (c_{r_0} + \Delta c_r) \alpha_r
\end{align*}
\]

Gathering equations (2), (5) and (6) leads to the following model:
Fig. 2. Pacejka lateral force model characteristics.
\[
\dot{x}(t) = \left(A_0(\rho(t)) + \Delta A(\xi(t)) \right)x(t) + B(\rho(t),\xi(t))u(t) \\
y(t) = Cx(t) + e(t)
\]

The state vector \(x(t)\) comprises sideslip angle and yaw rate \(x(t) = [\beta \ \tau]^T\). \(y(t)\) is the measurable output with an observation matrix \(C = [0 \ 1]\) and a measurement noise \(e(t)\). The input of the system is the steering angle \(\delta_f\), \(\rho(t)\) and \(\xi(t)\) represent respectively the measurable and unmeasurable scheduling parameters, where \(\rho(t) = \begin{bmatrix} 1 & \frac{1}{v_x} \end{bmatrix}^T\) and \(\xi(t) = [\Delta c_f \ \Delta c_r]^T \in \Xi\) is the vector of uncertain parameters with a known interval \(\Xi\) given by:
\[
\Xi = \begin{bmatrix} [\Delta c_f^- \ \Delta c_r^-] \\
[\Delta c_f^+ \ \Delta c_r^+] \end{bmatrix}
\]

For simplicity of the notations, we adopt \(M_{\rho}\) and \(M_{\rho,\xi}\) as a shorthand of \(M(\rho(t))\) and \(M(\rho(t),\xi(t))\) respectively.

The state space matrices \(A_{\rho}, \Delta A_{\rho,\xi}\) and \(B(\xi(t),\rho(t))\) are defined by:
\[
A_{\rho} = \begin{bmatrix}
-c_{f_0} + c_{f_0} \rho_1(t) & (c_{f_0} l_f - c_{f_0} l_f) \rho_2(t) - 1 \\
(c_{f_0} m - c_{f_0} l_f) l_z & -c_{f_0} m + c_{f_0} l_f^2 \rho_1(t)
\end{bmatrix}
\]

\[
\Delta A_{\rho,\xi} = \begin{bmatrix}
-\Delta c_f + \Delta c_r \rho_1(t) & (\Delta c_f l_r - \Delta c_r l_f) \rho_2(t) \\
(\Delta c_f l_r - \Delta c_r l_f) l_z & -\Delta c_r l_r^m + \Delta c_f l_f^2 \rho_1(t)
\end{bmatrix}
\]

\[
B(\xi(t),\rho(t)) = \begin{bmatrix}
c_{f_0} + \Delta c_f \rho_1(t) \\
c_{f_0} m + \Delta c_f l_f l_z
\end{bmatrix}
\]

where \(\rho_1(t)\) and \(\rho_2(t)\) are the components of the time-varying parameter vector \(\rho(t)\) (i.e. \(\rho_1(t) = \frac{1}{v_x}, \rho_2(t) = \frac{1}{v_z}\)).

4. INTERVAL OBSERVER DESIGN FOR LATERAL DYNAMICS ESTIMATION

In this section, an interval observer is presented to estimate the sideslip angle and lateral tire forces using Pacejka’s model. A block diagram of the estimation procedure is illustrated in figure 3. It includes:

(1) An interval observer which uses the measured variables, longitudinal velocity, yaw rate and steering angle to obtain the upper and lower bounds of sideslip angle and yaw rate.

(2) An algebraic estimator based on Pacejka’s equations to obtain the lateral forces bounds.

The construction of an observer interval for (8) requires the following assumptions:

Assumption 1. There exist constants \(X \geq 0\) and \(U \geq 0\) such that \(\| x \| \leq X, \| u \| \leq U\).

Assumption 2. The pair \((A_{\rho}, C)\) is detectable \(\forall \rho(t), t \geq 0\).

Assumption 3. There exist \(u^-, u^+, e^-, e^+\), and matrices \(\Delta A^-_{\rho}, \Delta A^+_{\rho}, B^-_{\rho}, B^+_{\rho}\) such that:
\[
u^- \leq u(t) \leq u^+, \quad e^- \leq e(t) \leq e^+ \quad \forall \theta \in [e^-, e^+]
\]
\[
\Delta A^-_{\rho} \leq \Delta A_{\rho,\xi} \leq \Delta A^+_{\rho}, \quad B^-_{\rho} \leq B_{\rho,\xi} \leq B^+_{\rho}
\]

The matrices \(\Delta A^-_{\rho}, \Delta A^+_{\rho}, B^-_{\rho}, B^+_{\rho}\) can be computed under the assumption that the unmeasured parameter \(\xi(t)\) satisfies (7):

\[
\Delta A^-_{\rho} = \begin{bmatrix}
-\Delta c_f^- + \Delta c_r^- \rho_1(t) & (\Delta c_f^- l_r - \Delta c_r^- l_f) \rho_2(t) \\
(\Delta c_f^- l_r - \Delta c_r^- l_f) I_z & -\Delta c_r^- l_r^m + \Delta c_f^- l_f^2 \rho_1(t)
\end{bmatrix}
\]

\[
\Delta A^+_{\rho} = \begin{bmatrix}
-\Delta c_f^+ + \Delta c_r^+ \rho_1(t) & (\Delta c_f^+ l_r - \Delta c_r^+ l_f) \rho_2(t) \\
(\Delta c_f^+ l_r - \Delta c_r^+ l_f) I_z & -\Delta c_r^+ l_r^m + \Delta c_f^+ l_f^2 \rho_1(t)
\end{bmatrix}
\]

\[
B^-_{\rho} = \begin{bmatrix}
c_{f_0} + \Delta c_f^- \rho_1(t) \\
c_{f_0} m + \Delta c_f^- l_f l_z
\end{bmatrix}, \quad B^+_{\rho} = \begin{bmatrix}
c_{f_0} + \Delta c_f^+ \rho_1(t) \\
c_{f_0} m + \Delta c_f^+ l_f l_z
\end{bmatrix}
\]
4.1 Interval observer structure

Under assumptions 1, 2, and 3 and according to lemma 1, the following proposed system:

\[
\begin{align*}
\dot{x}^+(t) &= (A_{0p} - LpC)x^+ + \Delta A_{p}^x x^+ - \Delta A_{p}^z z^+ + \Delta \bar{A}_{p}^x u^+ + B_p^x u^+ + L_p y + |L_p| e^- \\
\dot{x}^-(t) &= (A_{0p} - LpC)x^- + \Delta A_{p}^x x^- - \Delta A_{p}^z z^- + \Delta \bar{A}_{p}^x u^- + B_p^x u^- + L_p y + |L_p| e^-
\end{align*}
\]

\[
x^-(t_0) \leq x(t_0) \leq x^+(t_0)
\]

is a LPV interval observer for the system (8) if:

\[
x^-(t) \leq x(t) \leq x^+(t), \quad \forall t \geq t_0
\]

The inequality (19) is satisfied if the upper and lower estimation errors \(e^+(t) = x(t) - x^+(t) \) and \(e^-(t) = x^+(t) - x(t) \) are defined positive for all initial conditions \(x(t_0) = x^-(t_0) \geq 0 \) and \(e^+(t_0) = x^+(t_0) - x^-(t_0) \geq 0 \).

Dynamics of interval estimation errors are given by:

\[
\begin{align*}
\dot{e}^+(t) &= (A_{0p} - LpC)e^+(t) + d^+(t) \\
\dot{e}^-(t) &= (A_{0p} - LpC)e^-(t) + d^-(t)
\end{align*}
\]

with

\[
\begin{align*}
d^+(t) &= (\Delta A_{p}^x e^+ + \Delta A_{p}^z e^+ + \Delta \bar{A}_{p}^x e^-) - A_{p} \dot{\bar{A}}_{p}^x e^+ - B_{p} \dot{u} + L_{p} e^- - |L_{p}| e^- \\
d^-(t) &= A_{p} \dot{\bar{A}}_{p}^x e^- - (\Delta A_{p}^x e^- + \Delta A_{p}^z e^- - \Delta \bar{A}_{p}^x e^-) + A_{p} \dot{\bar{A}}_{p}^x e^- - B_{p} \dot{u} + L_{p} e^- - |L_{p}| e^-
\end{align*}
\]

The input \(d^+(t) \) and \(d^-(t) \) are nonnegative for all \(t \geq t_0 \) due to lemma 2 and assumption 3. Using this result and the fact that \(A_{0p} - LpC \) is Metzler by construction, then according to lemma 1, the estimated errors are positive for all \(e^- (t_0) \geq 0 \) and \(e^+(t_0) \geq 0 \).

4.2 Eigenvalue Assignment Problem

The objective of this section is to calculate the gain \(L_p = [l_{1p}, l_{2p}]^T \) such that the matrix \((A_{0p} - LpC) \) is Metzler and Hurwitz \(\forall \rho(t) \). If the gain \(L_p \) is chosen such that \((A_{0p} - LpC) \) is Metzler then the proposed observer is covering all possible state trajectories of (8). Furthermore, the gain \(L_p \) must ensure the stability and convergence of the interval observer. These two constraints are hard constraints, meaning that in some cases they cannot be satisfied simultaneously (See discussion in remark 2). However, the vehicle model presented in section 3 satisfies the above constraints and a gain \(L_p \) can be calculated to ensure stability and cooperativity of the matrix \((A_{0p} - LpC) \).

To study the convergence of the observer, we consider the total error given by:

\[
\dot{e}(t) = e^+(t) - e^-(t) = \dot{x}^+(t) - x^-(t)
\]

The dynamic of the total observation error \(e(t) \) can be expressed as follows:

\[
\dot{\hat{e}}(t) = \hat{e}^+(t) - \hat{e}^-(t) = (A_{0p} - LpC)e(t) + \delta d(t)
\]

where

\[
A_{0p} - LpC = \begin{bmatrix}
-c_{f_0} + c_{ro} \rho_1(t) - l_{1p} + \frac{c_{ro} l_{r}}{m} - c_{fd} l_{f} \rho_2(t) - 1 \\
-c_{ro} l_{r} - c_{fd} l_{f} & -l_{2p} - \frac{m}{I_z} + c_{ro} l_{r}^2 \rho_1(t)
\end{bmatrix}
\]

and

\[
\delta d(t) = d^+(t) - d^-(t)
\]

Stability of total error is ensured when the eigenvalues of \(A_{0p} - LpC \) have a strictly negative real parts \(\forall \rho(t) \). Moreover, to ensure positivity, all the \(A_{0p} - LpC \) elements outside the main diagonal must be nonnegative.

Remark 1. One can notice that the given vehicle is understeering, thus \(c_{ro} l_{r} - c_{fd} l_{f} > 0 \).

Due to remark 1 and the fact that \(\rho(t) > 0, \forall t \geq 0 \) (By definition), an appropriate choice of the gain \(l_{1p} \) to ensure the Metzler condition is:

\[
l_{1p} = \frac{c_{ro} l_{r} - c_{ro} l_{r} l_{f}}{\rho_2(t) - 1}
\]

Then, the eigenvalues of (23) becomes:

\[
\begin{align*}
\lambda_1 &= -\frac{c_{ro} + c_{ro} \rho_1(t)}{m} \\
\lambda_2 &= -l_{2p} - \frac{c_{ro} l_{r}^2 + c_{ro} l_{r}^2 \rho_1(t)}{I_z}
\end{align*}
\]

Knowing that all parameters \(c_{f_0}, c_{ro}, l_{f}, l_{r}, I_z \) and \(m \) are positive, it is clear that the eigenvalues of \(A_{0p} - LpC \) for all \(\rho(t) > 0, \forall t \geq 0 \) are negative if the second component of the gain vector is defined positive \(\forall t \geq 0 \).

As a conclusion, the observer gain \(L_p \) which ensures the stability by placing the poles at (25) and ensures cooperativity of interval observer are given by:

\[
\begin{bmatrix}
l_{1p} \\
l_{2p}
\end{bmatrix} \in \left\{ \begin{bmatrix}
\frac{c_{ro} l_{r} - c_{ro} l_{r} l_{f}}{m} \rho_2(t) - 1
\end{bmatrix} \right\}, \bar{a} \in [0, \infty)
\]

Remark 2. In the present work, the synthesis of the proposed observer requires that the gain \(L_p \) ensures simultaneously the stability and cooperativity of the observation error. Note that this assumption is very conservative and generally difficult to satisfy. Therefore, in the case where we are not able to compute a gain \(L(\rho(t)) \) such that \(A_{0p} - LpC \) is Hurwitz and Metzler, we can find a time-varying non-singular matrix \(P(t) \) such that the state matrix in the new base \(z = P(t)x \) is Hurwitz and Metzler matrix \(\forall \rho(t) \) (Efimov et al. (2013)). The gain \(L_p \) can be computed for ensuring for example the asymptotic stability using a pole placement depending on the time-varying parameter \(\rho(t) \) or using the LMI conditions. Thereafter, the time-varying change of coordinates is used to ensures the cooperativity (Metzler condition) of the observation error. However, there are still some problems to be overcome, essentially, the problem of practical implementation because the solution based on the time varying change of coordinates requires online resolution of a differential matrix equation.
4.3 Algebraic estimation of tire forces bounds

The idea now is to estimate the lateral forces using the algebraic formula of the linearized Pacejka’s model and the bounds previously estimated, we can express the upper and lower bounds of lateral forces by:

\[
\begin{align*}
F_{yf}^+ &= c_f^+ \alpha_f^+ \\
F_{yf}^- &= c_f^- \alpha_f^- \\
F_{yr}^+ &= c_r^+ \alpha_r^+ \\
F_{yr}^- &= c_r^- \alpha_r^-
\end{align*}
\] (27)

The measured parameter \(\rho(t) \), the steering angle \(\delta_f \), the upper and lower bounds \(\psi^+, \psi^- \), \(\beta^+, \beta^- \) of yaw rate and sideslip angle are then used for compute the bounds of tire slip angles \(\alpha_f \) and \(\alpha_r \), where:

\[
\begin{align*}
\alpha_f^- &= \delta_f - \beta^+ - l_f \rho_1(t)r^+ \\
\alpha_f^+ &= \delta_f - \beta^- - l_f \rho_1(t)r^- \\
\alpha_r^- &= -\beta^+ + l_r \rho_1(t)r^- \\
\alpha_r^+ &= -\beta^- + l_r \rho_1(t)r^+
\end{align*}
\] (28)

5. EXPERIMENTAL RESULTS

The interval observers are now tested on a data set acquired using a prototype vehicle. The run was performed on a test track located in the city of Versailles-Satory (France). The track is 3.5km length with various curve profiles allowing vehicle dynamics excitation.

Several sensors are implemented on the vehicle: The yaw rate \(r \) is measured using an inertial unit, the steering angle \(\delta_f \) is measured by an absolute optical encoder while an odometer provides the vehicle longitudinal speed. Finally, a high precision Correvit sensor provide a measure of the sideslip angle. This measure is not used for observer design. It serves only for observer estimation evaluation. The steering angle and the vehicle longitudinal speed profiles are shown in figures 3 and 4. One can see that the speed should be treated as a time-varying parameter.

In addition, on can see from these figures that the steering angle at the tire level reaches 0.1 rad while the speed is about 14 m/s. The corresponding lateral acceleration is about 4.2 m/s². The lateral forces reach thus the nonlinear zone. Finally, for our purpose, we assume that the cornering stiffness parameters are affected of 10% uncertainty in their value.

The results for the LPV interval observer (18) are shown in Fig. 6, 7, 8 and 9, the interval observer provides the guaranteed bounds covering the trajectory of state variables. The algebraically reconstructed lateral forces fulfill the interval requirements. During the maneuver, both the front and the rear tire forces saturate. One can see on figure 10 that the real front tire force is within the envelope defined by the interval observer both in the linear and the nonlinear region.

The initial conditions are chosen different from that of the measurements. The convergence time is short and the intervals width are tight. In figure 11, the interval errors \(e_\beta = \beta^+ - \beta^- \) and \(e_r = r^+ - r^- \) are shown. We note that the interval width is related to the model (8) uncertainty. If the corner stiffness parameters are perfectly known and the model does not contain uncertainties therefore estimated bounds will converge asymptotically to the real state.

6. CONCLUSION

In this work, it has been shown how one can use interval observers for a robust estimation of sideslip angle
and lateral tire forces form a two-wheeled vehicle model subject to interval uncertainties (cornering stiffness). The longitudinal velocity is treated as the online measurable time-varying parameter, the proposed interval observer is time-varying in respect to $\rho(t)$. The simulation results demonstrate the validity of proposed approach.

REFERENCES

