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INTRODUCTION AND MOTIVATIONS

Nowadays, more and more vehicles are equipped with Advanced Driver Assistance Systems (ADAS). These systems are included in a more general topic which is Intelligent Transportation Systems (ITS). ITS is the application of the new technologies on transportation field including vehicle, environment and infrastructure. Since autonomous driving and road user's safety became real challenges there is a high interest for ADAS. They have to realize particular tasks such as: vehicle localization, automatic guidance, obstacle avoidance, pedestrian detection, stability control, etc. Most of them are dedicated to improve safety by informing the driver about dangerous situations and sometimes by acting on vehicle dynamics. However, ADAS developed during last years were mainly aimed to automotive industry. Indeed, Powered Two-Wheeled (PWT) market is cheaper, it is difficult to cover instrumentation (sensors, embedded electronic, ECU, etc.) and R&D costs with an attractive selling price. Moreover, most of these systems are based on a mathematical models of the vehicle, and motorcycles are much more complex to model and strongly nonlinear than four-wheeled vehicles.

Nevertheless, since several motorcycle models have been proposed [START_REF] Sharp | The stability and control of motorcycles[END_REF], [START_REF] Sharp | Advances in the modelling of motorcycle dynamics[END_REF], [START_REF] Cossalter | Motorcycle dynamics[END_REF], [START_REF] Pacejka | Chapter 11 -Motorcycle dynamics[END_REF] and [START_REF] Nehaoua | Dynamic modeling of a two wheeled vehicle: Jourdain formalism[END_REF], embedded electronics is becoming common and sensors are affordable. ADAS for motorcycle, recently, becomes an essential research issue for motorcycle manufacturer. Their performance highly depends of the embedded architecture including global electronic architecture, sensor integration and limitation, sampling frequency, etc. Such architectures allow to facilitate the implementation of algorithms by managing the communication between algorithms and sensors. For instance, they can collect sensor data and control the system without blocking algorithm execution. The topic of electronic architecture was largely addressed for four-wheel vehicles but few architectures exist for PWT. This paper proposed a solution of architecture for experimental investigation. [START_REF] Teerhuis | Motorcycle state estimation for lateral dynamics[END_REF] or in [START_REF] Ichalal | Observer design for motorcycle lean and steering dynamics estimation: A Takagi-Sugeno approach[END_REF].

This paper is organized as follows: Section 2 introduces the vehicle and the embedded architecture used to perform the tests. Section 3 explains how the mathematical model of the vehicle is derived. Section 4 aims to remind the main steps in the observer design presented in [START_REF] Damon | Lateral motorcycle dynamics and rider action estimation: An lpv unknown input observer approach[END_REF]. Section 5 discusses the results of the experimental tests. Finally, section 6 presents concluding remarks and discussions.

VEHICLE AND SENSOR ARCHITECTURE

Instrumented scooter

The instrumented PWT vehicle in order to perform the tests is a Peugeot Scoot'elec (fig. 1). It is equipped with an electric power-train developing a maximum power around 3 kW allowing a maximum speed of 45 km/h. Three blocs of NiCad batteries with, for each one, a capacity of 100 Ah for 6 V voltage feed the motor and inevitably lead to a consequent weight of 115 kg without rider. The vehicle can reach a maximum distance between 40 and 60 km depending on the driving behavior with a full electric charge. An additional top case is fixed at the rear of the scooter to embed computer and data acquisition devices.

Embedded computer

In order to perform the various calculations and dynamic variable measurements, we have chosen a computer dedicated to embedded applications manufactured by Neousys Technology (fig. 1). According to its compact size the model NUVO-3005EB is ideal for installation under a seat or in a top case and offers several features and benefits like: High performance GPU (Intel Core i7-3610QM), PCIe Expansion Slot, Wi-Fi, 3G and GPS options integrated.

Digital/Analog IO interface card

Regarding the number of sensors, their features (operating range, analog/digital, maximum sampling frequency, etc.), we have opted for the PCIe-6353 card manufactured by National Instrument. This version is able to achieve sampling rate until 10 MHz/s and is provided with a 68 pin box referenced by SCB-68. This is an extension board for direct connection of sensors. This solution allows the use of different software for data acquisition, one can find dedicated tool boxes in Labview or in Matlab/Simulink. The second solution have been considered to perform the tests given below. 

Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is a IG-500A manufactured by SBG Systems (fig. 1). It can work on angular movements of 360 • on the 3 axes and offers orientation matrix either on Cartesian or Euler angles. The needed measures for our application are:

• The angular positions: roll, pitch and yaw respectively φ, γ and ψ • The angular rates: roll rate, pitch rate and yaw rate respectively φ, γ and ψ • The axial accelerations: longitudinal, lateral and vertical acceleration respectively a x , a y and a z in a local frame

The IMU is placed as close as possible to the gravity center of the whole driver and scooter (fig. 1) and its orientation is based on the theoretical referential used in the Sharp model of the motorcycle. Therefore, it directly sends the vehicle axial accelerations, angle and rotational speeds data around each axis (the rotational motion of the earth is assumed to be negligible).

Steering angle encoder

Several methods are possible in instrumentation of steering mechanism. We made the choice of an absolute encoder to measure the handlebar position. Several architectures are possible, directly installed on the steering column, the encoder gives the steering angle δ without any transformation or ratio or another possibility is proposed in [START_REF] Mammar | Experimental validation of static hinfini rider for motorcycle model roll stabilization[END_REF] where authors have chosen the use of a pulley system with a belt linked to the steering column. The first solution is considered because it is simpler to implement and gives direct information about the front wheel angle relatively to the frame. The selected sensor is an absolute encoder of GA210 type manufactured by IVO Industries (fig. 1), it is a 10 bit resolution, 1024 steps per turn with parallel output and a 400 Hz sampling frequency.

Wheel rotation speed sensor

Mostly incremental encoders are used to make a measurement for a distance and a speed. As for production vehicles, whether motorcycle or automobile manufacturers, they use single pulse Hall effect sensors. For our architecture, optical encoder has been chosen for the measurement of the wheel rotation speed. The optical encoder is a KTIR 0221 DS , manufactured by Kingbright (fig. 1).

The measure will be expressed in number of counted teeth, knowing the number of teeth per revolution the rotational speed is easy to obtain. Deduct the forward speed v x from the wheel velocity ω is not trivial because the speed depends of the longitudinal slip of both wheels as follows:

λ i = v x -R i ω i max(v x , R i ω i ) i = f, r (1) 
On our scooter the rear Hall effect sensor is installed on the belt receiving pulley which has 8 teeth. This pulley transfers the motor torque and speed to the rear wheel through a fixed gear ratio of 13/47.

MATHEMATICAL MODEL OF THE SCOOTER

Over the last 50 years modeling motorcycle was a real challenge and lot of literature have been provided about motorcycle modeling. One main difference between the proposed models is the complexity due to the number of bodies with whom the motorcycle is modeled. One can find a single body model in van [START_REF] Van Daal | Design and automatic tuning of a motorcycle state estimator[END_REF] which is a simple inverse pendulum or very complicated one as in [START_REF] Sharp | Advances in the modelling of motorcycle dynamics[END_REF] where the whole PWT and rider are divided into eight different bodies allowing 16 degrees of freedom.

Motorcycle modeling highlights two different dynamic modes:

• in-plane mode, which aims to describe longitudinal dynamics in straight running. It involves pitch, longitudinal speed and acceleration. • out-of-plane mode, which aims to describe lateral dynamics in cornering situation. It involves roll, yaw, steering and lateral motion of the PTW.

The well-known Sharp'71 model presented in [START_REF] Sharp | The stability and control of motorcycles[END_REF] is used in this work to derive the lateral model of the scooter. The compromise between simplicity and ability to capture dynamics is the main motivation of this choice. It considers the motorcycle as a set of two rigid bodies joined at the steering axis with freedom, restrained by a linear steering damper. Compared to a single body model whose the input are the steering angle the Sharp'71 model takes into account the steering dynamics and considers the rider's torque applied on handlebar as the system input.

It is obtained with a linearisation around straight-running with small-angle approximation assumption and also considering that the products between dynamic states are negligible. The obtained equations describe lateral dynamics and take into account coupling between longitudinal and lateral motions by considering the forward speed v x as a time varying parameter. Tire relaxation is also considered by including the linear dynamics expression of F yf and F yr which are respectively, the front and rear lateral forces of tires. This dynamics is important to take into account because it plays an important role for the vehicle stability [START_REF] Sharp | Advances in the modelling of motorcycle dynamics[END_REF]. As mentioned previously, in addition to tire dynamics, rider's torque τ , roll φ, yaw ψ, steering angle δ, lateral motion v y and their dynamics define the whole of lateral dynamic state as:

Lateral motion:

m 33 vy + m 34 ψ + m 35 φ + m 36 δ = q 34 v x ψ + F y f + F y r (2)
Yaw motion:

m 34 vy + m 44 ψ + m 45 φ + m 46 δ = q 44 v x ψ + q 45 v x φ +q 46 v x δ + q 47 F y f +q 48 F y r (3) 
Roll motion:

m 35 vy + m 45 ψ + m 55 φ + m 56 δ = q 51 φ + q 52 δ + q 54 v x ψ +q 56 v x δ (4) 
Steering motion:

m 36 vy + m 46 ψ + m 56 φ + m 66 δ = q 52 φ + q 62 δ + q 64 v x ψ +q 65 v x φ + q 66 δ +q 67 F y f + τ (5) Tire's motion:        Ḟ y f = q 71 v x φ + q 72 v x δ + q 73 v y + q 74 ψ +q 76 δ + q 77 v x F y f Ḟ y r = q 81 v x φ + q 83 v y + q 84 ψ + q 76 δ +q 88 v x F y f (6)
Please refer to Appendix for the expressions of the coefficients m ij and q ij . Adding the two trivial expressions φ = φ and δ = δ we get 8 dynamic equations and the problem can be easily transformed under matrix formalism. Lateral model of the scooter can be expressed by the following Linear Parameter Varying (LPV) descriptor system:

M ẋ = QV (v x )x + Rτ (7)
where x = [φ, δ, v y , ψ, φ, δ, F yf , F yr ] T denotes the vector of states. V (v x ) is a parameter-varying matrix related to the forward velocity v x , whereas

M = [m ij ] 8 * 8 , Q = [q ij ] 8 * 8
and R are time-invariant parameters. Equation ( 7) can be transformed into: ẋ = Ã(v x )x + Bτ (8) with Ã(v x ) = M -1 QV (v x ) the state matrix and B = M -1 R the input vector. To set the scooter parameters given in Appendix and compute the terms q ij and m ij of the model, a CAD model and static measurements were performed. Vehicle, rider with equipment and additional weight resulting from the top case including computer and external battery to power it are considered around 200 kg.

Stability analysis shows that without controller the range of stability defining by a negative real part of each pole is included between 20 and 87 km/h where the wobble mode appears. This large stability range can be explained by the fact that the vehicle center of gravity is very low due the three heavy NiCad batteries installed under the footrest.

As discussed previously, rider's torque τ , considered as the primary input of the model, applied on the handlebar is very difficult to measure and our instrumentation architecture does not allow to get this measure that is why rider's action is considered as an Unknown Input (UI). After having studied possibilities and relevance of measured state combinations in order to ensure observability properties, it comes three pertinent measures: the steering angle δ given by the steering encoder (fig. 1), the roll rate φ and the yaw rate ψ given by the IMU placed approximately on the center of gravity under the seat (fig. 1). Regarding the chosen measures and observability conditions, the equation ( 8) needs a transformation to get strong observability property. The roll angle is now considered as a second UI and the complete state-space representation for observer design can be expressed as follows: 

ẋ = A(v x )x + D(v x )d y = Cx ( 

OBSERVER DESIGN PROCEDURE

The present section is based on our recent previous work.

For details, please refer to [START_REF] Damon | Lateral motorcycle dynamics and rider action estimation: An lpv unknown input observer approach[END_REF]. In this section the method to design the unknown input observer considering the LPV model of the scooter ( 9) is summarized. The approach considers Lyapunov theory associated with LMI tools to guarantee the asymptotically convergence toward zero of the state estimation errors.

Consider the following unknown input observer:

ż = N (v x , vx )z + L(v x , vx )y x = z -H(v x )y (10)
Note that the matrices N (v x , vx ), L(v x , vx ) and H(v x ) are parameter varying and not fixed a priori which offers a flexibility in the design as discussed in [START_REF] Ichalal | On unknown input observers for lpv systems[END_REF] and Ichalal et al. (2015), their structures will be defined later. x is the estimate vector of state.

Writing the state estimation error as follows: e = xx (11) its dynamics is expressed as follows:

ė = N (v x , vx )e + [P (v x )A(v x ) + Ṗ (v x , vx ) (12) -L(v x , vx )C -N (v x , vx )P (v x )]x + P (v x )D(v x )d with P (v x ) = I + H(v x )
C and I the identity matrix with corresponding size.

In order to decouple the state x and the unknown input d from the state estimation error dynamics, the following three conditions should be satisfied:

• N (v x , vx ) must be Hurwitz • P (v x )A(v x ) + Ṗ (v x , vx ) -L(v x , vx )C -N (v x , vx )P (v x ) = 0 • P (v x )D(v x ) = 0
Note that the third condition admits a solution if and only if rank(CD(v x )) = rank(D(v x )) which is satisfied for v x = 0. Under these three conditions (12) becomes:

ė = [P (v x )A(v x ) + Ṗ (v x , vx ) -K(v x , vx )C]e (13) with K(v x , vx ) = L(v x , vx ) + N (v x , vx )H(v x )
Then the well known sector nonlinear approach Tanaka and Wang ( 2001) is used to transform the problem into a polytopic form:

         P (v x )A(v x ) + Ṗ (v x , vx ) = r i=1 h i (v x , vx ) A i K(v x , vx ) = r i=1 h i (v x , vx ) K i (14) 
With r = 4 the number of sub-models coming directly from the two nonlinearities v x and vx . h i (.) are the membership functions satisfying the convex sum property as explained in [START_REF] Damon | Lateral motorcycle dynamics and rider action estimation: An lpv unknown input observer approach[END_REF].

Let us consider the following quadratic Lyapunov function to address the stability problem:

V (e) = e T Xe, X = X T > 0 (15)
whose time derivatives V (e) leads to:

V (e) = e T r i=1 h i (v x , vx )(A T i X + XA i -XK i C -C T K T i X)e (16) 
Let us introduce the change of variables Ki = XK i , i = 1, ..., 4. Since the weighting functions satisfy the convex sum property, sufficient conditions ensuring V (e(t)) < 0 are given by the following LMIs:

A T i X + XA i -Ki C -C T KT i < 0, i = 1, ..., r (17) 
with X = X T > 0.

Find gain matrices Ki and matrix X satisfying (17) ensure asymptotic convergence to zero of the state estimation error. Since K(v x , vx ) is defined by expression (14) it can be reconstructed from K i = X -1

Ki , i = 1, ..., r. Then the observer can be completely defined by computing N (v x , vx ), L(v x , vx ) and H(v x ) (see [START_REF] Damon | Lateral motorcycle dynamics and rider action estimation: An lpv unknown input observer approach[END_REF] for more details).

The UIO allows to estimate the whole of state vector x but does not give information about UI, that is why we need to proceed into a reconstruction of the UI based on estimated states and output derivatives. To estimate the state and output time derivatives, a High-Order sliding mode differentiator is used. For more detail on this type of signal differentiation algorithm, please refer to [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF]. It provides an estimation of the steering rate δ, steering acceleration δ, yaw acceleration ψ, roll acceleration φ from the measured states and the lateral speed vy form the estimated states.

The roll angle reconstruction is based on the roll motion equation (4) which leads to:

φ = f 1 ( vy , ψ, φ, δ, δ, ψ, δ, v x ) (18) 
And the rider's torque reconstruction is based on the roll steering equation ( 5) which leads to: τ = f 2 ( vy , ψ, φ, δ, φ, δ, ψ, φ, δ, F y f , v x )

EXPERIMENTAL RESULTS

This section aims to present experimental results to validate the proposed Unknown Input Observer for lateral and steering dynamics estimation.

Let us remind that the observer is only based on te motorcycle model and are independent of the controller which is the driver in real case. Even under this assumption the UIO is able to estimate every lateral dynamic states and reconstruct the rider's torque.

A scenario realized on urban scenic road was performed with normal riding behavior and good environmental conditions. As said in previous section our instrumentation architecture does not allow to measure the rider's torque, lateral tire forces, lateral speed and steering rate that is why several figures below show only estimation for concerned states. Roll angle and lateral acceleration given by the IMU are the only two dynamic states which can validate the roll and acceleration estimation given by the observer.

Fig. 2 shows the riding scenario and is composed of straight lines, narrow and big turns. One can remark that there is no restriction about forward speed expect v x = 0. 483.8,374.4] N/rad tire camber stiffness σ f , σr [0.25,0.25] m tire relaxation coefficient (*) For more details please refer to [START_REF] Sharp | The stability and control of motorcycles[END_REF].

Matrices terms m ij and q ij i, j = 1..8 m 33 = M f + Mr, m 34 = M f k, m 35 = M f j + Mrh, m 36 = M f e, m 44 = M f k 2 + Irz + I f x sin 2 (ǫ) + I f z cos 2 (ǫ), m 45 = M f jk -Crxz + (I f z -I f x )sin(ǫ)cos(ǫ), m 46 = M f ek + Ifzcos(ǫ), m 55 = M f j 2 +Mrh 2 +Irx+I f x cos 2 (ǫ)+I f z sin 2 (ǫ), m 56 = M f ej + I f z sin(ǫ), m 66 = I f z + M f e 2 q 34 = -M f -Mr, q 44 = -M f k, q 45 = i f y /R f + iry/Rr, q 46 = sin(ǫ)i f y /R f , q 47 = l f , q 48 = -lr, q 51 = (M f j + Mrh)g, q 52 = M f eg -ηZ f , q 54 = -M f j -Mrhi f y /R firy/Rr, q 56 = -cos(ǫ)i f y /R f , q 62 = (M f eg -ηZ f )sin(ǫ), q 64 = -M f esin(ǫ)i f y /R f , q 65 = cos(ǫ)i f y /R f , q 66 = -K, q 67 = -η, q 71 = C f 2 /σ f , q 72 = (C f 2 sin(ǫ) + C f 1 cos(ǫ))/σ f , q 73 = -C f 1 /σ f , q 74 = -l f C f 1 /σ f , q 76 = ηC f 1 /σ f , q 77 = -1/σ f , q 81 = C r2 /σr, q 83 = -C r1 /σr, q 84 = lrC r1 /σr, q 88 = -1/σr

Fig

  Fig. 1. Instrumented Scooter

  9) with x the state vector without the roll angle φ, y = δ ψ φ T the vector of measures, D(v x ) = B D(v x ) the UI matrix and d = [ τ φ ] T the UI vector. D(v x ) is the corresponding extract vector from Ã(v x ) according to the roll state. One can remark that the equation dim(y) > dim(d) is verified.

  Fig. 2. Riding scenario

Fig. 4

 4 Fig. 4 shows the estimation of the lateral dynamic states whereas fig. 5 presents the results of the estimated rider's torque.Lateral acceleration: blue measure, red estimated with sum force a y = (F y f + F y r )/M and orange estimated with lateral motion a y = vy + ψv x

  The main contribution of this paper is the experimental validation of the proposed works in[START_REF] Damon | Lateral motorcycle dynamics and rider action estimation: An lpv unknown input observer approach[END_REF] by designing the observer on a simple motorcycle model. Indeed, the next objective is to estimate dynamic states in-line which means while the vehicle is moving and detect in real-time critical situations. That is why the observer

	design is based on a simple two bodies model of the scooter
	which allows to get very good estimation time perfor-
	mance. Let us remind that the considered UIO is able
	to simultaneously estimate every lateral dynamic states
	and rider's action without any forward speed limitation
	in contrast with
	(2010) authors proposed a validation on BikeSim which is a
	multi-body motorcycle simulator. Even if such simulator is
	known for its ability to simulate real scenarios, it is difficult
	to take into account the inherent problems related to real
	tests like sensor noises or faults. This type of simulator can
	give a first idea about observer performance but cannot
	replace real implementations. In Boniolo et al. (2012) and
	Lot et al. (2012) experimental tests are performed but only

Today several systems exist on motorcycle market: Antilock Braking System (ABS), Traction Control System (TCS), Motorcycle Stability Control (MSC), etc. But for most of them they equipped premium motorcycles which represent a tiny proportion of the whole of motorcycle park. Estimation and observation are major tools to make easier the development of ADAS by allowing a reduction of the number of sensors and hence reducing the cost. It could be the best solution to make it available on a large proportion of sold motorcycles. Lot of recent works deal with motorcycle dynamic state estimation

[START_REF] Dabladji | On the estimation of longitudinal dynamics of powered two-wheeled vehicles[END_REF]

,

[START_REF] Nehaoua | Lean and steering motorcycle dynamics reconstruction: An unknown-input HOSMO approach[END_REF] 

and

[START_REF] Ichalal | Observer design for motorcycle lean and steering dynamics estimation: A Takagi-Sugeno approach[END_REF] 

but few of them perform experimental investigations to validate the results. In

[START_REF] Dabladji | Unknown-input observer design for motorcycle lateral dynamics: Ts approach[END_REF] 

or in

Filippi et al. roll 

angle estimation is considered. In

[START_REF] Teerhuis | Motorcycle state estimation for lateral dynamics[END_REF] 

authors proposed a more complete experimental investigation to validate estimated states with extended Kalman filter but only medium speed are considered and speed range is very reduced.

  This last figures demonstrate the ability of the UIO observer to perfectly estimate the lateral dynamic states and to reconstruct the roll angle and the rider's torque on a real driving scenario realized with normal riding behavior.

			6. CONCLUSION
	In this paper we have discussed the necessity to validate
	observers with real instrumented vehicle. This article deals
	with off-line validation of the proposed UIO in Damon
	et al. (2016) to estimate lateral motorcycle dynamic states
	and to reconstruct unknown inputs during real riding
	scenarios. A light scooter equipped with sensors are in-
	troduced and an acquisition architecture is proposed. The
	motorcycle model used for observer design is derived from
	the well-known two-bodies Sharp's model. A CAD model
	of the scooter combined with geometric measurements
	provide needed parameters. Then, a test endorse the theo-
	retical results by showing the performances of the UIO in
	a real scenario. Next step is to perform on-line estimation
	and to use the estimated variables for detecting critical
	situations such as a dangerous roll angle for example.
			7. APPENDIX
	Variables, matrices and notations
	vx, vy		longitudinal and lateral speeds
	φ, ψ, δ		roll, yaw and steer angles
	τ		rider torque
	Fy f , Fy r		lateral forces
	ẋ, ẍ		time derivatives of the var x
	x		estimate of a variable x
	x T		transpose of vector or matrix x
	x f , xr Ã(vx), A(vx)	denotes front and rear state matrices
	B, B		input vectors
	D(vx), D(vx)	unknown input matrix
	C		observation matrices
	Motorcycle parameters
	g	[9.81] m/s	gravity
	ǫ	[0.4014] rad	caster angle
	η	[0.0783] m	mechanical trail
	K	[15] N.m/(rad/s)	steering damper
	Z f	[-854.8] N	front vertical load
	Crxz	[1.6] kg/m	rear frame inertia product
	M f , Mr	[15,190] kg	body mass
	j, h	[0.41,0.5] m	geometric dimensions (*)
	k, e	[0.75,0.0051] m	geometric dimensions (*)
	l f , lr	[0.82,0.48] m	geometric dimensions (*)
	R f , Rr	[0.207,0.215] m	wheel radius
	i f y , iry	[0.40,0.48] kg/m	wheel inertia around Y
	I f x , Irx	[2.5,21] kg/m	body inertia around X
	I f z , Irz	[0.2,9] kg/m	body inertia around Z
	C f 1 , C r1	[12571,13040] N/rad	tire cornering stiffness
	C f 2 , C r2	[	
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