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Abstract

This paper presents a new design method for gain-scheduled static output feedback (SOF) controllers of saturated LPV (linear
parameter varying) systems. Our solution is based on a special SOF scheme in conjunction with specific congruence transforma-
tions. The regional design is established through an effective treatment of nonlinear effects introduced by the saturations in the
closed loop. Using parameter-dependent Lyapunov functions, the control design is reformulated as a parameter-dependent LMI
optimization with a single line search parameter. Then, by an equivalent polytopic transformation, tractable design conditions are
derived for constrained LPV systems with a broad class of parametric dependencies. In particular, it is proved that the new method
generalizes some well-known results based on linear matrix equalities while reducing the design conservatism. Moreover, explicit
rank constraints on state-space system matrices are not required. A physically motivated example is given for illustration purposes.

Keywords: LPV systems, gain-scheduled output control, input saturation, parameter-dependent Lyapunov functions, domain of

attraction, linear matrix inequality (LMI).

1. Introduction

Static output feedback (SOF) control has received consid-
erable attention. The main reason is its practical and theoreti-
cal importance: (i) SOF represents a simple closed-loop control
that can be reliably realized in practice; (ii) many designs of dy-
namic controllers can be reformulated as SOF control problems
involving augmented plants [1]. However, SOF still remains
one of the most challenging topics in control theory [2]. Due
to its non-convex characterization, existing results in the SOF
literature are often too restrictive [3]. Up to now, a great deal
of efforts has been devoted to develop numerical tractable so-
lutions for SOF designs, especially through LMI (linear matrix
inequality) formulations, see [2, 4, 5] and references therein.
For instance, conditions for the existence of SOF solutions were
presented in [3, 6], in which matrix-equality constraints are re-
quired for the convexification procedure. A state coordinate
transformation approach was proposed in [5] for linear poly-
topic uncertain systems. To design Ho and ., SOF con-
trollers, slack variables with a lower-triangular structure were
introduced in [7] while the conditions in [8] were based on a
linear parameter dependent approach. Two-step methods for
designing SOF controllers have been proposed in [9—11]. These
methods imply suboptimal design procedures since the SOF so-
lution in the second step strongly depends on the state feedback
gains obtained in the first step.

Plant uncertainty and actuator saturation are practically en-
countered in all real-world applications. LPV (linear parameter-
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varying) control has been widely applied to address the robust-
ness issue in various engineering areas, including aerospace,
automotive, robotics, etc., see [12] for a recent survey. Control
design of saturated LPV systems has been also investigated, see
for instance [13—16]. Note that most existing works focus on
either state feedback or full-order dynamic output feedback in-
volving anti-windup (AW) mechanisms. Unfortunately, all the
states are not always available in practice for the state feed-
back case and the full-order dynamic output feedback control
incurs more computational/hardware overheads than a SOF ap-
proach [17]. Moreover, the AW paradigm may lead to exces-
sively small operating regions due to the separated design of

nominal unconstrained controllers and AW compensators [16].

It is important to stress that there is a serious lack of liter-
ature on robust SOF control dealing with saturation nonlinear-
ities, which motivates our new solution for this control issue.

The contributions of the paper can be summarized as follows.

e Using a special SOF scheme and specific congruence trans-
formations for the convexification, the design of robust SOF
controllers for saturated LPV systems can be reformulated in
LMI framework with a single line search parameter.

e We demonstrate, with theoretical arguments and numerical
illustration, that the new method precisely includes (in terms
of design conservatism) some well-known results based on
matrix equality constraints, for instance [3, 6]. In addition,
our method does not require any rank restriction on the state-
space matrices. These constraints (matrix equality and rank
restriction) are hard to be satisfied for general LPV systems.

e To reduce further the conservatism, a parameter-dependent
Lyapunov function (PDLF) and a generalized sector condi-
tion are used for theoretical developments. PDLF based ap-



proaches can exploit finite bounds of the rates of the pa-
rameter variation and provide less conservative results than
quadratic approaches assuming arbitrary parameter variation,
see for example [18].
The paper is organized as follows. The control problem is de-
fined in Section 2 and solved in Section 3, where design algo-
rithms are proposed. An illustrative example is shown in Sec-
tion 4, and conclusions are drawn in Section 5.
Notation. For a vector x, x; denotes its ith entry. For a matrix
X, X7 denotes its transpose, X > 0 means that X is posi-
tive definite, X ;) denotes its ith row, and He X = X + X T,
diag(X71, X2) denotes a block- diagonal matrix composed of
X1, X5. Foramatrix P > 0, E(P {xER"T cx ! Pr < 1}.
I denotes the identity matrix of appropnate dimension. For two
integers k1 < ko, I[k1, ko] = {k1,k1 +1,..., ka}. Arguments
are omitted when their meaning is straightforward.

2. Problem Formulation

2.1. System Description
Consider a continuous-time saturated LPV system

A(0(t))x(t) + B(O(t)) sat(u(t)) M
C(0(t))=(t)

B(t) =

(
yit) =

where z(t) € R™ is the state, u(t) € R™ is the control,
y(t) € R™ is the measured output, and 6(t) € RP is the
vector of time-varying parameters whose measurement is avail-
able in real time for gain scheduling control. The vector val-
ued saturation function sat(-) : R™ — R"™ is defined as
sat(u;) = sign(w;) min (Ju|, @), I € I[1,n,], where @; > 0
denotes the bound of the /th input. It is assumed that the param-

eter 0(t) = [01(t) ... 0,(t)] " and its unknown rate of variation
é(t) are smooth and respectively valued in the hypercubes

Q = {(9'17"'70.;0)T Qje[Qﬁgj]’jEI[Lp]}

Qg = {(91,...,9P)T HjE[Uj,@j],jEI[l,p]}

where Qj < 5j (respectively v ; < v;) are known lower and up-
per bounds on 6; (respectively éj), for j € I[1, p]. Here, these
bounds are not required to be symmetric as in most of exist-
ing results in LPV control context. We assume that the time-
varying matrices A(-), B(-) and C(-) of (1) are continuous on
the hypercube (2. Then, using the sector nonlinearity approach
proposed in [19, Chapter 2], these state-space matrices can be
equivalently represented by

0@) = i‘ mi(0(t)Ai, B(6(t)) = fj n:(0(t)) B; i
v =1 ©)
(6(1)) = § (B()C. N =2

where the membership functions (MFs) 7;(-) are continuously
differentiable and belong to the simplex, defined as

S0 { ) e RV : Zm ) =1, me)zo,veesz}.

Note that, since (6, 0) € Q x Qq4, one can easily compute the
lower bound ¢;; and the upper bound ¢;2 of 7;(+) as

0:(0) € i1, diz], ¢ir < di2, i€I[1,N].  (3)

Remark 1. The sector nonlinearity approach [19] is used in this
paper to derive an exact polytopic form of general LPV systems
(1). The MFs capture the parameter nonlinearities, i.e. they can
be a nonlinear function of components of 6(t). Hence, the new
method can deal with a larger class of parametric dependencies
than, e.g. linear, affine or rational.

2.2. Problem Definition
Let us consider a gain-scheduled SOF controller
u(t) = K(0() X (0(t) " 'y(t) ()

where K(0) = SN mi(0)K;, K; € R™*", and X (0) =
SN n:(0)X;, X; € R™*™. From (1) and (4), the closed-
loop LPV system can be rewritten as follows:

&(t) = Aqz(t) — B(0(t))¥(u(t)) )

with A, = A(0) + B(0)K(0)X (0)~*C(0) and 9 (u) = u —
sat(u). For the control design of LPV system (5), we consider
the following PDLF:

V(z)=2"Q(0) 'z (6)

where Q(0) = Zivzl 7;(0)Q; and Q; > 0 € R™*"= Vj ¢
I[1, N]. The level set associated with V(z) is defined as

Ly={z eR"™: 27Q(0) 'z <1, forVd € Q}.
The set Ly is said to be contractively invariant if
V(z) =22"Q(0) " (Aux — B(O)¢(u) + 27 Q(6)~

forall z € Ly \ {0} and (6,6) € Q x Q. Clearly, if Ly is
contractively invariant, then for every initial state (0) € Ly,
the state trajectory will converge to the origin and Ly is inside
the domain of attraction, see [20, 21]. This paper proposes a
constructive solution for the following control problem.

lz <0

Problem 1. Determine the gain-scheduled matrices K () and
X () in (4) and a contractively invariant set, as large as possi-
ble, for the closed loop (5) with (6, 6) € Q x Q.

The following lemma is useful to deal with the dead-zone
nonlinearity ¢ (u).

Lemma 1. Given diagonal matrices U; > 0 € R™**"« ma-
trices H; € R™*"= for i € I[1, N], a vector-valued function
n(f) € Zg. If x € P, C R™ with

P, = {x c R - ’(H(Q)Q(a) (z) ‘ <y, lelll, nu]},

then ¥ (u) "U(0) ™! [u—v(u) + H(O)Q(0)'z] > 0, where
U®) =N, 0i(0)U; and H(0) = 2N, ;(0) Hi.

Lemma 1 presents a parameter-dependent (PD) version of
the generalized sector condition in [21]. This powerful tool
provides a regional characterization of the stability and perfor-
mance properties of the nonlinear LPV system (5) by means of
an extension of the absolute stability theory [20].



3. SOF Control for Saturated LPV Systems

The following theorem provides the conditions proving the
existence of a SOF controller (4) that can asymptotically stabi-
lize the nonlinear LPV system (1).

Theorem 1. Consider LPV system (1) with (6,6) € Q x Q.
If there exist a PD matrix Q(6) > 0 € R"=*"=_a PD diagonal
matrix U(f) > 0 € R™ ™ PD matrices H () € R"=*"=,
K(0) € R™*" X (0) € R™*" and a scalar ¢ > 0 such
that (7)-(8) hold for V(6, 9) € 2 xy. Then, the SOF controller
(4) guarantees that Ly is a contractively invariant set of (5).

T1(0,6) —B(O)U(H) eB(0)K(6)

He | T4(0) ~U(0) eK@©®) | <0 (D
T3(0) 0 —eX(6)

Q)  H(0)), n

H(Q)(z) a? >0, lelll,n,] 8)

where Y1(6,0) = A(0)Q(0) + B(0)K(0)C(0) — Q(6)/2 and
T2(0) = H(0)+ K(0)C(0). Y3(0) = C(0)Q(0) — X(0)C(0).
Proof. Condition (7) implies that X (0) + X ()" > 0, which
ensures the nonsingularity of X (). Thus, the expression of the
control law (4) is well-defined.
Pre- and postmultiplying (8) with diag(Q(6)~1, ) yields
QO)~! Q0)~ 1H(9)(l)
H(0))Q(0) ! a3
plying Schur complement lemma [22] to this latter, it is easy to
show that

2" Q)"

> 0,1 € I[1,n,]. By ap-

1
x> —xTQ(H) YH(0) 0y
U
forz € R"=, and ! € I[1,n,]. For Yz € Ly, it follows clearly
from (9) that € P,,, since V(z) < 1.
Pre- and postmultiplying (7) with the parameter-dependent

H(0) Q) 'z (9)

[T 0 BOK@O)X(H)! .
matrix {0 I K(G)X(&)_l } and its transpose, we can
prove that inequality (7) implies
4(6,0) —B( U (9)
[ S
with T4(0,0) = A(0)Q(0) + BO)K (0)X (6)~CO)QO) -

@(6)/2, and T ( ) = H(0) + K(0)X(0)~*C(0)Q(f). Note
that Q(#) ! Q(0)~'Q(A)Q(0)*, then pre- and postmul-
tiplying (10) W1th diag(Q(0)~1,U(0)7!) yields

He {Q(a)lAd +Q(0)71/2
T (0) (o)

where Y(6) = U(6) 1 (H(Q)Q(G)_1 + K(G)X(G)_lC(G)).
Pre- and postmultiplying (11) with [# " ¢ (u) "] and its trans-
pose together with the use of (4) and (5), we obtain (12) after
simple but tedious algebraic manipulations

TQO) 1 E+iTQO) r+2TQO) (12)
+2¢(w) TUO) " [u—v(u) + HO)Q(O) 'z] < 0.

By Lemma 1, it follows from (12) that V(w) < 0, Vx € Ly,
x #0,and V(0,0) € Q x Qg, which concludes the proof. [

Remark 2. The control law (4) relies on the use of the extra
variable X (), independent to the Lyapunov matrix Q(6). With
the special congruence transformation to obtain (10), this fea-
ture allows for an LMI formulation where all decision matrices
can be parameter-dependent to reduce the conservatism.

Remark 3. It is important to note that the result in Theorem 1
is a generalization of that based on the W-problem in [3], which
is formulated in Corollary 1.

Corollary 1. Consider LPV system (1) with C'(6) of full row
rank and (6, 0) € QxQg. If there exist a PD matrix Q(6) > 0 €
R7=*"= 3 PD diagonal matrix U(f) > 0 € R™*"« and PD
matrices H(0) € R"*"= K (0) € R"*"v, X () € R"u*"u
such that (8), (13) and (14) hold. Then, the SOF controller (4)
guarantees that Ly is a contractively invariant set of (5).

CO)Q) = XOC®), ¥ < 0 .
Y1(0,0) —B(O)U(0) ,
T2(0) —U(6) <0, V(0,0) € Qx Q14

Differently from Theorem 1, Corollary 1 requires explicitly that
C(0) must be of full row rank for V6 € Q. Due to (13) and
Q(#) > 0, this ensures the nonsingularity of X (6). In case
of state-feedback scheme, i.e. C'(6) = I, it follows from (13)
that Q(0) = X(0). Thus, the extra variable X (f) vanishes
in Corollary 1. In particular, it is not difficult to prove that
the result of Theorem 1 is no more conservative than that of
Corollary 1. Indeed, applying Schur complement lemma to (7)
while imposing (13) yields

e Y1(6,6) —B(6)U(9)
.

which is equivalent to (14) for sufficiently small ¢ > 0. Note
that the linear equality (13) implies that C'(6)Q(0) is close to
commute, which is not possible for a general case [2], espe-
cially in LPV control context. We note also that the result pre-
sented in [6] leads to the same drawback.

Remark 4. Theorem 1 is not convenient for design purposes
since (7) and (8) depend explicitly on 6 € €2 and 6 € Q. Based
on the convex combination form of state-space matrices in (2),
we derive in Theorem 2 numerically tractable design conditions
for (1). To ease the presentation, we assume that C; = C, for
Vi € I[1, N], i.e. constant output matrix. The case involving
parameter-dependent output matrix will be discussed later.

Theorem 2. Consider LPV system (1) with state-space matri-
ces in (2) and (0, 9) € Q x Q. If there exist positive defi-
nite matrices Q; € R"=*"=_ diagonal positive definite matri-
ces U; € R™*"u matrices H; € R"*" K, € R"™X"y,
X; € R™*™ forq € I[1,N], and a scalar ¢ > 0 such that
(15), (16) and (17) hold. Then, the SOF controller (4) guaran-
tees that the set Ly is contractively invariant with respect to the



closed-loop system (5) for all admissible pairs (6, 0) € O xQy.

i >0, ieI[l,N],l€Ill,n,] (15
[Him uf N e AL

gm0 Gk, leI[l,N], melIll,2], k#1 (16)
W™ 4 Wi <0, i, 4 k1€ I[1,N],
melll,2],i<j k#1 (17

kim

ij " 1s defined as follows:

where the quantity ¥

\I/fjl[qll] —BZ'U]' GBiKJ‘
UM =He | H; + K;C —U;  ¢K; (18)

cQ; — X;C 0 —eX;
with \I/Zlﬁll] = Asz + BinC — (bkm(Qk — Ql)/2.
Proof. Multiplying (15) by n;(6) > 0 and summing up for Vi €
I[1, N], we obtain (8). Note that vazl 7;(0) = 0 since n(9) €
Zp. Then, one has Q(0) = ,(0)Q; + Zgzl,kﬂ N:(0)Qr =
Zgzlyk# 7% (0)(Qr — Q). For any 7 (#) such that (3), it fol-

lows that

e (0) = wi1(0)Pr1 + wr2(0) drz,

where wy1(0) = %’L’ji? and wy2(0) = % It is clear

that 0 < wiy(0) < 1 and 212:1 wii(0) = 1, for k € I[1, N].
Thus, we can exactly represent the term Q(6) as

ke I[1,N]

N 2
QO =D wim(0)drm (Qr — Q). (19)

k=1 m=1
k£l
From (18) and (19), conditions (16)-(17) imply that
T::(6,6) <0, iel[l,N] (20)
Ti(8,60) + Y;i(6,6) <0, i,j € I[I,N], i <j (1)
with
. Tij[ll] (9,9) —Bin GBin
Tij((g, 9) = He Hj + ch *Uj GKj (22)
CQj - XJC 0 —EXj

and Yij111)(0,0) = A;Q; + B;K;C —Q(0) /2. From (20), (21)
and (22), it follows that

N N N
SO i) + 30> w0y (6) (Tis() + L)

. i=1 i<j
=22 m®m(O) () <0,

which is exactly (7). Following the arguments of Theorem 1,
we can conclude the proof. 0

Note that similar reasoning can be applied to generalize the
result of Theorem 2 to deal with a PD output matrix C(¢) as
well. This is accomplished by including the matrices C;, i €
I[1, N1, accordingly in conditions (16)-(17).

Remark 5. In Theorem 2, the information on both 6(t) and
9(t) is explicitly considered in the control design by exploit-
ing the bounds ¢y, for k € I[1,N] and | € I[1,2], given in
(3). This enables the use of the PDLF (6) to reduce the design
conservatism. Indeed, if conditions (16)-(17) are feasible for
arbitrarily large values of ¢, then the only possible solution
is such that )7 ~ --- =~ @y to minimize the effect of the
terms Ppm, (Qr — Q) involved in (18). Moreover, if one im-
poses Q; = Q > 0, for Vi € I[1, N, in (6), then the quadratic
Lyapunov function V (z) = 2T Q ™'z is recovered. These dis-
cussions mean that the design conditions of Theorem 2 include
precisely the quadratic results.

Remark 6. We prove in Theorems 1 and 2 that Ly is a contrac-
tively invariant set of (5). Due to its dependency to 6 € €2, Ly is
time-varying by nature. For convenience, the time-independent
set &v = (Nierp,n £(Q; ") C Ly can be used to characterize
the domain of attraction.

In the light of the results in Theorems 1 and 2, the following
theorem provides a solution for Problem 1.

Theorem 3. Consider LPV system (1) with state-space matri-
ces in (2) and (6, 9) € Q x Qg. If there exist positive definite
matrices Q;, Q € R7eX"=, diagonal positive definite matri-
ces U; € R™*"u matrices H; € R"*"= K, € R"«X"y,
X; € R™*"u_for € I[1, N], and a scalar € > 0 such that the
optimization (23) is feasible.

log det(Q) (23)

s.t. (15)-(17) and Q; > Q, Vi € I[1, N]

max
&i, 1€I[1,N]

with & = (e, Q;, Q, U;, H;, K;, X;). Then, the SOF controller
(4) solves Problem 1 with the guaranteed contractively invariant
set &y of the nonlinear LPV system (5).

Proof. The inequalities Q; > Q, Vi € I[1,N], imply clearly
that £(Q 1) C Ey. Then, the proof is a direct consequence of
Theorem 2 and Remark 6. U

4. Tllustrative Example

Consider the control design of the lateral axis dynamics for
an L-1011 aircraft adapted from [9]. The state vector x =

[r B ¢ w]T is composed of the yaw rate r, the sideslip
angle 3, the bank angle ¢ and the roll rate ). The control in-
put u = d, is the aileron deflection with magnitude constraint
4 = 5. The system matrices are given as follows:

[—2.980 (t) 0 —0.034
| o) —0.210 0.035 —0.001
Al0) = 0 0 0 1.000 |’
| 0390 —1.350-36(t) 0  —1.890
[—0.032
0 0010
B(0) = 0 ’ 0(9)_{0 00 1}
L —0(%)




For comparison purposes, we consider Problem 1 with

O={0:-057<0<243}, Qu={0:-v <0<},

for v > 0. Obviously, this affine LPV system can be equiv-
alently represented in the form (2) with NV = 2. The details
on the corresponding MFs and linear subsystems are not given
here due to the space restriction. All LMI computations were
done with YALMIP toolbox and SeDuMi solver [23]. The line
search for e is performed with 100 points linearly gridded over
a logarithmic scale in the interval [1075,10%]. The aim is to
compute the maximum log det(Q)) in (23) with different values
of v for two cases: (i) using directly Theorem 3, (ii) using Theo-
rem 3 while imposing Q1 = Q2 = @ (i.e. quadratic approach).
Note that the results of the quadratic case are independent of
the values of v. Note also that LMI-based design conditions
derived from Corollary 1 are infeasible for this example for any
v > 0. Figure 1 (left) reports the results obtained with the
proposed method. These results confirm the interests of con-
sidering the PDLF (6) to improve the control performance, in
terms of maximizing the domain of attraction.

For illustration, we consider the case v = 1 where the nu-
merical solver takes 41.908 seconds to provide a solution of the
optimization (23). Figure 1 (right) depicts a projection of differ-
ent ellipsoids obtained from the optimization (23). The dashdot
blue lines denote 50 ellipsoids £(Q(6) 1), corresponding to 50
values of 6 uniformly distributed in 2, which are bounded by
£(Q7") and £(Q51). In addition, the domain of attraction pro-
vided by quadratic design conditions is precisely included in
that of the PDLF approach.

46 30
44
20
42 «
— 40 o 10
S E]
38 =
+ < 0
5}
< 36 B
& 7
2 34 % -10
32 @
-20
30
28 -30
0 2 4 6 8 10 -30 -20 -10 0 10 20 30
v yaw rate (r)

Figure 1: Left: upper bound of log det(Q) versus v obtained with Theorem 3
(solid red line) and the quadratic approach (dashdot blue line). Right: projec-
tion of different sets obtained from the optimization (23) with v = 1: £(Q7 1)

and E(le) (solid red lines), £(Q(0)~ 1) with & € Q (dashdot blue lines),
and £(Q~1) given by the quadratic approach (dotted black line).

5. Conclusions

A new solution for robust SOF control of saturated LPV
systems is proposed. Using a PDLF and an exact polytopic
transformation, LMI-based design conditions are derived for a
large class of constrained LPV systems with general parametric
dependencies. The convexification is based on a special con-
gruence transformation which is specific to the proposed SOF
structure. As a consequence, the new method requires nei-
ther explicit matrix rank constraints nor linear matrix equalities,

which are often hardly tractable. An illustrative example puts
in evidence the interests of the proposed method.
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