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, such an anaerobic process is described by the so-called AM2 model which is a four-dimensional dynamical system. Instead of modeling the optimization of the biogas production as an optimal control problem of Lagrange type, we propose in this paper a slightly different optimal control approach : we study the minimal time control problem to reach a target point which is chosen in such a way that it maximizes the biogas production in the AM2 model at steady state. Thanks to the Pontryagin Maximum Principle and to geometric control theory, we provide an optimal feedback control for the minimal time control problem when initial conditions are taken on the invariant and attractive manifold of the system. The optimal synthesis exhibits turnpike and anti-turnpike singular arcs and a cut-locus.

Introduction

Within the context of renewable energies, anaerobic digestion of waste and wasted water has become an attractive alternative to carbon fossil, being a well-known and established technology to treat waste in the methanization of sewage sludge from wastewater treatment plants [START_REF] Kelessidis | Comparative study of the methods used for treatment and final disposal of sewage sludge in european countries[END_REF]. Anaerobic digestion is a complex process that can take place in one bioreactor used for the production of biogas (methane, hydrogen). From a practical point of view, one main issue is to obtain an efficient management policy for anaerobic digestion processes in order to maximize the biogas outflow produced over a given period (see e.g. [START_REF] Haddon | Guaranteed value strategy for the optimal control of biogas production in continuous bio-reactors[END_REF]).

A representation of this process is based on the coupling of two main reactions called acidogenesis and methanization. These two reactions can be described by the so-called AM2 model (see [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]) represented by the system:

             Ẋ1 = μ1 (S 1 )X 1 -αDX 1 , Ṡ1 = -k 1 μ1 (S 1 )X 1 + D(S 1 in -S 1 ), Ẋ2 = μ2 (S 2 )X 2 -αDX 2 , Ṡ2 = k 2 µ 1 (S 1 )X 1 -k 3 μ2 (S 2 )X 2 + D(S 2 in -S 2 ), (1.1) 
that is based on the chemostat model (see [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF][START_REF] Smith | The theory of the chemostat[END_REF]). Here, X 1 , resp. X 2 stands for the concentration of acidogenic bacteria 1 , resp. methanogenic bacteria, S i , i = 1, 2 are the substrate concentrations, and D is the dilution rate of the continuously operated bioreactor (i.e., D = Q/V where Q is the input and output flow rate of water and V is the constant volume of water present in the bioreactor). The coefficient α ∈ (0, 1] models the retention of biomass in the liquid phase, S i in , i = 1, 2 are the two input substrate concentrations, and μi (•), i = 1, 2 are the two growth functions or kinetics for microorganisms X 1 and X 2 .

In such process, the gas outflow produced in the fermentor is proportional to the production of methanogenesis species X 2 . Over a time period [0, T ], the production of biogas in such process is then proportional to the quantity written in integral form : T 0 μ2 (S 2 (t))X 2 (t) dt.

(1.2)

Finding an adequate functioning mode for which (1.2) is maximal then amounts to study an optimal control problem : one aims at finding an adequate feeding strategy maximizing (1.2) among solutions of (1.1) (here, the system (1.1) is controlled via the input flow rate D(•) that plays the role of the control function). Optimal control theory is well suited to study such an optimization problem (via Pontryagin's Principle or Hamilton-Jacobi equation). However, in the present form, this optimal control problem presents several difficulties as for instance the curse of dimensionality when solving Hamilton-Jacobi equation associated to the optimal control problem, or the determination of a time dependent optimal feedback control for this problem. From a practical point of view, the knowledge of an autonomous feedback control would be more useful in order to pilot adequately a fermentor. In order to operate optimally such system, we propose an alternative way based on a two-step optimization procedure and that takes into account the previous remarks :

1. We first suppose the system at steady state, and we maximize the static production of biogas among equilibria of (1.1) i.e. the quantity μ2 (S 2 )X 2 among constant dilution rates. Following [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF], this procedure allows us to obtain steady states of (1.1) maximizing the biogas production.

2. The second step consists in introducing a new optimal control problem governed by (1.1). We aim at finding an optimal feedback control driving (1.1) in minimal time to the target point defined as the optimal steady state in the previous problem.

Our aim in this work is to address essentially the second point using the theory of optimal control (the first point which consists in maximizing (1.2) among steady states of (1.1) was recently addressed in [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF]). From a practical point of view, a reactor cannot be initiated at the optimal point due to uncertainties and to the initial conditions inside a fermentor. Thus, it is of particular interest to synthesize a feedback control strategy (in particular for robustness aspects) driving optimally the system to this operating point provided that this optimal point is known. When the desired target has been reached, the bioreactor can be then operated at the corresponding equilibrium which allows to have a guaranteed production of biogas over time.

The paper is organized as follows. In Section 2, we recall some properties of the AM2-model that are useful to transform (1.1) into a two-dimensional affine system with a drift and one input. We also recall a result of [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF] (see Proposition 2.1) which shows that the target point maximizing the biogas production at steady state necessarily belongs to the collinearity curve of the system. This property appears to be an essential key point in this study. More precisely, considering a target point on the collinearity curve brings controllability issues and difficulties to exclude extremal trajectories that could cross this set several times. In Section 3, we apply the Pontryagin Maximum Principle, and we provide properties of the switching functions that will allow us to exclude extremal trajectories that are non optimal. We also give geometrical properties of the collinearity curve and of the singular locus. Finally, Section 4 provides optimality results and an optimal feedback control for the minimum time control problem to reach any target point chosen on the collinearity curve. The optimal synthesis is depicted in the context of the study of a fermentor described in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] using the numerical values that were obtained experimentally from real measurements (see Appendix in Section 7). For each initial condition ξ 0 of the state space, we compute an optimal control t → u(t, ξ 0 ) in open loop leading to the determination of an optimal feedback control u[ξ 0 ] := u(0, ξ 0 ). The optimal synthesis exhibits a singular arc that has the property to be time-minimizing (i.e. a turnpike) in a subset of the state space whereas it is time-maximizing (i.e. an anti-turnpike) in its complementary. In the subset of the state space containing the anti-turnpike singular locus, optimal strategies can be non-unique, and we compute numerically a cut-locus using a homotopy method (see e.g. [START_REF] Caillau | Differential continuation for regular optimal control problems[END_REF]).

Statement of the problem 2.1 Preliminaries on the modeling of a fermentor

In this section, we briefly recall the modeling of a two-step fermentor that will be useful to state the optimal control problem. Following [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF], the model (1.1) proposed in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], can be written as the following equivalent dynamical system

             ẋ1 = µ 1 (s 1 )x 1 -ux 1 , ṡ1 = -µ 1 (s 1 )x 1 + u α (s 1 in -s 1 ), ẋ2 = µ 2 (s 2 )x 2 -ux 2 , ṡ2 = µ 1 (s 1 )x 1 -µ 2 (s 2 )x 2 + u α (s 2 in -s 2 ), (2.1) 
after several change of variables indicated in Table 2 (see Appendix in Section 7). This new model (with much less parameters) is still describing the two main coupled reactions (acidogenesis and methanization) of anaerobic digestion, inside a fermentor, where, x i , resp. s i , i = 1, 2, represent the biomass concentrations, resp. substrate concentrations (after the change of variables), and u is the dilution rate of the continuously operated bioreactor. The index 1, resp. 2 is for the acidogenesis reaction, resp. methanization reaction. The constants s 1 in and s 2 in are positive and denote the two input substrates concentration (after the change of variables).

Following [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], the modeling of biological processes leads to the following choice of the growth rate functions. Both kinetics µ 1 (•) and µ 2 (•) are as follows [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]:

• The growth function µ 1 (•) is of Monod type, that is: µ 1 (s 1 ) = μ1 s 1 k + s 1 , (2.2) 
where μ1 > 0 and k > 0.

• The growth function µ 2 (•) is of Haldane type, that is:

µ 2 (s 2 ) = μ2 s 2 s 2 + k + s 2 2 k , (2.3) 
where μ2 > 0, k > 0, and k > 0. Note that µ 2 (•) has a unique maximum at the point s max := √ k k .

Remark 2.1. In the model (1.1), proposed in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], the growth functions μ1 (•) and μ2 (•) are of Monod and Haldane type respectively. After the change of variable (indicated in Table 2 of the Appendix in Section 7) for obtaining (2.1) from (1.1), it is straightforward to check that the new functions µ 1 (•) and µ 2 (•) are also Monod and Haldane (as it is written above). For this reason, in Table 3 (Appendix in Section 7) we present the parameters of the Monod and Haldane functions µ 1 (•) and µ 2 (•), considering the values obtained experimentally in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] for functions μ1 (•) and μ2 (•) in (1.1), after the change of variable. This procedure is explained in the Appendix (Section 7).

The main feature of an anaerobic fermentor modeled by (2.1) is to transform organic material (the substrates) into biogas (methane). We are interested in studying operation modes of the fermentor for which the production of biogas over a given time period is maximal. In such process, the quantity of biogas over [0, T ] is proportional to the quantity

T 0 µ 2 (s 2 (t))x 2 (t) dt.
(2.4)

In order to maximize (2.4) with respect to the dilution rate u(•), a first approach is to study this maximization problem at steady state i.e. supposing that the dilution rate u is constant. This amounts to consider the optimization problem max

u∈[0,umax] µ 2 (s u 2 )x u 2 , (2.5) 
where

(x u 1 , su 1 , xu 2 , su 2 
) is a steady state of (2.1) parametrized by the constant dilution rate u. Here, u max > 0 is the maximum value for the dilution rate (it depends on the characteristics of the fermentor). Since this static optimization problem problem was recently studied in [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF], we shall only recall one optimality result that will be useful to state the optimal control problem. 

s 1 in ≥ µ -1 1 (µ 2 (s 2 in )), (2.6) 
then (2.5) admits an unique optimal solution (x 1 , s1 , x2 , s2 ) (steady state of (2.1)) such that x1 > 0 and x2 > 0.

Therefore, if (2.6) holds true, the point that maximizes the static biogas production (problem (2.5)) is such that both species x i , i = 1, 2 coexist at steady state2 . Moreover, this solution can be written

(x 1 , s1 , x2 , s2 ) = s 1 in -s1 α , s1 , s 1 in + s 2 in -s1 -s2 α , s2 ,
and it is locally asymptotically stable (see [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF]). Hereafter we denote by ū the corresponding optimal value of the dilution rate.

Remark 2.2. The complete discussion of the optimization problem (2.5) can be found in [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF]. From a practical point of view, experimental values in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] (see Table 3) indicate that (2.6) holds true implying that both species x i , i = 1, 2 are present at the optimal equilibrium (see also [START_REF] Sbarciog | On the optimization of biogas production in anaerobic digestion systems[END_REF][START_REF] Sbarciog | An optimizing start-up strategy for a biomethanator[END_REF][START_REF] Sbarciog | A biogas-based switching control policy for anaerobic digestion systems1[END_REF]). However, recent results in [START_REF] Bayen | A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model[END_REF] show that other equilibria (such as when the first species x 1 is washed-out) could be obtained, but we will restrict our attention in this paper to the case where (2.6) holds true which seems to be the case mostly encountered in practice, when s 2 in is not too high. In the rest of the paper, we consider that the fermentor is operated as in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] which provides an optimum of problem (2.5) with co-existence of both species. Hence, the optimal solution of (2.5) is supposed to satisfy: x1 > 0 and x2 > 0.

Statement of the optimal control problem

Before stating the optimal control problem, we recall the following standard attractivity property for system (2.1). When α = 1, the set

V := {(x 1 , s 1 , x 2 , s 2 ) ∈ R + × [0, s 1 in ] × R + × [0, s 2 in ] ; x 1 + s 1 = s 1 in and s 1 + x 2 + s 2 = s 1 in + s 2 in },
is an invariant and attractive manifold for (2.1). Therefore, trajectories of (2.1) converge asymptotically to this set. In the rest of the paper, we suppose3 that α = 1, and we only consider initial conditions in the set V. Hence, one has:

x 1 = s in -s 1 and x 2 = s 1 in + s 2 in -s 1 -s 2 ,
thus system (2.1) can be gathered into a two-dimensional affine system as follows:

ṡ1 = (-µ 1 (s 1 ) + u)(s 1 in -s 1 ), ṡ2 = (-µ 2 (s 2 ) + u)(s 2 in -s 2 ) + (µ 1 (s 1 ) -µ 2 (s 2 ))(s 1 in -s 1 ), (2.7) 
where u(•) is the control variable which plays the role of the dilution rate. The admissible control set U is then defined as

U := {u : [0, +∞) → [0, u max ] ; u(•) meas.}.
Initial conditions for (2.7) will be taken within the open bounded domain D defined by:

D := {s = (s 1 , s 2 ) ∈ (0, s 1 in ) × R * + ; s 2 < s 1 in + s 2 in -s 1 },
that is invariant by (2.7). In order to introduce properly the target point, it is convenient to write (2.7) as a two dimensional affine system with one input and a drift:

ṡ = f (s) + ug(s), (2.8) 
where s = (s 1 , s 2 ) and f, g : R 2 → R 2 are the two vector fields defined by

f (s) = -µ 1 (s 1 )(s 1 in -s 1 ) -µ 2 (s 2 )(s 2 in -s 2 ) + (µ 1 (s 1 ) -µ 2 (s 2 ))(s 1 in -s 1 ) and g(s) = s 1 in -s 1 s 2 in -s 2 .
The collinearity curve ∆ 0 is then defined as the set of points of D where f and g are collinear i.e.

∆ 0 := {s ∈ D ; det(f (s), g(s)) = 0}. (2.9)
This set is essential in particular for studying controllability issues of (2.7). A straightforward computation gives det(f (s), g(s

)) = (s 1 in -s 1 )(s 1 in + s 2 in -s 1 -s 2 )(µ 2 (s 2 ) -µ 1 (s 1 )
), and since initial conditions are in D, one has s 1 < s 1 in and s 1 in + s 2 ins 1s 2 > 0. Therefore, ∆ 0 can be equivalently written:

∆ 0 := {s = (s 1 , s 2 ) ∈ D ; µ 1 (s 1 ) = µ 2 (s 2 )}.
(2.10)

As both functions µ 1 (•) and µ 2 (•) are continuous and strictly increasing in a neighborhood of zero, one can check that ∆ 0 is non-empty (the curve ∆ 0 is depicted on Fig. 1). In this paper, our aim is to consider the problem of steering (2.7) in minimal time to the target point maximizing the biogas production at steady state. As we supposed that (s 1 in , s 2 in ) satisfies the assumptions of Proposition 2.1, one has that the unique optimal solution (x 1 , s1 , x2 , s2 ) (steady state of (2.1)) of the optimization problem (2.5) is such that x1 > 0 and x2 > 0. Therefore, the optimal steady state (s 1 , s2 ) of (2.7), that is our target, satisfies:

µ 1 (s 1 ) = µ 2 (s 2 ),
since one should have µ i (s i ) = ū. This implies that s := (s 1 , s2 ) ∈ ∆ 0 .

(2.11)

Hence, the target point s belongs to the collinearity set ∆ 0 . The minimum time control problem can be then stated as follows : given s ∈ ∆ 0 , we consider the optimal problem:

v(s 0 ) := inf u∈U T u s.t. s(T u , 0, s 0 , u(•)) = s, (2.12) 
where s(•, 0, s 0 , u(•)) is the unique solution of (2.7) associated to the control u and starting from a given initial condition s 0 := (s 0 1 , s 0 2 ) ∈ D at time 0. Here, s 0 ∈ D → v(s 0 ) ∈ [0, +∞] is the value function, and our aim is to obtain an optimal control for (2.12) in feedback form. At this step, it is worth to mention that we propose to solve (2.12) for any given value of the target point s ∈ ∆ 0 (not only the optimal steady state point). In fact, due to uncertainties that can affect the real process, the real value of s may not be known exactly, and thus it is important to find an optimal synthesis of the problem for any given value of s ∈ ∆ 0 .

Note that if the target point can be reached from a given initial condition s 0 ∈ D, then the existence of an optimal control for (2.12) is standard using Filippov's Theorem (see e.g. [START_REF] Cesari | Optimization-theory and applications[END_REF]).

3 Optimality conditions and geometric properties of the system

Pontryagin Maximum Principle

In this section, we apply the Pontryagin Maximum Principle (PMP) on (2.12) in order to derive necessary optimality conditions on an optimal control u. To this end, let H : R 2 × R 2 × R × R be the Hamiltonian associated to (2.12):

H = H(s, λ, λ 0 , u) := λ • f (s) + uλ • g(s) + λ 0 , (3.1) 
where a • b denotes the scalar product in R 2 , that is:

H = -λ 1 µ 1 (s 1 )(s 1 in -s 1 ) + λ 2 [-µ 2 (s 2 )(s 2 in -s 2 ) + (µ 1 (s 1 ) -µ 2 (s 2 ))(s 1 in -s 1 )] + u[λ 1 (s 1 in -s 1 ) + λ 2 (s 2 in -s 2 )] + λ 0 .
Now, let s 0 be a given initial condition in D and u ∈ U be an optimal control of (2.12) steering (2.7) in time T u from s 0 to s. Hereafter, we shall denote by s(•) the corresponding solution of (2.7) (in place of s(•, 0, s 0 , u(•))).

Then, according to the Pontryagin Maximum Principle, the following conditions hold true:

• There exists λ 0 ≤ 0 and an absolutely continuous function λ : [0, T u ] → R 2 called adjoint vector satisfying the adjoint equation λ = -∂H ∂s (s(t), λ(t), λ 0 , u(t)) for a.e. t ∈ [0, T u ], that is:

λ1 = λ 1 [µ 1 (s 1 )(s 1 in -s 1 ) -µ 1 (s 1 ) + u] -λ 2 [µ 1 (s 1 )(s 1 in -s 1 ) -µ 1 (s 1 ) + µ 2 (s 2 )], λ2 = λ 2 [µ 2 (s 2 )(s 2 in -s 2 ) -µ 2 (s 2 ) + u + µ 2 (s 2 )(s 1 in -s 1 )].
(3.2)

• The vector (λ 1 (•), λ 2 (•), λ 0 ) is non-zero.
• We have the maximization condition : for a.e. t ∈ [0, T u ],

u(t) ∈ arg max ω∈[0,umax] H(s(t), λ(t), λ 0 , ω). (3.3) We call extremal trajectory a quadruple (s(•), λ(•), λ 0 , u(•)) satisfying (2.7)-(3.2)-(3.
3). When λ 0 = 0, we say that the extremal is abnormal whereas if λ 0 < 0, then we say that the extremal is normal. In the latter, we can assume that λ 0 = -1 and therefore, by homogeneity, we write (s

(•), λ(•), u(•)) in place of (s(•), λ(•), λ 0 , u(•)).
Observe that the Hamiltonian is conserved along any extremal trajectory. In addition, one has H = 0 along any extremal trajectory since the terminal time is free.

It is convenient to introduce the switching function φ(t) := λ(t) • g(s(t)) (the term multiplying the control u in the Hamiltoninan H defined in (3.1)) that provides the control law. From (3.3), one deduces that:

   φ(t) > 0 ⇒ u(t) = u max , φ(t) < 0 ⇒ u(t) = 0, φ(t) = 0 ⇒ u(t) ∈ [0, u max ].
We call switching time any time t c ∈ (0, T u ) such that the optimal control u(•) is non-constant in any neighborhood of t c , which implies φ(t c ) = 0. We then say that the corresponding trajectory has a switching point. A singular arc is a time interval [t 1 , t 2 ] ⊂ [0, T u ] where the switching function satisfies φ(t) = 0 for any time t ∈ [t 1 , t 2 ]. In order to study properties of singular arcs, we introduce the singular locus ∆ SA defined as :

∆ SA := {s = (s 1 , s 2 ) ∈ D ; det(g(s), [f, g](s)) = 0 },
where [f, g](s) denotes the Lie bracket4 associated to the vector fields f and g. Following for instance [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF], it is well-known that any singular arc is such that the associated trajectory belongs to the singular locus ∆ SA . Since one has

det(g(s), [f, g](s)) = (s 1 in -s 1 )(s 1 in + s 2 in -s 1 -s 2 )[µ 2 (s 2 )(s 2 in -s 2 ) -µ 1 (s 1 )(s 1 in -s 1 )],
we deduce that ∆ SA can be expressed as

∆ SA = {s = (s 1 , s 2 ) ∈ D ; µ 2 (s 2 )(s 2 in -s 2 ) -µ 1 (s 1 )(s 1 in -s 1 ) = 0 }. (3.4)
Next, the function θ : D\∆ 0 → R defined by

θ(s) := µ 1 (s 1 )(s 1 in -s 1 ) -µ 2 (s 2 )(s 2 in -s 2 ) µ 1 (s 1 ) -µ 2 (s 2 ) = det(g(s), [f, g](s)) det(f (s), g(s)) , (3.5) 
will be crucial to exclude non-optimal extremal trajectories.

Proposition 3.1. Let (s(•), λ(•), u(•)) be a normal extremal trajectory defined over [0, T u ] with T u ≥ 0. Then, there exists a function γ : (D\∆ 0 ) × (0, T u ) → R such that: (i) For any time t ∈ (0, T u ) such that s(t) / ∈ ∆ 0 one has:

φ(t) = γ(s(t), t)φ(t) -θ(s(t)). (3.6) 
(ii) If the trajectory has a switching point at a time t c such that θ(s(t c )) > 0, resp. θ(s(t c )) < 0, then it is a switching time from u = u max to u = 0, resp. from u = 0 to u = u max .

Proof. When s ∈ D\∆ 0 , one has span{f (s), g(s)} = R 2 , therefore there exists α(s) ∈ R and β(s

) ∈ R such that [f, g](s) = α(s)f (s) + β(s)g(s).
From this equality, we deduce that α(s) = -det(g(s),[f,g](s)) det(f (s),g(s)) = -θ(s), where function θ(•) is defined in (3.5). Now, let us consider a normal trajectory (s(•), λ(•), u(•)). If we differentiate φ with respect to t, we find that:

φ(t) = λ(t) • [f, g](s(t)) = α(s(t))λ(t) • f (s(t)) + β(s(t))φ(t) = α(s(t)) + φ(t)(β(s(t)) -α(s(t))u(t)),
supposing that s(t) / ∈ ∆ 0 (the last equality above follows using that

H = λ(t) • f (s(t)) + u(t)φ(t) -1 = 0 for t ∈ [0, T u ]). Thus, if we set γ(s, t) := β(s) -α(s)u(t) for (s, t) ∈ (D\∆ 0 ) × (0, T u )
, we find (3.6) which proves (i). To prove (ii), suppose that t c is a switching time such that θ(s(t c )) > 0. We then deduce from (3.6) that φ(t c ) < 0 implying that t c is a switching time from u = u max to u = 0. The proof is similar if θ(s(t c )) < 0.

Next, let us introduce the two subsets of D, ∆ ± 0 , defined by: ∆ + 0 := {s ∈ D ; det(f (s), g(s)) > 0} and ∆ - 0 := {s ∈ D ; det(f (s), g(s)) < 0}. The next Lemma is straightforward from the adjoint equation (3.2). Lemma 3.1. For any extremal trajectory, the corresponding adjoint vector λ(

•) = (λ 1 (•), λ 2 (•)) is such that λ 2 ≡ 0 or λ 2 is always of constant sign.
The next proposition allows us to exclude extremal trajectories crossing the set ∆ 0 and with at least one switching point in each component ∆ + 0 and ∆ - 0 . Proposition 3.2. A normal extremal trajectory (s(•), λ(•), u(•)) cannot have two switching points t 1 < t 2 such that s(t 1 ) ∈ ∆ ± 0 and s(t 2 ) ∈ ∆ ∓ 0 . Proof. From Lemma 3.1, either λ 2 ≡ 0 or λ 2 is always non-zero. Suppose that λ 2 ≡ 0. Then, λ 1 cannot vanish. Otherwise, there would exist a time t such that λ 1 (t) = λ 2 (t) = 0. By Cauchy-Lipschitz's Theorem, we would then also have λ 1 ≡ 0. Since H = 0, we deduce that λ 0 = 0 which contradicts the PMP. Hence, λ 1 is always non-zero implying that φ = λ 1 (s 1 ins 1 ) is of constant sign, which is also a contradiction because (s(•), λ(•), u(•)) has a switching point. We deduce that λ 2 (•) is always non-zero.

Without any loss of generality, we suppose that the two switching times occur in ∆ + 0 at time t 1 and in ∆ - 0 at time t 2 > t 1 . Using that φ(t i ) = 0 and H = 0, one obtains:

λ 2 (t 1 )(s 1 in + s 2 in -s 1 (t 1 ) -s 2 (t 1 ))(µ 1 (s(t 1 )) -µ 2 (s(t 1 ))) = 1, and λ 2 (t 2 )(s 1 in + s 2 in -s 1 (t 2 ) -s 2 (t 2 ))(µ 1 (s(t 2 )) -µ 2 (s(t 2 ))) = 1. Now, λ 2 is of constant sign (positive for instance) and s 1 in + s 2 in -s 1 (t i ) -s 2 (t i ) > 0 for i = 1, 2 whereas µ 1 (s(t 1 )) -µ 2 (s(t 1 )) > 0 and µ 1 (s(t 2 )) -µ 2 (s(t 2
)) < 0, thus we have a contradiction. This ends the proof.

Remark 3.1. The above result give us some information related switching points of a normal extremal trajectories

(s(•), λ(•), u(•)). Recall that if (s(•), λ(•), u(•)
) is an abnormal extremal trajectory, one can have switching points on the curve ∆ 0 only (see e.g. [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF]).

It follows that any normal extremal trajectory can have switching points either in ∆ + 0 or in ∆ - 0 (but not both in the two components). By the previous proposition, we also obtain that given a normal extremal trajectory (s(•), λ(•), u(•)), then:

• If λ 2 (t) = 0 for any time t ∈ [0, T u ], then the control is constant over [0, T u ] (equal to 0 or u max ).

• If λ 2 (t) > 0 for any time t ∈ [0, T u ], then switching points in D necessarily occur in ∆ - 0 . • If λ 2 (t) < 0 for any time t ∈ [0, T u ], then switching points in D necessarily occur in ∆ + 0 .

Geometric properties of the system

Before going further into the determination of optimal controls, we provide a more detailed insight into the geometrical characteristics of system (2.7).

Collinearity set

First, we give some geometrical properties of the collinearity curve ∆ 0 . In the rest of the paper, we suppose that μ1 > µ 2 (s max ),

where μ1 is the maximal (asymptotic) value of function µ 1 (•) defined in (2.2), that is, µ 1 (s 1 ) < μ1 for all s 1 ≥ 0, and s max is the point where function µ 2 (•), defined in (2.3), attains its maximum, that is s max := √ k k . In view of the numerical values of parameters in the definitions of µ 1 (•) and µ 2 (•) (see Table 3), one can check that condition (3.7) holds true. This property allows to give an analytical description of set ∆ 0 defined in (2.9) and (2.10). Indeed, one has

(s 1 , s 2 ) ∈ ∆ 0 ⇐⇒ µ 1 (s 1 ) = µ 2 (s 2 ) ⇐⇒ s 1 = δ 0 (s 2 ) := (µ 1 ) -1 (µ 2 (s 2 )),
where δ 0 is the real-valued function defined over R + by:

δ 0 (s 2 ) = k 1 µ 2 (s 2 ) μ1 -µ 2 (s 2 )
.

Thanks to (3.7), one has μ1 > µ 2 (s 2 ) for any s 2 ≥ 0, thus the previous expression of δ 0 is well defined. By differentiating δ 0 with respect to s 2 one obtains δ 0 (s 2 ) =

k1 μ1µ 2 (s2) (μ1-µ2(s2)) 2
, therefore δ 0 is increasing over [0, s max ] and decreasing over [s max , +∞). In our case, that is, considering the experimental values obtained in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] (see Table 3), one has s2 in = s max , thus (2.6) implies that µ 1 (s 1 in ) ≥ µ 2 (s max ). As a consequence, one has

δ 0 (s 2 ) ∈ [0, s 1 in ],
for any

s 2 ∈ R + because µ 1 (s 1 in ) ≥ µ 2 (s max ) ≥ µ 2 (s 2 )
. The graph of ∆ 0 is depicted on Fig. 1. As a consequence, we obtain that ∆ ± 0 are such that:

∆ + 0 = {s = (s 1 , s 2 ) ∈ D ; s 1 < δ 0 (s 2 )} and ∆ - 0 = {s = (s 1 , s 2 ) ∈ D ; s 1 > δ 0 (s 2 )}.
The following property is straightforward and it is essential to analyze the behavior of extremal trajectories (see Fig. 1).

Property 3.1. One has

det(f (s), f (s) + g(s)) > 0 ⇐⇒ µ 1 (s 1 ) < µ 2 (s 2 ) ⇐⇒ (s 1 , s 2 ) ∈ ∆ + 0 , det(f (s), f (s) + g(s)) < 0 ⇐⇒ µ 1 (s 1 ) > µ 2 (s 2 ) ⇐⇒ (s 1 , s 2 ) ∈ ∆ - 0 .

Singular locus

As for ∆ 0 , we provide an analytic description of the singular locus ∆ SA defined in (3.4). First, we define two functions

s i → ν i (s i ) (i = 1, 2) by ν i (s i ) := µ i (s i )(s i in -s i ) i = 1, 2. From (3.4) notice that (s 1 , s 2 ) ∈ ∆ SA ⇐⇒ ν 1 (s 1 ) = ν 2 (s 2 ) and (s 1 , s 2 ) ∈ D.
On the other hand, from the definitions of µ 1 (•) and µ 2 (•) in (2.2) and (2.3) respectively, it is straightforward to check that ν 1 (s 1 ) > 0 for all s 1 > 0 and ν 2 (s 2 ) > 0 for all s 2 ∈ [0, s2 in ), where s2 in := min(s max , s 2 in ). Therefore, functions ν i (•) are increasing in the corresponding intervals. In the following, we will assume that the equation

ν 1 (s 1 ) = ν 2 (s 2 ) does not admit a solution (s 1 , s 2 ) ∈ D such that s 2 ∈ (s max , s 1 in + s 2 in -s 1 ). Assuming that the equation ν 1 (s 1 ) = ν 2 (s 2 ) does not admit a solution (s 1 , s 2 ) ∈ D such that s 2 ∈ (s max , s 1 in + s 2 in -s 1 )
, allows to conclude that the singular locus ∆ SA is composed by only one connected component in D.

Colinearity set ∆ 0 Substrate s 1 Substrate s 2 Upper boundary of D : s 1 + s 2 = s 1 in + s 2 in Invariant domain D ∆ + 0 ∆ - 0 f (s) f (s) + g(s) det(f (s), f (s) + g(s)) > 0 det(f (s), f (s) + g(s)) < 0 f (s) + g(s)
f (s)

s 1 = s 1 in Figure 1: Plot of ∆ 0 ; the curve ∆ 0 partitions D into the two subsets ∆ ± 0 . In ∆ + 0 , resp. ∆ - 0 , one has det(f (s), f (s) + g(s)) > 0, resp. det(f (s), f (s) + g(s)) < 0.
Property 3.2. A sufficient condition ensuring that ∆ SA is simply connected is to have

µ 1 (s 1 in ) + µ 2 (s † 2 ) > 0, (3.8) 
where s † 2 := min(s 1 in + s 2 in , s * * ) and s * * is the unique point where µ 2 (•) vanishes. Proof. Indeed, (3.8) implies that µ 1 (s 1 ) + µ 2 (s 2 ) > 0, for all s 1 ∈ (0, s 1 in ) and s 2 ∈ (s max , s 1 in + s 2 ins 1 ) since µ 2 is decreasing over [s max , s * * ] and increasing over [s * * , +∞). Now, take (s 1 , s 2 ) ∈ D and suppose that ν 1 (s 1 ) = ν 2 (s 2 ). If s 2 ≤ s 2 in , then one must have µ (s 2 ) > 0 and thus s 2 ≤ s max . Now, suppose that s 2 > s 2 in . As ν 1 (s 1 ) = ν 2 (s 2 ), we necessarily have µ (s 2 ) < 0. It follows that

µ 1 (s 1 )(s 1 in -s 1 ) = µ 2 (s 2 )(s 2 in -s 2 ) < -µ 2 (s 2 )(s 1 in -s 1 ), using that s 2 in -s 2 > -(s 1 in -s 1 )
. We thus obtain a contradiction Therefore, the equation ν 1 (s 1 ) = ν 2 (s 2 ) cannot have a solution (s 1 , s 2 ) such that s 2 ∈ (s max , s 1 in + s 2 ins 1 ) as was to be proved.

In our case, that is, considering the experimental values obtained in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] (see Table 3), we have s † 2 = s * * 34.0275, and

µ 1 (s 1 in ) + µ 2 (s † 2 ) 0.0264. Moreover, if (s 1 , s 2 ) ∈ ∆ SA , then s 2 < s max . Now, from (3.4), we obtain (s 1 , s 2 ) ∈ ∆ SA ⇐⇒ (s 1 , s 2 ) ∈ D and s 1 = δ SA (s 2 ) := (ν 1 ) -1 (ν 2 (s 2 )), (3.9) 
where (ν 1 ) -1 is well defined because ν 1 (•) is increasing in [0, +∞) and ν 2 (s 2 ) > 0 for all s 2 ∈ (0, s max ). A direct computation gives

δ SA (s 2 ) = k -μ 1 -2ν 2 (s 2 ) + μ2 1 + 4μ 1 ν 2 (s 2 ) + 4 s 1 in μ1 k ν 2 (s 2 ) 2ν 2 (s 2 )
.

The graph of ∆ SA is depicted on Fig. 3. Using the numerical values indicated on Table 3 (Section 7), one can check that the singular locus passes through the points (s 1 in , s max ) = (s 1 in , √ k k ) (10, 17.63) and (0, δ -1 SA (0)) (0, 3.15) whereas the graph of ∆ 0 passes through (0, 0) and intersects the upper boundary of D. It is then to expect that the intersection of ∆ 0 and ∆ SA will be non-empty.

It appears that the non-vacuity of ∆ 0 ∩ ∆ SA is crucial in the forthcoming study (see e.g. [START_REF] Bayen | Minimal time control of the two tanks gradostat model under a cascade inputs constraint[END_REF]). For this reason, we introduce the following definition. Definition 3.1. We say that a point s ∈ D is a steady state singular point if s ∈ ∆ 0 ∩ ∆ SA and g(s ) = 0, where g(•) is the drift function in (2.8).

In our setting, we have that g(•) is non-zero in D. Moreover, with the experimental values obtained in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] (see Table 3 in Section 7), we can check numerically that there exists exactly one steady state singular point: s := (5.08, 8.73), located at the intersection of ∆ 0 and ∆ SA . In the sequel, we shall therefore suppose that the intersection of ∆ 0 and ∆ SA in D is reduced to exactly one point. Recall from [START_REF] Bayen | Minimal time control of the two tanks gradostat model under a cascade inputs constraint[END_REF] the two following properties (see also [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF]):

• Any steady state singular point is an equilibrium of (2.7) restricted to the set ∆ SA .

• The dynamics (2.7) is collinear to the tangent vector to the graph of ∆ 0 at some point s ∈ ∆ 0 if and only if s is a steady state singular point (see Fig. 3).

We continue the study of the singular locus, computing the singular control t → u s (t) that is defined for each time t as the control u for which the corresponding trajectory s(t) is such that s(t) ∈ ∆ SA . It is obtained by differentiating φ twice with respect to the time t. We thus obtain

φ(t) = a(s(t)) + u s (t)b(s(t)),
where s → a(s) and s → b(s) are defined respectively by:

a(s) :=[µ 2 (s 2 )(s 1 in + s 2 in -s 1 -s 2 ) -µ 1 (s 1 )(s 1 in -s 1 )][µ 2 (s 2 )(s 2 in -s 2 ) -µ 2 (s 2 )] -µ 1 (s 1 )(s 1 in -s 1 )[µ 1 (s 1 )(s 1 in -s 1 ) -µ 1 (s 1 )], s ∈ D and b(s) := µ 1 (s 1 )(s 1 in -s 1 ) 2 -µ 2 (s 2 )(s 2 in -s 2 ) 2 , s ∈ D. (3.10) 
Hence, we deduce that along a singular trajectory t → s(t), one has:

u s (t) := - a(s(t)) b(s(t)) . (3.11)
The plot of the singular control u s is depicted on Fig. 4. In (3.11), the control u s can be expressed as a function of the variable s 2 (i.e. in feedback form) using that along the singular arc one has s 1 = δ SA (s 2 ). With a slight abuse of notation, we denote by s 2 → u s (s 2 ) the singular control defined by (3.11) where s 1 has been replaced by δ SA (s 2 ). Hence, we find that

u s (s 2 ) = - a(δ SA (s 2 ), s 2 ) b(δ SA (s 2 ), s 2 ) , s 2 ∈ [0, s max ]. (3.12) 
In the sequel, we shall suppose that u max is large enough to ensure the admissibility of the singular arc, that is, we assume that u max satisfies:

∀s 2 ∈ [0, s max 2 ], u s (s 2 ) ∈ [0, u max ].
(3.13) Remark 3.2. In the case where u s (•) takes larger values than u max , then a saturation phenomenon may occur leading to the existence of an additional switching curve emanating from the singular locus. For simplicity, we assumed in this study that this case does not happen by choosing a sufficiently large value for the maximum dilution rate (this is always possible from a practical point of view).

In the following lemma, we prove that the unique steady state singular point is is attractive for the dynamics (2.7) restricted to the singular locus ∆ SA . Lemma 3.2. Suppose that ∆ 0 ∩ ∆ SA = {s }, that ∆ SA is composed only by one connected component in D, and that there exists (s 1 , s 2 ) ∈ ∆ SA such that s 1 ↓ 0. Then the point s = (s 1 , s 2 ) is attractive for the dynamics (2.7) restricted to the singular locus ∆ SA .

Proof. We will study the sign of ṡ1 | ∆ SA , that is, the derivative of s 1 (•) restricted to the singular locus ∆ SA .

From the expression of the singular control u s in (3.11), notice that u s (s 2 ) → µ 2 (s max ) < µ 1 (s 1 in ) (see (2.6)) when ∆ SA (s 1 , s 2 ) → (s 1 in , s max ). Therefore, ṡ1 < 0 when ∆ SA (s 1 , s 2 ) → (s 1 in , s max ) (see the dynamics (2.7)). On the other hand, ṡ1 > 0 when (s 1 , s 2 ) ∈ ∆ SA is such that s 1 ↓ 0. We can conclude that ṡ1 > 0 if s 1 < s 1 and ṡ1 < 0 if s 1 > s 1 , proving thus that s = (s 1 , s 2 ) is attractive for the dynamics (2.7) restricted to the singular locus ∆ SA .

We can check numerically the result given by the previous lemma, observing that the steady state singular point s = (s 1 , s 2 ) is attractive for the dynamics (2.7) restricted to the singular locus ∆ SA as shows Fig. 2.

Figure 2: Plot of ṡ1 along the singular arc (as a function of s 2 since ∆ SA was parametrized as a function of s 2 , see (3.9)). The point s is attractive for (2.7) restricted to ∆ SA since one has ṡ1 > 0 for s 1 < s 1 , ṡ1 < 0 for s 1 > s 1 , and ṡ1 = 0 for s 1 = s 1 .

Similarly as for ∆ 0 , and under the assumption that the set ∆ SA is composed only by one connected curve in D, we have that ∆ SA partitions D into two connected subsets ∆ ± SA (see Fig. 3) defined respectively by:

∆ + SA := {s ∈ D ; det(g(s), [f, g](s)) > 0} = {s = (s 1 , s 2 ) ∈ D ; s 1 > δ SA (s 2 )}, ∆ - SA := {s ∈ D ; det(g(s), [f, g](s)) < 0} = {s = (s 1 , s 2 ) ∈ D ; s 1 < δ SA (s 2 )}.
We can then depict the sign of the function θ(s) = det(g(s),[f,g](s))

det(f (s),g(s))

(defined in (3.5)) in each component ∆ ± 0 ∩ ∆ ± SA , see Fig. 3. Let us finally analyze the local optimality of singular arcs by utilizing the generalized Legendre-Clebsch necessary optimality condition [START_REF] Schättler | Geometric optimal control[END_REF]. The notation H u will stand for the derivative of H with respect to u. Recall that if a singular arc is optimal over a time interval [t 1 , t 2 ], then one must have

∂ ∂u d 2 H u dt 2 ≥ 0,
along the corresponding singular trajectory (see e.g. [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF][START_REF] Schättler | Geometric optimal control[END_REF]). Following [START_REF] Schättler | Geometric optimal control[END_REF], one has:

∂ ∂u d 2 H u dt 2 (t) = λ(t), [g, [f, g]](s(t)) ,
where for convenience we wrote H u (t) in place of H u (s(t), λ(t), u(t)). Along a singular trajectory, it can be also verified (see [START_REF] Bayen | Minimal time control of the two tanks gradostat model under a cascade inputs constraint[END_REF]) that the adjoint vector is expressed by

λ(t) := g ⊥ (s(t)) det(f (s(t)), g(s(t)))
,

Colinearity set ∆ 0 Steady-state singular point s ⋆ Substrate s 1 Substrate s 2
Upper boundary of D :

s 1 + s 2 = s 1 in + s 2 in ∆ + 0 ∆ - 0 Singular locus ∆ SA ∆ + SA ∆ - SA θ < 0 θ > 0 θ < 0 θ > 0 u = 0 u = u max u = 0 u = u max u = 0 u = u max (s 1 in , 0) (s 1 in , s 2 in ) (0, s 1 in + s 2 in ) (s 1 in , s max )
Figure 3: Plot of ∆ 0 , ∆ ± 0 , ∆ SA , ∆ ± SA , and of the steady state singular point s ∈ ∆ 0 ∩ ∆ SA (that is attractive for (2.7) restricted to ∆ SA ). The sign of s → θ(s) depends on the position of s ∈ ∆ ± 0 ∩ ∆ ± SA . We also indicated in the figure the direction of the dynamics (2.7) with u = u max or u = 0 on the curve ∆ 0 .

where s(•) is the corresponding singular trajectory and for a = (a 1 , a 2 ) ∈ R 2 , a ⊥ := (a 2 , -a 1 ). A direct computation of [g, [f, g]] then gives:

[g, [f, g]](s) =     µ 1 (s1)(s 1 in -s1) 3 -µ 1 (s1)(s 1 in -s1) 2 -µ 1 (s1)(s 1 in -s1) 3 + µ 2 (s2)(s 1 in + s 2 in -s1 -s2)(s 2 in -s2) 2 + µ 1 (s1)(s 1 in -s1) 2 -µ 2 (s2)(s 2 in -s2)(s 1 in + s 2 in -s1 -s2)     .
Therefore, we find that along a singular trajectory one has (we removed the time variable below to shorten the notation):

λ, [g, [f, g]](s) = (s 1 in -s 1 )(s 1 in + s 2 in -s 1 -s 2 ) det(f (s), g(s)) [µ 1 (s 1 )(s 1 in -s 1 ) 2 -µ 2 (s 2 )(s 2 in -s 2 ) 2 ].
The sign of ∂ ∂u d 2 Hu dt 2 then only depends on the position of the singular arc with respect to ∆ 0 (i.e. on the sign of det(f (s), g(s))) and on the sign of the mapping s → b(s) (defined in (3.10)) computed along the singular locus i.e. with s 1 = δ SA (s 2 ). Using the numerical datas indicated in Table 3, we can check that s → b(s) is positive along the singular locus (see Fig. 4).

Let us now recall the standard definitions of turnpike and anti-turnpike singular arcs for planar affine systems (see [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF][START_REF] Schättler | Geometric optimal control[END_REF]). Definition 3.2. If a singular arc is locally optimal, then it is called turnpike. When it is not locally optimal, then it is called an anti-turnpike.

In the case where a singular arc is a turnpike, we say equivalently that it is time minimizing (see [START_REF] Boscain | Optimal syntheses for control systems on 2-D manifolds[END_REF]) whereas for an anti-turnpike, we say that it is time-maximizing. Since the quantity det(f (s), g(s)) changes its sign on the curve ∆ 0 , we obtain the following property for the singular locus. Hence, this quantity computed on the singular locus is positive in ∆ + 0 and negative in ∆ - 0 , which concludes the proof. Remark 3.3. These properties of singular arcs can be also retrieved using the clock form argument. Recall from [START_REF] Hermes | Functional analysis and time optimal control[END_REF] that given two trajectories γ 1 and γ 2 , not intersecting ∆ 0 , and steering a point z 0 ∈ D to a point z 1 ∈ D in time t 1 and t 2 respectively, one has

∂ ∂u d 2 H u dt 2 (t) = (s 1 in -s 1 (t))(s 1 in + s 2 in -s 1 (t) -s 2 (t)) det(f (s(t)), g(s(t))) b(s(t)), t ∈ [t 1 , t 2 ].
t 1 -t 2 = Ω det(g(s), [f, g](s)) det(f (s), g(s)) 2 ds,
where Ω is the domain enclosed by γ 1 ∪γ 2 oriented counter-clockise (the domain Ω is with a non-empty interior since γ 1 = γ 2 ). Thanks to the expression of t 1t 2 and to the sign of det(g(s), [f, g](s)) in ∆ ± 0 , we retrieve that any singular arc contained in ∆ + SA , resp. in ∆ - SA is a turnpike, resp. an anti-turnpike as in Proposition 3.3.

Extended target set

Since the target point s belongs to the curve ∆ 0 which contains exactly one steady state singular point, the target s can be reached by only two trajectories of (2.7) for the control u = 0 or u = u max .

It is convenient to introduce an extended target set that is constructed from the target point s as follows. First, let us define the semi-orbit C 0 by

C 0 := {s 0 (t, s) ; t ∈ R + },
where s0 (•, s) is the unique solution of (2.7) backward in time with u = 0 starting from the target point s at time 0. From (2.7), one can show that s0 satisfies the following property (the proof is postponed into the Appendix in Section 7).

Property 3.3. The semi-orbit C 0 satisfies lim t→+∞ s0 (t, s) = (s 1 in , s 2 in ) and lim t→+∞ s 2 in -s0 2 (t, s) s 1 in -s0 1 (t, s) = +∞. (3.14) Note that C 0 ∩ (∆ - 0 ∩ ∆ + SA ) = ∅, (3.15) 
since any trajectory starting from ∆ + SA with u = 0 cannot intersect the curve ∆ 0 (see also Fig. 3). Similarly, we consider the semi-orbit C 1 (restricted to the set D) defined by:

C 1 := {s 1 (t, s) = (s 1 1 (t, s), s1 2 (t, s)) ∈ D ; t ∈ R + }, (3.16) 
where s1 (•, s) is the unique solution of (2.7) backward in time with u = u max starting from the target point s at time 0. Definition 3.3. We call extended target set T the subset of D defined by:

T := C 0 ∪ C 1 .
(3.17)

Depending on the position of s on the curve ∆ 0 , the curve C 1 can exit the domain D through the axis {s 2 = 0} (see Fig. 7 and9) or {s 1 = 0} (see Fig. 10). Moreover, T ∩ ∆ 0 consists of two points s and s (see Fig. 7 and9) except when s = s (in the latter, T ∩ ∆ 0 consists of only one point, see Fig. 8).

If C 1 exits the domain D through the axis {s 1 = 0}, then we set s e 1 := 0 and s e 2 := s1 2 (t e , s) where t e is the first exit time of s1 (•, s) of D. Otherwise let s e 1 ∈ (0, s 1 in ) be the value of s1 1 (•, s) at the unique intersection point between C 1 and the axis {s 2 = 0}. The point (s e 1 , 0) corresponds to the exit point of C 1 of the set D, and in this case we set s e 2 := 0. Since the dynamics for s 1 is strictly monotone along C 0 and C 1 , the curve T can be written as the graph of a continuous function

s 1 → s 2 := ξ(s 1 ), s 1 ∈ [s e 1 , s 1 in ]
with ξ(s e 1 ) = s e 2 and ξ(s 1 in ) = s 2 in . It follows that the set T partitions D into two connected subsets A and B defined by:

A := {s = (s 1 , s 2 ) ∈ D ; s 2 > ξ(s 1 )} and B := {s = (s 1 , s 2 ) ∈ D ; s 2 < ξ(s 1 )}. (3.18)
This partition of D (roughly speaking above and below T ) will be useful to state the optimal synthesis in the next section.

Numerical computation of the target point

We conclude this section by a numerical computation of the target point s = (s 1 , s2 ) maximizing the static biogas production using the numerical values in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. Following Proposition 2.1, the target point (x 1 , s1 , x2 , s2 ) that maximizes the quantity µ 2 (s 2 )x 2 among steady states of (2.1) is such that x1 > 0 and x2 > 0. Such equilibrium point satisfies

µ 1 (s 1 ) = µ 2 (s 2 ) = u and x2 = s 1 in + s 2 in -s1 -s2 .
Note that the equation µ 2 (s 2 ) = u admits at most two solutions and s2 denotes the smallest one. As a consequence, the target point is obtained by maximizing the function (with respect to constant values of u)

u → p(u) := u(s 1 in + s 2 in -µ -1 1 (u) -µ -1 2 (u)), u ∈ [0, µ 2 (s max )],
where for a given u ≥ 0, µ -1 2 (u) is the smallest solution of the equation µ 2 (s 2 ) = u. The graph of p is depicted on Fig. 5 and we find numerically that s := (4.59, 6.75). (3.19) Finally, figure 6 summarizes the main geometrical features of the system (collinearity curve, singular arc, and extended target) in the case where the target point is given by (3.19).

Optimal synthesis

In this part, we provide an optimal feedback control for (2.12) in the domain D by decomposing this set into the three subsets A, B (defined by (3.18)), and T (defined by (3.17)). Due to the different behavior of singular arcs in the sets ∆ - 0 and ∆ + 0 (see Proposition 3.3), the optimal synthesis will be slightly different in both sets A and B. As a byproduct of this study, we will obtain the controllability of the target depending on its position on ∆ 0 . We shall see that except if s = s , the set of initial conditions s 0 ∈ D for which there exists an admissible control steering (2.7) from s 0 to s is D. 

Optimal synthesis on the extended target T

We start by stating the following useful property on the behavior of trajectories of (2.7) with the constant control u = u max (it is in line with Property 3.3). Property 4.1. Given s 0 ∈ D, let s(•) be the unique solution of (2.7) with the control u = u max . Then one has

lim t→+∞ s(t) = (s 1 in , s 2 in ) and lim t→+∞ s 2 in -s 2 (t) s 1 in -s 1 (t) = -1. (4.1) 
For brevity, the proof has been postponed into the Appendix. We now prove that for any initial condition belonging to the extended target set T , it is optimal to stay on this set. Proposition 4.1. If s 0 is an initial condition in C 0 , resp. C 1 , then the optimal control is u = 0, resp. u = u max until reaching s.

Proof. We consider an initial condition s 0 = s on the curve C 0 and we suppose by contradiction that it has a switching point from u = 0 to u = u max at a time t c before reaching {s}. Note that by construction of the extended target set, then s(t c ) / ∈ ∆ - 0 ∩ ∆ + SA (recall (3.15)). We now consider the three following cases depending on the location of s(t c ) on the curve C 0 . First case. We assume that s(t c ) ∈ ∆ - 0 ∩∆ - SA or s(t c ) ∈ ∆ + 0 ∩∆ + SA . Then, we have φ(t c ) ≥ 0 which contradicts that φ(t c ) = -θ(s(t c )) < 0 (recall Proposition 3.1 (ii)). Hence, this case is not possible. Second case. Suppose that s(t c ) ∈ ∆ + 0 ∩ ∆ - SA . Then, the trajectory cannot switch from u = u max to u = 0 in ∆ + 0 ∩ ∆ - SA at some time t > t c (recall Proposition 3.1 (ii)). Thus, it necessarily exits the set ∆ + 0 entering into ∆ - 0 ∩ ∆ - SA (indeed, trajectories with u = u max cross ∆ 0 in ∆ - SA only). The trajectory necessarily has another switching point t c > t c from u = u max to u = 0 (otherwise it does not reach the target). We conclude that it would have two switching points in ∆ + 0 and ∆ - 0 which contradicts Lemma 3.2. Hence, this case is not possible. Third case. Finally, we suppose that it has a switching point at a time t c from u = 0 to the singular locus (if this case is possible depending on the position of s with respect to s ). Then, one necessarily has s(t c ) ∈ ∆ + 0 ∩∆ SA . Moreover, the corresponding singular trajectory must have a second switching point (otherwise it converges asymptotically to s and it does not reach the target). Hence, the trajectory necessarily switches either to u = 0 or to u = u max in the set B. Again from Proposition 3.1 (ii), we deduce that the trajectory necessarily enters into the set ∆ - 0 either with u = 0 or u = u max . In both cases, the trajectory does not reach the target if it does not contain a switching point in ∆ - 0 . Hence, we have a contradiction as it would have two switching points in ∆ + 0 and ∆ - 0 . Thus, this case is not possible. To conclude, we have proved that for any initial condition in C 0 , an optimal control consists in taking u = 0 until reaching s. Similar arguments show that for any initial condition on the curve C 1 , then the optimal control is u = u max until reaching s. Upper boundary of D :

s 1 + s 2 = s 1 in + s 2 in (s 1 in , 0) Invariant domain D ∆ - SA ∆ + SA ∆ + 0 ∆ - 0 u = u max u=0 C 0 C 1 (s 1 in , s max ) (s 1 in , s 2 in ) (0, s 1 in + s 2 in )
Figure 6: Main characteristics of system (2.7) : Invariant domain D, collinearity set ∆ 0 (together with ∆ ± 0 ), singular locus ∆ SA (together with ∆ ± SA ), extended target

T = C 0 ∪ C 1 .

Optimal synthesis in the set A

In this section, we introduce a feedback control5 u[•, •] defined in the set A (recall (3.18)) by:

u[s 1 , s 2 ] :=    0 if s 1 < δ SA (s 2 ), u s (s 2 ) if s 1 = δ SA (s 2 ), 1 if s 1 > δ SA (s 2 ). (4.2) 
Hereafter, we shall refer to the singular arc strategy (SAS) for the operation of the feedback control (4.2) on the system (2.7). In the set A, we have the following optimality result (see Fig. 7).

Proposition 4.2. Suppose that (3.13) holds true. Then, for any s ∈ ∆ 0 such that s = s , the feedback control (4.2) drives optimally any initial condition in A to the extended target set T .

Proof. First, let us recall that the singular locus ∆ SA restricted to ∆ + 0 is time minimizing i.e. any singular arc contained in this set is locally optimal (see Proposition 3.3). Moreover such arcs are non-saturating from (3.13). Now, since s = s , we have the following cases: First case. Consider an initial condition s 0 ∈ ∆ + 0 ∩ ∆ - SA . Then, if one has u = u max , the trajectory must exit the set ∆ + 0 (recall Proposition 3.1 (ii)) and it necessarily enters into the set ∆ - 0 . In that case, the trajectory cannot reach the extended target T with u = u max , thus it must have a first switching point to u = 0 in ∆ - 0 . If the trajectory reaches the target point, it necessarily also has a switching point in the set ∆ + 0 since the target set T cannot be reached from the set A ∩ ∆ - 0 . We thus have a contradiction as the trajectory contains switching points both in ∆ + 0 and ∆ - 0 . This shows that we must have u = 0 until reaching the singular arc. Second case. Consider an initial condition s 0 ∈ ∆ - 0 ∩ ∆ - SA . If one has u = u max at time t = 0, then the trajectory must have a switching point in ∆ - 0 (since this trajectory converges to the point (s 1 in , s 2 in ) without intersecting T in ∆ - 0 ) and, as it reaches the target, it must also have a switching point in ∆ + 0 (as in the previous case) which contradicts Lemma 3.2. Thus, we necessarily have also u = 0 in ∆ - 0 ∩ ∆ - SA . This proves that the optimal control is u = 0 in the set ∆ - SA ∩ A. Similar arguments show that the optimal control is u = u max in the set ∆ + SA ∩A. Moreover, singular trajectories are optimal until reaching T , otherwise there would exist a time t where a singular trajectory leaves the singular locus in ∆ + 0 either with u = 0 or with u = u max . We would obtain a contradiction using the previous analysis. Hence, to remain in the singular locus is optimal until reaching T .

Remark 4.1. If s = s the target point is not reachable from initial conditions in A (see Fig. 8). Indeed, we know that T is tangent to ∆ 0 at s (see e.g. [START_REF] Bayen | Minimal time control of the two tanks gradostat model under a cascade inputs constraint[END_REF]). Thus, one has T \ {s} ⊂ ∆ - 0 since ∆ 0 ∩ ∆ SA is reduced to a singleton and lim t→+∞ s0 (t, s) = (s 1 in , s 2 in ) (see (3.14)). Note also that singular trajectories reach the point s in infinite horizon, thus any trajectory reaching T from the set A necessarily reaches C 0 \{s } with u = u max or C 1 \{s } with u = 0. Hence, the trajectory must have a switching point from u = u max to u = 0 on C 0 \{s } or from u = 0 to u = u max on C 1 \{s }. Moreover, it belongs to the set A in a left neighborhood of such a switching point. This is a contradiction with Proposition 3.1 (ii) as T \{s} ⊂ ∆ - 0 . Hence, the target point cannot be reached from A when s = s . Remark 4.2. Proposition 4.2 shows that optimal trajectories starting from A should reach the singular locus in minimal time and stay on this set until reaching the extended target set T . This optimal strategy in the set A illustrates the turnpike property of the singular locus in ∆ + 0 (see Fig. 7) established in Proposition 3.3. As a byproduct, we also obtain that the set A ∪ T is optimally invariant (even though A is non-necessarily invariant by (2.7)).

Optimal synthesis in the set B and cut-locus

We first, verify that the target point s can be reached by any point in the set B. Proof. Recall from Property 3.3 that lim t→+∞ s0 (t, s) = (s 1 in , s 2 in ) and lim t→+∞ s 2 in -s 0 2 (t,s) s 1 in -s 0 1 (t,s) = +∞. In view of Property 4.1, the unique solution of (2.7) with u = u max starting from a given initial condition s 0 ∈ B necessarily intersects C 0 in finite time which ends the proof (the target s can be reached from any point of C 0 ). First, it can be observed that optimal trajectories starting in the set B should necessarily reach the extended target set T before reaching s. Hence, the set B ∪ T is also optimally invariant utilizing Proposition 4.1.

Due to the anti-turnpike property of the singular locus in ∆ - 0 , the optimal synthesis will be slightly different in the set B : the singular locus in ∆ - 0 is time maximizing, therefore optimal trajectories do not take advantage of staying on the singular arc. Instead, they should reach the extended target set in minimal time with an extremal value for the control in such a way to stay far from the singular locus. In the case of a time maximizing singular arc, extremal trajectories can switch alternatively in the sets ∆ + SA ∩ ∆ - 0 and ∆ - SA ∩ ∆ - 0 . Nevertheless, optimal trajectories are the extremal trajectories with the minimum number of switching times. Indeed, for the point to point minimal time control problem, Proposition 27 of [START_REF] Bonnard | Singular trajectories and their role in control theory[END_REF] (see also [START_REF] Bonnard | Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one[END_REF][START_REF]The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case[END_REF][START_REF]The structure of time-optimal trajectories for single-input systems in the plane: the C ∞ nonsingular case[END_REF][START_REF] Sussmann | Regular synthesis for time-optimal control of single-input real analytic systems in the plane[END_REF]) implies that in the case of an elliptic singular arc (i.e. time maximizing), then optimal trajectories have at most one switching point before reaching {s} in a neighborhood of the singular locus. Hence, if we denote by B ± a Bang arc with u = 0 or u = u max , we can expect that optimal trajectories in the set B are of two types: for each initial condition s 0 ∈ B, either the control u = u max until reaching T is optimal or the control u = 0 until reaching T is optimal. Let us then introduce two functions s 0 → v 10 (s 0 ), s 0 → v 01 (s 0 ) in the set B as follows:

• The time of the strategy B + B -from a given initial condition s 0 ∈ B (i.e. u = u max until reaching C 0 and then u = 0 until reaching s) is denoted by v 10 (s 0 ).

• The time of the strategy B -B + from a given initial condition s 0 ∈ B (i.e. u = 0 until reaching C 1 and then u = u max until reaching s) is denoted by v 01 (s 0 ).

It follows that optimal trajectories may be non unique depending if the mapping s 0 → v 10 (s 0 )v 01 (s 0 ) vanishes in the set B or not.

Definition 4.1. A cut-locus L is defined as the set of points where the optimal feedback is non-unique.

In our setting, the cut-locus then separates the set B into two subsets where in each one, the strategy B + B -and B -B + are optimal respectively. Moreover, for any initial condition in L, both trajectories B + B - and B -B + reach s in the same time i.e. one has v 10 (s 0 ) = v 01 (s 0 ). The numerical computation of L is explained in section 4.4.

Note that when s e 1 = 0, the strategy B -B + is not admissible (in that case, any solution of (2.7) for the control u = 0 starting in B cannot intersect the curve C 1 ). Hence, L = ∅ and only the strategy B + B -is optimal until reaching the target point s, see Fig. 10.

Numerical computation of the cut locus

In order to find numerically the set L, we proceed as follows. Let us write v 01 = α 01 + β 01 and v 10 = α 10 + β 10 , with α 01 and α 10 the times of the first bang arcs u = 0 and u = 1 respectively and β 01 , β 10 the times of the second bang arcs u = 1 and u = 0 respectively. Recall that s(•, t 0 , s 0 , u(•)) denotes the unique solution of (2.7) such that s(t 0 , t 0 , s 0 , u(•)) = s 0 . Next, we consider the following parametrized function F λ : R 3 → R 3 defined as:

x :=   α 01 β 10 α 10   -→ F λ (x) :=
λ + α 01β 10α 10 s(0, α 01 , s(0, λ, s, u max ), 0)s(0, α 10 , s(0, β 10 , s, 0), u max ) ,

where λ := β 01 .

Remark 4.3. (i) We consider non-negative times i.e. x ≥ 0 and λ ≥ 0. In F λ , the solutions of (2.7) are computed backward in time.

(ii) For any λ, the vector x := (0, 0, λ) is a solution of F λ(x) = 0, hence to every point of T is associated a pair (x, λ) such that x = (0, 0, λ) and satisfying F λ (x) = 0. Besides, for λ = 0 and any time t, the vector x t := (t, t, 0) satisfies F 0 (x t ) = 0. Hereafter, we call trivial solution any pair (x, λ) of the form ((0, 0, λ), λ) or ((t, t, 0), 0).

One can see on Fig. 7, 8 and 9 that an extremity of the cut-locus belongs to the extended target set while its interior is formed from non-trivial solutions. To compute the cut-locus, we first need to determine the range [λ min , λ max ] for the values of the parameter λ :

• The maximal value λ max is the time to reach s 2 = 0 from s with the constant control u = u max , integrating backward in time (2.7), that is, λ max satisfies s 2 (0, λ max , s, u max ) = 0.

• On the other hand, it is to expect that the cut-locus passes through the other intersection point s of T and ∆ 0 (when s = s , one has s = s = s ) and λ min is defined as follows : if s is below s (i.e. s2 < s 2 ), then λ min = 0 and if s is above s (i.e. s2 > s 2 ), then λ min is defined in such a way that s(0, λ min , s, u max ) = s .

The cut-locus without extremities is given by non-trivial solutions of the equation

F λ (x) = 0,
with λ ∈ (λ min , λ max ). If 0 is a regular value of F (x, λ) := F λ (x), then each connected component of F = 0 is a continuously differentiable curve diffeormophic either to a circle or to the real line (see [START_REF] Allgower | Introduction to Numerical Continuation Methods[END_REF]). The curves belonging to F -1 ({0}) are disjoint in the regular cases and each curve is called a path of zeros. The path of zeros associated to the cut-locus reaches a trivial solution when λ = λ min corresponding to the point s on the cut-locus, while there is no solution for λ = λ max since the cut-locus tends to (s 1 in , s 2 in ) when λ → λ max . The path of zeros associated to L is then computed for λ ∈ (λ min , λ max ) by differential path following methods [START_REF] Allgower | Introduction to Numerical Continuation Methods[END_REF] (or homotopy methods) starting from one initial point (x 0 , λ 0 ) such that λ 0 ∈ (λ min , λ max ) and F (x 0 , λ 0 ) = 0. We use the HamPath package [START_REF] Caillau | Differential continuation for regular optimal control problems[END_REF] to compute the curve. A predictor-corrector algorithm is implemented with a high order numerical integrator scheme (with adaptive step-size) for the prediction and a simplified Newton method for the correction 6 . One interesting feature of the HamPath code is that the Jacobian of F is automatically computed.

To complete the description on how the cut-locus is computed, let us now explain how the initial point (x 0 , λ 0 ) is determined. First, we fix λ 0 ∈ (λ min , λ max ) and then we solve with the fmincon Matlab function the optimization problem: min (α01,β01,α10)∈R 3 -α 01 s.t. F λ0 (α 01 , β 01 , α 10 ) = 0 and (α 01 , β 01 , α 10

) ∈ R * + × R * + × R * + ,
to eliminate the trivial solutions. Finally, the cut-locus is depicted on Fig. 7, 8 and 9 respectively when s is below s , s = s = s , and when s is above s . Note that the cut-locus is computed with high accuracy since the path of zeros satisfies F = 0 with an error of order less than 10 -12 along the path.

Full synthesis

The following Theorem provides the optimal synthesis for problem (2.12) and summarizes the previous results obtained in the sets A and B.

Theorem 4.1. Suppose that ∆ 0 ∩ ∆ SA is reduced to a singleton {s }, that ∆ SA is simply connected, and let s ∈ ∆ 0 be a target point. In addition, suppose that (2.6), (3.7) and (3.13) hold true. Then, one has the following optimality results.

(i) If s = s , then the target set can be reached from initial conditions in the set B only.

(ii) If s = s , then the target set can be reached from any initial conditions in the set D.

(iii) For any s ∈ ∆ 0 , an optimal feedback control for (2.12) is given as follows:

• For any initial condition on C 0 , resp. C 1 , an optimal control is u = 0, resp. u = u max until reaching T .

• In the set A, the optimal strategy is SAS and the feedback control (4.2) drives optimally any initial condition s 0 ∈ A to the set T .

• In the set B, from any initial condition, either the strategy B --B + or B + -B -is optimal depending on the initial condition with respect to the cut-locus L (if it exists).

Remark 4.4. It is worth noting that the optimal synthesis will be similar if the target point s is not in the collinearity set ∆ 0 . We do not develop this case because in our problem, the target point is the steady state that maximizes the biogas flow rate at equilibrium and, under our assumptions, this point is in ∆ 0 .

Conclusion

In this paper, we provided an optimal feedback control of Problem (2.12) that allows to reach in minimal time the target point maximizing the biogas production at steady state. To do so, we defined an extended target set that enabled us to decompose the state space into two subsets A and B and give the optimality results in each subset. It is worth to mention that the structure of the optimal control is different in A and B due to the turnpike and anti-turnpike properties of the singular arc in the two subsets ∆ ± 0 . The optimality results mainly rely on the geometry of the collinearity curve ∆ 0 and of the singular locus ∆ SA , and more precisely on the fact that ∆ 0 ∩ ∆ SA is reduced to a singleton separating ∆ SA into a turnpike and an anti-turnpike. If more than two steady state singular points appear, the study of global optimality results would be more intricate and out of the scope of the paper. Let us point out that our methodology allows to treat quite general minimal time control problems having this particular structure (i.e. one steady state singular point in the invariant domain together with a turnpike and an anti-turnpike for the singular locus, see e.g. [START_REF] Bayen | Minimal time control of the two tanks gradostat model under a cascade inputs constraint[END_REF][START_REF] Bonnard | Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance[END_REF]).

From a practical point of view, the determination of an autonomous feedback control is useful to drive optimally the control system to the optimal target point at steady state (it is in particular robust to control the system if uncertainties affect the process). Moreover, the knowledge of the different curves ∆ 0 , ∆ SA , and L may be useful to increase the performance of a fermentor operated by the synthesized feedback control. In particular, depending on the position of the initial condition w.r.t. these curves, one can then choose an adequate control policy driving the system to the target point. It is also worth to mention that this control law can also be used as a sub-optimal strategy (for the time criterion) in the case when initial conditions are no longer on the set V or when α = 1. Since uncertainties can affect the process, the target may be not known exactly on the curve ∆ 0 , nevertheless, our analysis provides an optimal feedback control for any target point on ∆ 0 . 2 (see [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]).

Proof of Property 3.3. To simplify the notations, let us denote by (s 1 (•), s 2 (•)) in place of s0 (•, s) the unique solution of (2.7) backward in time with u = 0 starting from s. If we set y 1 := s 1 ins 1 and y 2 = s 2 ins 2 , we then find that (y 1 (•), y 2 (•)) satisfy the ordinary differential equation (ODE): ẏ1 = -y 1 µ 1 (s 1 iny 1 ) and ẏ2 = -y 2 µ 2 (s 2 iny 2 ) + (µ 1 (s 1 iny 1 )µ 2 (s 2 iny 2 ))y 1 . Thus, one obtains that y 1 (t) → 0 when t → +∞. Using that µ 1 and µ 2 are bounded and that y 1 (t) goes to zero when t → +∞, we deduce that y 2 (t) → 0 when t → +∞ (Barbalat's Lemma). Now, a straightforward [START_REF] Cesari | Optimization-theory and applications[END_REF]. Singular locus, collinearity curve and extended target in black; cut-locus in green. In that case, the cut-locus passes through s , the other intersection point between ∆ 0 and T . [START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]. Singular locus, collinearity curve and extended target in black. In that case, the strategy B --B + in the set B is not admissible and optimal controls in the set B satisfy u = u max .

Proposition 3 . 3 . 2

 332 The singular locus is time minimizing in ∆ + 0 and it is time maximizing in ∆ - 0 . Proof. Consider a singular arc over [t 1 , t 2 ]. Since b(•) is non-negative on the singular locus, we find that the quantity ∂ ∂u d Hu dt 2 can be expressed as:

Figure 4 :

 4 Figure 4: Picture left : Plot of the mapping b(•) along the singular locus ∆ SA as a function of s 2 . Picture right: plot of the singular control as a function of s 2 .

Figure 5 :

 5 Figure 5: Plot of the function u → p(u). The maximum is achieved for u = 0.47.

Lemma 4 . 1 .

 41 The target set can be reached from any initial condition s 0 ∈ B.

Figure 7 :Figure 8 :

 78 Figure7: Optimal synthesis for the target point s := (4.59, 6.75) maximizing the biogas production at steady state. Singular locus, collinearity curve and extended target in black; cut-locus in green. In that case, the cut-locus passes through s , the other intersection point between ∆ 0 and T .

Figure 9 :

 9 Figure9: Optimal synthesis for the target point s =(5.52, 12). Singular locus, collinearity curve and extended target in black; cut-locus in green. In that case, the cut-locus passes through s , the other intersection point between ∆ 0 and T .

Figure 10 :

 10 Figure10: Optimal synthesis for the target point s =(5.72, 17). Singular locus, collinearity curve and extended target in black. In that case, the strategy B --B + in the set B is not admissible and optimal controls in the set B satisfy u = u max .

  Proposition 2.1. Let s2 in := min(s max , s 2 in ). If the parameters s 1 in and s 2 in satisfy the inequality

Table 1 :

 1 Variable names in(1.1) 

	Variable name		Signification	unit
	X 1		acidogenic bacteria	g/L
	S 1		organic substrate	g/L
	X 2		methanogenic bacteria	g/L
	S 2		Volatile fatty acids	mmol/L
	k i , i = 1, 2, 3		Yield coefficients	mmol/g
	S 1 in S 2 in µ i , i = 1, 2	Input substrate concentration for S 1 Input sustrate concentration for S 2 kinetics of the bacteria	g/L mmol/L d -1
	D		Dilution rate	d -1
	α		Retention of biomass parameter
	New variables in system (2.1) Original variables in system (1.1)
	x 1			k 1 X 1
	s 1			S 1
	x 2 s 2			k1k3 k2 X 2 k1 k2 S 2
	u			αD
	s 1 in s 2 in			S 1 in k1 k2 S 2 in
	µ 1 (s 1 )	μ1 (s 1 ) = μ1 (S 1 )
	µ 2 (s 2 )	μ2	k2 k1 s 2 = μ2 (S 2 )

Table 2 :

 2 Change of variables for obtaining (2.1) from (1.1).

	Parameter Value
	k 1	42.14
	k 2	116.5
	k 3	268
	μ1	1.2
	k	7.1
	μ2	0.74
	k	3.36
	k	92.6
	s 1 in s 2 in	10 33.85
	α	1
	u max	1

Table 3 :

 3 Values of the parameters used for simulations after change of variable indicated in Table

Usually, such an equilibrium maximizing the production of biogas at steady state is called nominal operating point[START_REF] Sbarciog | On the optimization of biogas production in anaerobic digestion systems[END_REF][START_REF] Sbarciog | An optimizing start-up strategy for a biomethanator[END_REF][START_REF] Sbarciog | A biogas-based switching control policy for anaerobic digestion systems1[END_REF].

When α < 1, one can show that the set V is attractive provided that the constant dilution rate is large enough implying the wash-out of the bacteria. In general, the attractivity property no longer holds when α < 1 so that the reduction of (2.1) into (2.7) is not possible, and the problem is more delicate in this case. A thorough study of the control of the chemostat system (i.e. the restriction of (2.1) to (x 1 , s 1 )) including a retention of biomass parameter can be found in[START_REF] Bayen | Time-optimal control of concentration changes in the chemostat with one single species[END_REF].

The Lie bracket of two smooth vector fields f, g : R 2 → R 2 is the vector field [f, g] : R 2 → R 2 defined by [f, g](s) := Dg(s)f (s) -Df (s)g(s), s ∈ R 2 .

The notation u[s 1 , s 2 ] indicates that u is a feedback control that depends on the state variable whereas u(•) ∈ U denotes an open loop control.

The correction was not implemented yet when[START_REF] Caillau | Differential continuation for regular optimal control problems[END_REF] was published.
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Appendix

In this section, we summarize the variable names and the numerical values used in this paper, and we prove Properties 3.3 and 4.1. We also depict the optimal synthesis of the problem.

• Table 1 describes the name of the variables of (1.1).

• Table 2 indicates the changes of variable to transform (1.1) into (2.1).

• Table 3 provides the numerical values for the parameters that were used for simulations (the variables values before the change of variable are taken from [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] and are explained below).

In the original variables (see (1.1)) the kinetics are given by μ1 (S 1 ) :=

with µ 1,max = 1.2, K S1 = 42.14, µ 2,max = 0.74, K S2 = 9.28, K I2 = 256, S 1 in = 10 and S 2 in = 93.6 (see [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]). According to the change of variable indicated in Table 2, we find that μ1

. This yields to the numerical values indicated in Table 3. The maximum value for the dilution rate is taken equal to 1 which is in the range of values of [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF].

Remark 7.1. Using the numerical values indicated in Table 3, we can check numerically that the singular arc is always admissible i.e.

)) and that δ -1 SA (0) 3.15 and s max 17.33. Then, s 2 → u s (s 2 ) indeed satisfies (7.1) 

Let us now set z := w + 1 and η(t

By a direct integration, we get z(t) = z(0) exp

in ) (note that following [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], one can check that numerical values of the parameters are such that µ 1 (s 1 in ) = 0.7, µ 2 (s 2 in ) = 0.51, and

. Hence, we find that η(t) converges to a positive constant η ∞ > 0 when t → +∞. Thus, η is not integrable over [0, +∞) and thus z(t) → +∞ when t → +∞. We conclude that w

in -s1(t) → +∞ when t goes to infinity as was to be proved.

Proof of Property 4.1. Let (s 1 (•), s 2 (•)) be the unique solution of (2.7) with u = u max starting from a given initial condition s 0 ∈ B. If we set y 1 := s 1 ins 1 and y 2 = s 2 ins 2 , we then find that (y

Similarly as in the proof of Property 3.3, we can show that lim t→+∞ s 1 (t) = s 1 in and lim t→+∞ s 2 (t) = s 2 in . Let us now set w := y 2 /y 1 . A straightforward computation shows then that one has

Hence, if we define the function z as z := w + 1, we find that ż = ε(t)z where ε(t) := µ 2 (s 2 iny 2 (t))µ 1 (s 1 iny 1 (t)). As ε(t) congerges to a negative value -η ∞ = µ 2 (s 2 in )µ 1 (s 1 in ) < 0, we obtain that z(t) goes to zero when t → +∞. Hence, we get that w(t) → -1 when t goes to infinity as was to be proved.

We finish this appendix with the plot of optimal syntheses, provided in Section 4.5, for different values of the target point s:

• Fig. 7 depicts the optimal synthesis in the case where the target is the point of ∆ 0 maximizing the biogas production (see (3.19)).

• Fig. 8 depicts the optimal synthesis in the particular case when s = s ∈ ∆ 0 (i.e. the target coincides with the steady-state singular point).

• Fig. 9 depicts the optimal synthesis for a target point s ∈ ∆ 0 such that s2 > s 2 in the case where the extended target T intersects the axis s 2 = 0.

• Fig. 10 depicts the optimal synthesis for a target point s ∈ ∆ 0 such that s2 > s 2 in the case where T does not intersect the axis s 2 = 0.