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Abstract

Our aim in this work is to synthesize optimal feeding strategies maximizing over a time period the
biogas production in a continuously filled bioreactor controlled by its dilution rate. Following [6], such
an anaerobic process is described by the so-called AM2 model which is a four-dimensional dynamical
system. Instead of modeling the optimization of the biogas production as an optimal control problem
of Lagrange type, we propose in this paper a slightly different optimal control approach : we study the
minimal time control problem to reach a target point which is chosen in such a way that it maximizes the
biogas production in the AM2 model at steady state. Thanks to the Pontryagin Maximum Principle and
to geometric control theory, we provide an optimal feedback control for the minimal time control problem
when initial conditions are taken on the invariant and attractive manifold of the system. The optimal
synthesis exhibits turnpike and anti-turnpike singular arcs and a cut-locus.

Keywords. Chemostat Model, Optimal Feedback, Geometric Control, Pontryagin Maximum Principle.

1 Introduction

Within the context of renewable energies, anaerobic digestion of waste and wasted water has become an
attractive alternative to carbon fossil, being a well-known and established technology to treat waste in the
methanization of sewage sludge from wastewater treatment plants [16]. Anaerobic digestion is a complex
process that can take place in one bioreactor used for the production of biogas (methane, hydrogen). From
a practical point of view, one main issue is to obtain an efficient management policy for anaerobic digestion
processes in order to maximize the biogas outflow produced over a given period (see e.g. [13]).

A representation of this process is based on the coupling of two main reactions called acidogenesis and
methanization. These two reactions can be described by the so-called AM2 model (see [6]) represented by the
system: 

Ẋ1 = µ̃1(S1)X1 − αDX1,

Ṡ1 = −k1µ̃1(S1)X1 +D(S1
in − S1),

Ẋ2 = µ̃2(S2)X2 − αDX2,

Ṡ2 = k2µ1(S1)X1 − k3µ̃2(S2)X2 +D(S2
in − S2),

(1.1)

that is based on the chemostat model (see [14, 17, 22]). Here, X1, resp. X2 stands for the concentration of
acidogenic bacteria1, resp. methanogenic bacteria, Si, i = 1, 2 are the substrate concentrations, and D is the
dilution rate of the continuously operated bioreactor (i.e., D = Q/V where Q is the input and output flow
rate of water and V is the constant volume of water present in the bioreactor). The coefficient α ∈ (0, 1]
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models the retention of biomass in the liquid phase, Siin, i = 1, 2 are the two input substrate concentrations,
and µ̃i(·), i = 1, 2 are the two growth functions or kinetics for microorganisms X1 and X2.

In such process, the gas outflow produced in the fermentor is proportional to the production of methano-
genesis species X2. Over a time period [0, T ], the production of biogas in such process is then proportional to
the quantity written in integral form : ∫ T

0

µ̃2(S2(t))X2(t) dt. (1.2)

Finding an adequate functioning mode for which (1.2) is maximal then amounts to study an optimal control
problem : one aims at finding an adequate feeding strategy maximizing (1.2) among solutions of (1.1) (here,
the system (1.1) is controlled via the input flow rate D(·) that plays the role of the control function).

Optimal control theory is well suited to study such an optimization problem (via Pontryagin’s Principle
or Hamilton-Jacobi equation). However, in the present form, this optimal control problem presents several
difficulties as for instance the curse of dimensionality when solving Hamilton-Jacobi equation associated to the
optimal control problem, or the determination of a time dependent optimal feedback control for this problem.
From a practical point of view, the knowledge of an autonomous feedback control would be more useful in
order to pilot adequately a fermentor. In order to operate optimally such system, we propose an alternative
way based on a two-step optimization procedure and that takes into account the previous remarks :

1. We first suppose the system at steady state, and we maximize the static production of biogas among
equilibria of (1.1) i.e. the quantity µ̃2(S2)X2 among constant dilution rates. Following [2], this procedure
allows us to obtain steady states of (1.1) maximizing the biogas production.

2. The second step consists in introducing a new optimal control problem governed by (1.1). We aim at
finding an optimal feedback control driving (1.1) in minimal time to the target point defined as the
optimal steady state in the previous problem.

Our aim in this work is to address essentially the second point using the theory of optimal control (the first
point which consists in maximizing (1.2) among steady states of (1.1) was recently addressed in [2]). From
a practical point of view, a reactor cannot be initiated at the optimal point due to uncertainties and to the
initial conditions inside a fermentor. Thus, it is of particular interest to synthesize a feedback control strategy
(in particular for robustness aspects) driving optimally the system to this operating point provided that this
optimal point is known. When the desired target has been reached, the bioreactor can be then operated at
the corresponding equilibrium which allows to have a guaranteed production of biogas over time.

The paper is organized as follows. In Section 2, we recall some properties of the AM2-model that are useful
to transform (1.1) into a two-dimensional affine system with a drift and one input. We also recall a result
of [2] (see Proposition 2.1) which shows that the target point maximizing the biogas production at steady
state necessarily belongs to the collinearity curve of the system. This property appears to be an essential key
point in this study. More precisely, considering a target point on the collinearity curve brings controllability
issues and difficulties to exclude extremal trajectories that could cross this set several times. In Section 3,
we apply the Pontryagin Maximum Principle, and we provide properties of the switching functions that will
allow us to exclude extremal trajectories that are non optimal. We also give geometrical properties of the
collinearity curve and of the singular locus. Finally, Section 4 provides optimality results and an optimal
feedback control for the minimum time control problem to reach any target point chosen on the collinearity
curve. The optimal synthesis is depicted in the context of the study of a fermentor described in [6] using the
numerical values that were obtained experimentally from real measurements (see Appendix in Section 7). For
each initial condition ξ0 of the state space, we compute an optimal control t 7→ u(t, ξ0) in open loop leading to
the determination of an optimal feedback control u[ξ0] := u(0, ξ0). The optimal synthesis exhibits a singular
arc that has the property to be time-minimizing (i.e. a turnpike) in a subset of the state space whereas it is
time-maximizing (i.e. an anti-turnpike) in its complementary. In the subset of the state space containing the
anti-turnpike singular locus, optimal strategies can be non-unique, and we compute numerically a cut-locus
using a homotopy method (see e.g. [11]).
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2 Statement of the problem

2.1 Preliminaries on the modeling of a fermentor

In this section, we briefly recall the modeling of a two-step fermentor that will be useful to state the optimal
control problem. Following [2], the model (1.1) proposed in [6], can be written as the following equivalent
dynamical system 

ẋ1 = µ1(s1)x1 − ux1,

ṡ1 = −µ1(s1)x1 + u
α (s1

in − s1),

ẋ2 = µ2(s2)x2 − ux2,

ṡ2 = µ1(s1)x1 − µ2(s2)x2 + u
α (s2

in − s2),

(2.1)

after several change of variables indicated in Table 2 (see Appendix in Section 7).
This new model (with much less parameters) is still describing the two main coupled reactions (acidogen-

esis and methanization) of anaerobic digestion, inside a fermentor, where, xi, resp. si, i = 1, 2, represent the
biomass concentrations, resp. substrate concentrations (after the change of variables), and u is the dilution
rate of the continuously operated bioreactor. The index 1, resp. 2 is for the acidogenesis reaction, resp. meth-
anization reaction. The constants s1

in and s2
in are positive and denote the two input substrates concentration

(after the change of variables).
Following [6], the modeling of biological processes leads to the following choice of the growth rate functions.

Both kinetics µ1(·) and µ2(·) are as follows [14, 17]:

• The growth function µ1(·) is of Monod type, that is:

µ1(s1) =
µ̄1s1

k + s1
, (2.2)

where µ̄1 > 0 and k > 0.

• The growth function µ2(·) is of Haldane type, that is:

µ2(s2) =
µ̄2s2

s2 + k′ + s22
k′′

, (2.3)

where µ̄2 > 0, k′ > 0, and k′′ > 0. Note that µ2(·) has a unique maximum at the point smax :=
√
k′k′′.

Remark 2.1. In the model (1.1), proposed in [6], the growth functions µ̃1(·) and µ̃2(·) are of Monod and
Haldane type respectively. After the change of variable (indicated in Table 2 of the Appendix in Section 7)
for obtaining (2.1) from (1.1), it is straightforward to check that the new functions µ1(·) and µ2(·) are also
Monod and Haldane (as it is written above). For this reason, in Table 3 (Appendix in Section 7) we present the
parameters of the Monod and Haldane functions µ1(·) and µ2(·), considering the values obtained experimentally
in [6] for functions µ̃1(·) and µ̃2(·) in (1.1), after the change of variable. This procedure is explained in the
Appendix (Section 7).

The main feature of an anaerobic fermentor modeled by (2.1) is to transform organic material (the sub-
strates) into biogas (methane). We are interested in studying operation modes of the fermentor for which the
production of biogas over a given time period is maximal. In such process, the quantity of biogas over [0, T ]
is proportional to the quantity ∫ T

0

µ2(s2(t))x2(t) dt. (2.4)

In order to maximize (2.4) with respect to the dilution rate u(·), a first approach is to study this maximization
problem at steady state i.e. supposing that the dilution rate u is constant. This amounts to consider the
optimization problem

max
u∈[0,umax]

µ2(s̄u2 )x̄u2 , (2.5)

where (x̄u1 , s̄
u
1 , x̄

u
2 , s̄

u
2 ) is a steady state of (2.1) parametrized by the constant dilution rate u. Here, umax > 0 is

the maximum value for the dilution rate (it depends on the characteristics of the fermentor). Since this static
optimization problem problem was recently studied in [2], we shall only recall one optimality result that will
be useful to state the optimal control problem.
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Proposition 2.1. Let s̃2
in := min(smax, s

2
in). If the parameters s1

in and s2
in satisfy the inequality

s1
in ≥ µ−1

1 (µ2(s̃2
in)), (2.6)

then (2.5) admits an unique optimal solution (x̄1, s̄1, x̄2, s̄2) (steady state of (2.1)) such that x̄1 > 0 and
x̄2 > 0.

Therefore, if (2.6) holds true, the point that maximizes the static biogas production (problem (2.5)) is
such that both species xi, i = 1, 2 coexist at steady state2. Moreover, this solution can be written

(x̄1, s̄1, x̄2, s̄2) =

(
s1
in − s̄1

α
, s̄1,

s1
in + s2

in − s̄1 − s̄2

α
, s̄2

)
,

and it is locally asymptotically stable (see [5, 2]). Hereafter we denote by ū the corresponding optimal value
of the dilution rate.

Remark 2.2. The complete discussion of the optimization problem (2.5) can be found in [2]. From a practical
point of view, experimental values in [6] (see Table 3) indicate that (2.6) holds true implying that both species
xi, i = 1, 2 are present at the optimal equilibrium (see also [18, 19, 20]). However, recent results in [2] show
that other equilibria (such as when the first species x1 is washed-out) could be obtained, but we will restrict
our attention in this paper to the case where (2.6) holds true which seems to be the case mostly encountered
in practice, when s2

in is not too high.

In the rest of the paper, we consider that the fermentor is operated as in [6] which provides an optimum
of problem (2.5) with co-existence of both species. Hence, the optimal solution of (2.5) is supposed to satisfy:

x̄1 > 0 and x̄2 > 0.

2.2 Statement of the optimal control problem

Before stating the optimal control problem, we recall the following standard attractivity property for system
(2.1). When α = 1, the set

V := {(x1, s1, x2, s2) ∈ R+ × [0, s1
in]× R+ × [0, s2

in] ; x1 + s1 = s1
in and s1 + x2 + s2 = s1

in + s2
in},

is an invariant and attractive manifold for (2.1). Therefore, trajectories of (2.1) converge asymptotically to
this set. In the rest of the paper, we suppose3 that

α = 1,

and we only consider initial conditions in the set V. Hence, one has:

x1 = sin − s1 and x2 = s1
in + s2

in − s1 − s2,

thus system (2.1) can be gathered into a two-dimensional affine system as follows:{
ṡ1 = (−µ1(s1) + u)(s1

in − s1),

ṡ2 = (−µ2(s2) + u)(s2
in − s2) + (µ1(s1)− µ2(s2))(s1

in − s1),
(2.7)

where u(·) is the control variable which plays the role of the dilution rate. The admissible control set U is
then defined as

U := {u : [0,+∞)→ [0, umax] ; u(·) meas.}.
Initial conditions for (2.7) will be taken within the open bounded domain D defined by:

D := {s = (s1, s2) ∈ (0, s1
in)× R∗+ ; s2 < s1

in + s2
in − s1},

2Usually, such an equilibrium maximizing the production of biogas at steady state is called nominal operating point [18, 19, 20].
3When α < 1, one can show that the set V is attractive provided that the constant dilution rate is large enough implying the

wash-out of the bacteria. In general, the attractivity property no longer holds when α < 1 so that the reduction of (2.1) into
(2.7) is not possible, and the problem is more delicate in this case. A thorough study of the control of the chemostat system (i.e.
the restriction of (2.1) to (x1, s1)) including a retention of biomass parameter can be found in [3].
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that is invariant by (2.7). In order to introduce properly the target point, it is convenient to write (2.7) as a
two dimensional affine system with one input and a drift:

ṡ = f(s) + ug(s), (2.8)

where s = (s1, s2) and f, g : R2 → R2 are the two vector fields defined by

f(s) =

[
−µ1(s1)(s1

in − s1)

−µ2(s2)(s2
in − s2) + (µ1(s1)− µ2(s2))(s1

in − s1)

]
and g(s) =

[
s1
in − s1

s2
in − s2

]
.

The collinearity curve ∆0 is then defined as the set of points of D where f and g are collinear i.e.

∆0 := {s ∈ D ; det(f(s), g(s)) = 0}. (2.9)

This set is essential in particular for studying controllability issues of (2.7). A straightforward computation
gives

det(f(s), g(s)) = (s1
in − s1)(s1

in + s2
in − s1 − s2)(µ2(s2)− µ1(s1)),

and since initial conditions are in D, one has s1 < s1
in and s1

in + s2
in − s1 − s2 > 0. Therefore, ∆0 can be

equivalently written:
∆0 := {s = (s1, s2) ∈ D ; µ1(s1) = µ2(s2)}. (2.10)

As both functions µ1(·) and µ2(·) are continuous and strictly increasing in a neighborhood of zero, one can
check that ∆0 is non-empty (the curve ∆0 is depicted on Fig. 1).

In this paper, our aim is to consider the problem of steering (2.7) in minimal time to the target point
maximizing the biogas production at steady state. As we supposed that (s1

in, s
2
in) satisfies the assumptions

of Proposition 2.1, one has that the unique optimal solution (x̄1, s̄1, x̄2, s̄2) (steady state of (2.1)) of the
optimization problem (2.5) is such that x̄1 > 0 and x̄2 > 0. Therefore, the optimal steady state (s̄1, s̄2) of
(2.7), that is our target, satisfies:

µ1(s̄1) = µ2(s̄2),

since one should have µi(s̄i) = ū. This implies that

s̄ := (s̄1, s̄2) ∈ ∆0. (2.11)

Hence, the target point s̄ belongs to the collinearity set ∆0. The minimum time control problem can be then
stated as follows : given s̄ ∈ ∆0, we consider the optimal problem:

v(s0) := inf
u∈U

Tu s.t. s(Tu, 0, s
0, u(·)) = s̄, (2.12)

where s(·, 0, s0, u(·)) is the unique solution of (2.7) associated to the control u and starting from a given initial
condition s0 := (s0

1, s
0
2) ∈ D at time 0. Here, s0 ∈ D 7→ v(s0) ∈ [0,+∞] is the value function, and our aim is

to obtain an optimal control for (2.12) in feedback form. At this step, it is worth to mention that we propose
to solve (2.12) for any given value of the target point s̄ ∈ ∆0 (not only the optimal steady state point). In
fact, due to uncertainties that can affect the real process, the real value of s̄ may not be known exactly, and
thus it is important to find an optimal synthesis of the problem for any given value of s̄ ∈ ∆0.

Note that if the target point can be reached from a given initial condition s0 ∈ D, then the existence of an
optimal control for (2.12) is standard using Filippov’s Theorem (see e.g. [12]).

3 Optimality conditions and geometric properties of the system

3.1 Pontryagin Maximum Principle

In this section, we apply the Pontryagin Maximum Principle (PMP) on (2.12) in order to derive necessary
optimality conditions on an optimal control u. To this end, let H : R2 × R2 × R × R be the Hamiltonian
associated to (2.12):

H = H(s, λ, λ0, u) := λ · f(s) + uλ · g(s) + λ0, (3.1)
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where a · b denotes the scalar product in R2, that is:

H = −λ1µ1(s1)(s1
in − s1) + λ2[−µ2(s2)(s2

in − s2) + (µ1(s1)− µ2(s2))(s1
in − s1)]

+ u[λ1(s1
in − s1) + λ2(s2

in − s2)] + λ0.

Now, let s0 be a given initial condition in D and u ∈ U be an optimal control of (2.12) steering (2.7) in time Tu
from s0 to s̄. Hereafter, we shall denote by s(·) the corresponding solution of (2.7) (in place of s(·, 0, s0, u(·))).
Then, according to the Pontryagin Maximum Principle, the following conditions hold true:

• There exists λ0 ≤ 0 and an absolutely continuous function λ : [0, Tu]→ R2 called adjoint vector satisfying
the adjoint equation λ̇ = −∂H∂s (s(t), λ(t), λ0, u(t)) for a.e. t ∈ [0, Tu], that is:{

λ̇1 = λ1[µ′1(s1)(s1
in − s1)− µ1(s1) + u]− λ2[µ′1(s1)(s1

in − s1)− µ1(s1) + µ2(s2)],

λ̇2 = λ2[µ′2(s2)(s2
in − s2)− µ2(s2) + u+ µ′2(s2)(s1

in − s1)].
(3.2)

• The vector (λ1(·), λ2(·), λ0) is non-zero.

• We have the maximization condition : for a.e. t ∈ [0, Tu],

u(t) ∈ arg max
ω∈[0,umax]

H(s(t), λ(t), λ0, ω). (3.3)

We call extremal trajectory a quadruple (s(·), λ(·), λ0, u(·)) satisfying (2.7)-(3.2)-(3.3). When λ0 = 0, we say
that the extremal is abnormal whereas if λ0 < 0, then we say that the extremal is normal. In the latter, we can
assume that λ0 = −1 and therefore, by homogeneity, we write (s(·), λ(·), u(·)) in place of (s(·), λ(·), λ0, u(·)).
Observe that the Hamiltonian is conserved along any extremal trajectory. In addition, one has H = 0 along
any extremal trajectory since the terminal time is free.

It is convenient to introduce the switching function φ(t) := λ(t) · g(s(t)) (the term multiplying the control
u in the Hamiltoninan H defined in (3.1)) that provides the control law. From (3.3), one deduces that: φ(t) > 0 ⇒ u(t) = umax,

φ(t) < 0 ⇒ u(t) = 0,
φ(t) = 0 ⇒ u(t) ∈ [0, umax].

We call switching time any time tc ∈ (0, Tu) such that the optimal control u(·) is non-constant in any neigh-
borhood of tc, which implies φ(tc) = 0. We then say that the corresponding trajectory has a switching point.
A singular arc is a time interval [t1, t2] ⊂ [0, Tu] where the switching function satisfies φ(t) = 0 for any time
t ∈ [t1, t2]. In order to study properties of singular arcs, we introduce the singular locus ∆SA defined as :

∆SA := {s = (s1, s2) ∈ D ; det(g(s), [f, g](s)) = 0 },

where [f, g](s) denotes the Lie bracket4 associated to the vector fields f and g. Following for instance [10], it
is well-known that any singular arc is such that the associated trajectory belongs to the singular locus ∆SA.
Since one has

det(g(s), [f, g](s)) = (s1
in − s1)(s1

in + s2
in − s1 − s2)[µ′2(s2)(s2

in − s2)− µ′1(s1)(s1
in − s1)],

we deduce that ∆SA can be expressed as

∆SA = {s = (s1, s2) ∈ D ; µ′2(s2)(s2
in − s2)− µ′1(s1)(s1

in − s1) = 0 }. (3.4)

Next, the function θ : D\∆0 → R defined by

θ(s) :=
µ′1(s1)(s1

in − s1)− µ′2(s2)(s2
in − s2)

µ1(s1)− µ2(s2)
=

det(g(s), [f, g](s))

det(f(s), g(s))
, (3.5)

will be crucial to exclude non-optimal extremal trajectories.

4The Lie bracket of two smooth vector fields f, g : R2 → R2 is the vector field [f, g] : R2 → R2 defined by [f, g](s) :=
Dg(s)f(s)−Df(s)g(s), s ∈ R2.
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Proposition 3.1. Let (s(·), λ(·), u(·)) be a normal extremal trajectory defined over [0, Tu] with Tu ≥ 0. Then,
there exists a function γ : (D\∆0)× (0, Tu)→ R such that:
(i) For any time t ∈ (0, Tu) such that s(t) /∈ ∆0 one has:

φ̇(t) = γ(s(t), t)φ(t)− θ(s(t)). (3.6)

(ii) If the trajectory has a switching point at a time tc such that θ(s(tc)) > 0, resp. θ(s(tc)) < 0, then it is a
switching time from u = umax to u = 0, resp. from u = 0 to u = umax.

Proof. When s ∈ D\∆0, one has span{f(s), g(s)} = R2, therefore there exists α(s) ∈ R and β(s) ∈ R such
that

[f, g](s) = α(s)f(s) + β(s)g(s).

From this equality, we deduce that α(s) = −det(g(s),[f,g](s))
det(f(s),g(s)) = −θ(s), where function θ(·) is defined in (3.5).

Now, let us consider a normal trajectory (s(·), λ(·), u(·)). If we differentiate φ with respect to t, we find that:

φ̇(t) = λ(t) · [f, g](s(t)) = α(s(t))λ(t) · f(s(t)) + β(s(t))φ(t) = α(s(t)) + φ(t)(β(s(t))− α(s(t))u(t)),

supposing that s(t) /∈ ∆0 (the last equality above follows using that H = λ(t) · f(s(t)) + u(t)φ(t)− 1 = 0 for
t ∈ [0, Tu]). Thus, if we set γ(s, t) := β(s)− α(s)u(t) for (s, t) ∈ (D\∆0)× (0, Tu), we find (3.6) which proves
(i). To prove (ii), suppose that tc is a switching time such that θ(s(tc)) > 0. We then deduce from (3.6) that
φ̇(tc) < 0 implying that tc is a switching time from u = umax to u = 0. The proof is similar if θ(s(tc)) < 0.

Next, let us introduce the two subsets of D, ∆±0 , defined by:

∆+
0 := {s ∈ D ; det(f(s), g(s)) > 0} and ∆−0 := {s ∈ D ; det(f(s), g(s)) < 0}.

The next Lemma is straightforward from the adjoint equation (3.2).

Lemma 3.1. For any extremal trajectory, the corresponding adjoint vector λ(·) = (λ1(·), λ2(·)) is such that
λ2 ≡ 0 or λ2 is always of constant sign.

The next proposition allows us to exclude extremal trajectories crossing the set ∆0 and with at least one
switching point in each component ∆+

0 and ∆−0 .

Proposition 3.2. A normal extremal trajectory (s(·), λ(·), u(·)) cannot have two switching points t1 < t2 such
that s(t1) ∈ ∆±0 and s(t2) ∈ ∆∓0 .

Proof. From Lemma 3.1, either λ2 ≡ 0 or λ2 is always non-zero. Suppose that λ2 ≡ 0. Then, λ1 cannot
vanish. Otherwise, there would exist a time t such that λ1(t) = λ2(t) = 0. By Cauchy-Lipschitz’s Theorem,
we would then also have λ1 ≡ 0. Since H = 0, we deduce that λ0 = 0 which contradicts the PMP. Hence, λ1

is always non-zero implying that φ = λ1(s1
in − s1) is of constant sign, which is also a contradiction because

(s(·), λ(·), u(·)) has a switching point. We deduce that λ2(·) is always non-zero.
Without any loss of generality, we suppose that the two switching times occur in ∆+

0 at time t1 and in ∆−0
at time t2 > t1. Using that φ(ti) = 0 and H = 0, one obtains:

λ2(t1)(s1
in + s2

in − s1(t1)− s2(t1))(µ1(s(t1))− µ2(s(t1))) = 1,

and
λ2(t2)(s1

in + s2
in − s1(t2)− s2(t2))(µ1(s(t2))− µ2(s(t2))) = 1.

Now, λ2 is of constant sign (positive for instance) and s1
in + s2

in − s1(ti) − s2(ti) > 0 for i = 1, 2 whereas
µ1(s(t1))−µ2(s(t1)) > 0 and µ1(s(t2))−µ2(s(t2)) < 0, thus we have a contradiction. This ends the proof.

Remark 3.1. The above result give us some information related switching points of a normal extremal trajec-
tories (s(·), λ(·), u(·)). Recall that if (s(·), λ(·), u(·)) is an abnormal extremal trajectory, one can have switching
points on the curve ∆0 only (see e.g. [10]).

It follows that any normal extremal trajectory can have switching points either in ∆+
0 or in ∆−0 (but not

both in the two components). By the previous proposition, we also obtain that given a normal extremal
trajectory (s(·), λ(·), u(·)), then:

• If λ2(t) = 0 for any time t ∈ [0, Tu], then the control is constant over [0, Tu] (equal to 0 or umax).

• If λ2(t) > 0 for any time t ∈ [0, Tu], then switching points in D necessarily occur in ∆−0 .

• If λ2(t) < 0 for any time t ∈ [0, Tu], then switching points in D necessarily occur in ∆+
0 .
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3.2 Geometric properties of the system

Before going further into the determination of optimal controls, we provide a more detailed insight into the
geometrical characteristics of system (2.7).

3.2.1 Collinearity set

First, we give some geometrical properties of the collinearity curve ∆0. In the rest of the paper, we suppose
that

µ̄1 > µ2(smax), (3.7)

where µ̄1 is the maximal (asymptotic) value of function µ1(·) defined in (2.2), that is, µ1(s1) < µ̄1 for all s1 ≥ 0,
and smax is the point where function µ2(·), defined in (2.3), attains its maximum, that is smax :=

√
k′k′′. In

view of the numerical values of parameters in the definitions of µ1(·) and µ2(·) (see Table 3), one can check
that condition (3.7) holds true. This property allows to give an analytical description of set ∆0 defined in
(2.9) and (2.10). Indeed, one has

(s1, s2) ∈ ∆0 ⇐⇒ µ1(s1) = µ2(s2) ⇐⇒ s1 = δ0(s2) := (µ1)−1(µ2(s2)),

where δ0 is the real-valued function defined over R+ by:

δ0(s2) =
k1µ2(s2)

µ̄1 − µ2(s2)
.

Thanks to (3.7), one has µ̄1 > µ2(s2) for any s2 ≥ 0, thus the previous expression of δ0 is well defined. By

differentiating δ0 with respect to s2 one obtains δ′0(s2) =
k1µ̄1µ

′
2(s2)

(µ̄1−µ2(s2))2 , therefore δ0 is increasing over [0, smax]

and decreasing over [smax,+∞). In our case, that is, considering the experimental values obtained in [6] (see
Table 3), one has s̃2

in = smax, thus (2.6) implies that µ1(s1
in) ≥ µ2(smax). As a consequence, one has

δ0(s2) ∈ [0, s1
in],

for any s2 ∈ R+ because µ1(s1
in) ≥ µ2(smax) ≥ µ2(s2). The graph of ∆0 is depicted on Fig. 1. As a

consequence, we obtain that ∆±0 are such that:

∆+
0 = {s = (s1, s2) ∈ D ; s1 < δ0(s2)} and ∆−0 = {s = (s1, s2) ∈ D ; s1 > δ0(s2)}.

The following property is straightforward and it is essential to analyze the behavior of extremal trajectories
(see Fig. 1).

Property 3.1. One has

det(f(s), f(s) + g(s)) > 0 ⇐⇒ µ1(s1) < µ2(s2) ⇐⇒ (s1, s2) ∈ ∆+
0 ,

det(f(s), f(s) + g(s)) < 0 ⇐⇒ µ1(s1) > µ2(s2) ⇐⇒ (s1, s2) ∈ ∆−0 .

3.2.2 Singular locus

As for ∆0, we provide an analytic description of the singular locus ∆SA defined in (3.4). First, we define two
functions si 7→ νi(si) (i = 1, 2) by

νi(si) := µ′i(si)(s
i
in − si) i = 1, 2.

From (3.4) notice that

(s1, s2) ∈ ∆SA ⇐⇒ ν1(s1) = ν2(s2) and (s1, s2) ∈ D.

On the other hand, from the definitions of µ1(·) and µ2(·) in (2.2) and (2.3) respectively, it is straightforward to
check that ν′1(s1) > 0 for all s1 > 0 and ν′2(s2) > 0 for all s2 ∈ [0, s̃2

in), where s̃2
in := min(smax, s

2
in). Therefore,

functions νi(·) are increasing in the corresponding intervals. In the following, we will assume that the equation
ν1(s1) = ν2(s2) does not admit a solution (s1, s2) ∈ D such that s2 ∈ (smax, s

1
in+s2

in−s1). Assuming that the
equation ν1(s1) = ν2(s2) does not admit a solution (s1, s2) ∈ D such that s2 ∈ (smax, s

1
in + s2

in − s1), allows
to conclude that the singular locus ∆SA is composed by only one connected component in D.
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Colinearity set ∆0

Substrate s1

S
u
b
st
ra
te

s 2

Upper boundary of D : s1 + s2 = s1in + s2in

Invariant domain D
∆+

0 ∆−
0

f(s)

f(s) + g(s)

det(f(s), f(s) + g(s)) > 0

det(f(s), f(s) + g(s)) < 0

f(s) + g(s)

f(s)

s1 = s1in

Figure 1: Plot of ∆0 ; the curve ∆0 partitions D into the two subsets ∆±0 . In ∆+
0 , resp. ∆−0 , one has

det(f(s), f(s) + g(s)) > 0, resp. det(f(s), f(s) + g(s)) < 0.

Property 3.2. A sufficient condition ensuring that ∆SA is simply connected is to have

µ′1(s1
in) + µ′2(s†2) > 0, (3.8)

where s†2 := min(s1
in + s2

in, s
∗∗) and s∗∗ is the unique point where µ′′2(·) vanishes.

Proof. Indeed, (3.8) implies that
µ′1(s1) + µ′2(s2) > 0,

for all s1 ∈ (0, s1
in) and s2 ∈ (smax, s

1
in + s2

in − s1) since µ′2 is decreasing over [smax, s
∗∗] and increasing over

[s∗∗,+∞). Now, take (s1, s2) ∈ D and suppose that ν1(s1) = ν2(s2). If s2 ≤ s2
in, then one must have µ′(s2) > 0

and thus s2 ≤ smax. Now, suppose that s2 > s2
in. As ν1(s1) = ν2(s2), we necessarily have µ′(s2) < 0. It

follows that
µ′1(s1)(s1

in − s1) = µ′2(s2)(s2
in − s2) < −µ′2(s2)(s1

in − s1),

using that s2
in − s2 > −(s1

in − s1). We thus obtain a contradiction Therefore, the equation ν1(s1) = ν2(s2)
cannot have a solution (s1, s2) such that s2 ∈ (smax, s

1
in + s2

in − s1) as was to be proved.

In our case, that is, considering the experimental values obtained in [6] (see Table 3), we have s†2 = s∗∗ '
34.0275, and µ′1(s1

in) + µ′2(s†2) ' 0.0264. Moreover, if (s1, s2) ∈ ∆SA, then s2 < smax. Now, from (3.4), we
obtain

(s1, s2) ∈ ∆SA ⇐⇒ (s1, s2) ∈ D and s1 = δSA(s2) := (ν1)−1(ν2(s2)), (3.9)

where (ν1)−1 is well defined because ν1(·) is increasing in [0,+∞) and ν2(s2) > 0 for all s2 ∈ (0, smax). A
direct computation gives

δSA(s2) = k
−µ̄1 − 2ν2(s2) +

√
µ̄2

1 + 4µ̄1ν2(s2) + 4
s1inµ̄1

k ν2(s2)

2ν2(s2)
.

The graph of ∆SA is depicted on Fig. 3. Using the numerical values indicated on Table 3 (Section 7), one
can check that the singular locus passes through the points (s1

in, smax) = (s1
in,
√
k′k′′) ' (10, 17.63) and

(0, δ−1
SA(0)) ' (0, 3.15) whereas the graph of ∆0 passes through (0, 0) and intersects the upper boundary of D.

It is then to expect that the intersection of ∆0 and ∆SA will be non-empty.
It appears that the non-vacuity of ∆0 ∩ ∆SA is crucial in the forthcoming study (see e.g. [4]). For this

reason, we introduce the following definition.
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Definition 3.1. We say that a point s? ∈ D is a steady state singular point if s? ∈ ∆0 ∩∆SA and g(s?) 6= 0,
where g(·) is the drift function in (2.8).

In our setting, we have that g(·) is non-zero in D. Moreover, with the experimental values obtained in [6]
(see Table 3 in Section 7), we can check numerically that there exists exactly one steady state singular point:

s? := (5.08, 8.73),

located at the intersection of ∆0 and ∆SA. In the sequel, we shall therefore suppose that the intersection of
∆0 and ∆SA in D is reduced to exactly one point. Recall from [4] the two following properties (see also [10]):

• Any steady state singular point is an equilibrium of (2.7) restricted to the set ∆SA.

• The dynamics (2.7) is collinear to the tangent vector to the graph of ∆0 at some point s ∈ ∆0 if and
only if s is a steady state singular point (see Fig. 3).

We continue the study of the singular locus, computing the singular control t 7→ us(t) that is defined for each
time t as the control u for which the corresponding trajectory s(t) is such that s(t) ∈ ∆SA. It is obtained by
differentiating φ twice with respect to the time t. We thus obtain

φ̈(t) = a(s(t)) + us(t)b(s(t)),

where s 7→ a(s) and s 7→ b(s) are defined respectively by:

a(s) :=[µ2(s2)(s1
in + s2

in − s1 − s2)− µ1(s1)(s1
in − s1)][µ′′2(s2)(s2

in − s2)− µ′2(s2)]

− µ1(s1)(s1
in − s1)[µ′′1(s1)(s1

in − s1)− µ′1(s1)], s ∈ D

and
b(s) := µ′′1(s1)(s1

in − s1)2 − µ′′2(s2)(s2
in − s2)2, s ∈ D. (3.10)

Hence, we deduce that along a singular trajectory t 7→ s(t), one has:

us(t) := −a(s(t))

b(s(t))
. (3.11)

The plot of the singular control us is depicted on Fig. 4. In (3.11), the control us can be expressed as a
function of the variable s2 (i.e. in feedback form) using that along the singular arc one has s1 = δSA(s2).
With a slight abuse of notation, we denote by s2 7→ us(s2) the singular control defined by (3.11) where s1 has
been replaced by δSA(s2). Hence, we find that

us(s2) = −a(δSA(s2), s2)

b(δSA(s2), s2)
, s2 ∈ [0, smax]. (3.12)

In the sequel, we shall suppose that umax is large enough to ensure the admissibility of the singular arc,
that is, we assume that umax satisfies:

∀s2 ∈ [0, smax2 ], us(s2) ∈ [0, umax]. (3.13)

Remark 3.2. In the case where us(·) takes larger values than umax, then a saturation phenomenon may occur
leading to the existence of an additional switching curve emanating from the singular locus. For simplicity, we
assumed in this study that this case does not happen by choosing a sufficiently large value for the maximum
dilution rate (this is always possible from a practical point of view).

In the following lemma, we prove that the unique steady state singular point is is attractive for the dynamics
(2.7) restricted to the singular locus ∆SA.

Lemma 3.2. Suppose that ∆0 ∩ ∆SA = {s?}, that ∆SA is composed only by one connected component in
D, and that there exists (s1, s2) ∈ ∆SA such that s1 ↓ 0. Then the point s? = (s?1, s

?
2) is attractive for the

dynamics (2.7) restricted to the singular locus ∆SA.
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Proof. We will study the sign of ṡ1|∆SA
, that is, the derivative of s1(·) restricted to the singular locus ∆SA.

From the expression of the singular control us in (3.11), notice that us(s2) → µ2(smax) < µ1(s1
in) (see (2.6))

when ∆SA 3 (s1, s2) → (s1
in, smax). Therefore, ṡ1 < 0 when ∆SA 3 (s1, s2) → (s1

in, smax) (see the dynamics
(2.7)). On the other hand, ṡ1 > 0 when (s1, s2) ∈ ∆SA is such that s1 ↓ 0. We can conclude that ṡ1 > 0 if
s1 < s?1 and ṡ1 < 0 if s1 > s?1, proving thus that s? = (s?1, s

?
2) is attractive for the dynamics (2.7) restricted to

the singular locus ∆SA.

We can check numerically the result given by the previous lemma, observing that the steady state singular
point s? = (s?1, s

?
2) is attractive for the dynamics (2.7) restricted to the singular locus ∆SA as shows Fig. 2.

Figure 2: Plot of ṡ1 along the singular arc (as a function of s2 since ∆SA was parametrized as a function of
s2, see (3.9)). The point s? is attractive for (2.7) restricted to ∆SA since one has ṡ1 > 0 for s1 < s?1, ṡ1 < 0
for s1 > s?1, and ṡ1 = 0 for s1 = s?1.

Similarly as for ∆0, and under the assumption that the set ∆SA is composed only by one connected curve
in D, we have that ∆SA partitions D into two connected subsets ∆±SA (see Fig. 3) defined respectively by:{

∆+
SA := {s ∈ D ; det(g(s), [f, g](s)) > 0} = {s = (s1, s2) ∈ D ; s1 > δSA(s2)},

∆−SA := {s ∈ D ; det(g(s), [f, g](s)) < 0} = {s = (s1, s2) ∈ D ; s1 < δSA(s2)}.

We can then depict the sign of the function θ(s) = det(g(s),[f,g](s))
det(f(s),g(s)) (defined in (3.5)) in each component

∆±0 ∩∆±SA, see Fig. 3.

Let us finally analyze the local optimality of singular arcs by utilizing the generalized Legendre-Clebsch
necessary optimality condition [21]. The notation Hu will stand for the derivative of H with respect to u.
Recall that if a singular arc is optimal over a time interval [t1, t2], then one must have

∂

∂u

d2Hu

dt2
≥ 0,

along the corresponding singular trajectory (see e.g. [10, 21]). Following [21], one has:

∂

∂u

d2Hu

dt2
(t) = 〈λ(t), [g, [f, g]](s(t))〉 ,

where for convenience we wrote Hu(t) in place of Hu(s(t), λ(t), u(t)). Along a singular trajectory, it can be
also verified (see [4]) that the adjoint vector is expressed by

λ(t) :=
g⊥(s(t))

det(f(s(t)), g(s(t)))
,
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Colinearity set ∆0

Steady-state singular point s⋆

Substrate s1

S
u
b
st
ra
te

s 2

Upper boundary of D : s1 + s2 = s1in + s2in

∆+
0 ∆−

0

Singular locus ∆SA

∆+
SA

∆−
SA

θ < 0

θ > 0

θ < 0

θ > 0

u = 0

u = umax

u = 0

u = umax

u = 0

u = umax

(s1in, 0)

(s1in, s
2
in)

(0, s1in + s2in)

(s1in, smax)

Figure 3: Plot of ∆0, ∆±0 , ∆SA, ∆±SA, and of the steady state singular point s? ∈ ∆0 ∩∆SA (that is attractive
for (2.7) restricted to ∆SA). The sign of s 7→ θ(s) depends on the position of s ∈ ∆±0 ∩∆±SA. We also indicated
in the figure the direction of the dynamics (2.7) with u = umax or u = 0 on the curve ∆0.

where s(·) is the corresponding singular trajectory and for a = (a1, a2) ∈ R2, a⊥ := (a2,−a1). A direct
computation of [g, [f, g]] then gives:

[g, [f, g]](s) =


µ′′1 (s1)(s1in − s1)3 − µ′1(s1)(s1in − s1)2

−µ′′1 (s1)(s1in − s1)3 + µ′′2 (s2)(s1in + s2in − s1 − s2)(s2in − s2)2 + µ′1(s1)(s1in − s1)2

−µ′2(s2)(s2in − s2)(s1in + s2in − s1 − s2)

 .

Therefore, we find that along a singular trajectory one has (we removed the time variable below to shorten
the notation):

〈λ, [g, [f, g]](s)〉 =
(s1
in − s1)(s1

in + s2
in − s1 − s2)

det(f(s), g(s))
[µ′′1(s1)(s1

in − s1)2 − µ′′2(s2)(s2
in − s2)2].

The sign of ∂
∂u

d2Hu

dt2 then only depends on the position of the singular arc with respect to ∆0 (i.e. on the sign
of det(f(s), g(s))) and on the sign of the mapping s 7→ b(s) (defined in (3.10)) computed along the singular
locus i.e. with s1 = δSA(s2). Using the numerical datas indicated in Table 3, we can check that s 7→ b(s) is
positive along the singular locus (see Fig. 4).

Let us now recall the standard definitions of turnpike and anti-turnpike singular arcs for planar affine
systems (see [10, 21]).

Definition 3.2. If a singular arc is locally optimal, then it is called turnpike. When it is not locally optimal,
then it is called an anti-turnpike.

In the case where a singular arc is a turnpike, we say equivalently that it is time minimizing (see [10])
whereas for an anti-turnpike, we say that it is time-maximizing. Since the quantity det(f(s), g(s)) changes its
sign on the curve ∆0, we obtain the following property for the singular locus.

Proposition 3.3. The singular locus is time minimizing in ∆+
0 and it is time maximizing in ∆−0 .

Proof. Consider a singular arc over [t1, t2]. Since b(·) is non-negative on the singular locus, we find that the

quantity ∂
∂u

d2Hu

dt2 can be expressed as:

∂

∂u

d2Hu

dt2
(t) =

(s1
in − s1(t))(s1

in + s2
in − s1(t)− s2(t))

det(f(s(t)), g(s(t)))
b(s(t)), t ∈ [t1, t2].
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Figure 4: Picture left : Plot of the mapping b(·) along the singular locus ∆SA as a function of s2. Picture
right: plot of the singular control as a function of s2.

Hence, this quantity computed on the singular locus is positive in ∆+
0 and negative in ∆−0 , which concludes

the proof.

Remark 3.3. These properties of singular arcs can be also retrieved using the clock form argument. Recall
from [15] that given two trajectories γ1 and γ2, not intersecting ∆0, and steering a point z0 ∈ D to a point
z1 ∈ D in time t1 and t2 respectively, one has

t1 − t2 =

∫∫
Ω

det(g(s), [f, g](s))

det(f(s), g(s))2
ds,

where Ω is the domain enclosed by γ1∪γ2 oriented counter-clockise (the domain Ω is with a non-empty interior
since γ1 6= γ2). Thanks to the expression of t1 − t2 and to the sign of det(g(s), [f, g](s)) in ∆±0 , we retrieve
that any singular arc contained in ∆+

SA, resp. in ∆−SA is a turnpike, resp. an anti-turnpike as in Proposition
3.3.

3.2.3 Extended target set

Since the target point s̄ belongs to the curve ∆0 which contains exactly one steady state singular point, the
target s̄ can be reached by only two trajectories of (2.7) for the control u = 0 or u = umax.

It is convenient to introduce an extended target set that is constructed from the target point s̄ as follows.
First, let us define the semi-orbit C0 by

C0 := {s̃0(t, s̄) ; t ∈ R+},

where s̃0(·, s̄) is the unique solution of (2.7) backward in time with u = 0 starting from the target point s̄
at time 0. From (2.7), one can show that s̃0 satisfies the following property (the proof is postponed into the
Appendix in Section 7).

Property 3.3. The semi-orbit C0 satisfies

lim
t→+∞

s̃0(t, s̄) = (s1
in, s

2
in) and lim

t→+∞
s2
in − s̃0

2(t, s̄)

s1
in − s̃0

1(t, s̄)
= +∞. (3.14)

Note that
C0 ∩ (∆−0 ∩∆+

SA) = ∅, (3.15)

since any trajectory starting from ∆+
SA with u = 0 cannot intersect the curve ∆0 (see also Fig. 3). Similarly,

we consider the semi-orbit C1 (restricted to the set D) defined by:

C1 := {s̃1(t, s̄) = (s̃1
1(t, s̄), s̃1

2(t, s̄)) ∈ D ; t ∈ R+}, (3.16)
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where s̃1(·, s̄) is the unique solution of (2.7) backward in time with u = umax starting from the target point s̄
at time 0.

Definition 3.3. We call extended target set T the subset of D defined by:

T := C0 ∪ C1. (3.17)

Depending on the position of s̄ on the curve ∆0, the curve C1 can exit the domain D through the axis
{s2 = 0} (see Fig. 7 and 9) or {s1 = 0} (see Fig. 10). Moreover, T ∩∆0 consists of two points s̄ and s̄′ (see
Fig. 7 and 9) except when s̄ = s? (in the latter, T ∩∆0 consists of only one point, see Fig. 8).

If C1 exits the domain D through the axis {s1 = 0}, then we set se1 := 0 and se2 := s̃1
2(te, s̄) where te is

the first exit time of s̃1(·, s̄) of D. Otherwise let se1 ∈ (0, s1
in) be the value of s̃1

1(·, s̄) at the unique intersection
point between C1 and the axis {s2 = 0}. The point (se1, 0) corresponds to the exit point of C1 of the set D,
and in this case we set se2 := 0. Since the dynamics for s1 is strictly monotone along C0 and C1, the curve T
can be written as the graph of a continuous function

s1 7→ s2 := ξ(s1), s1 ∈ [se1, s
1
in]

with ξ(se1) = se2 and ξ(s1
in) = s2

in. It follows that the set T partitions D into two connected subsets A and B
defined by:

A := {s = (s1, s2) ∈ D ; s2 > ξ(s1)} and B := {s = (s1, s2) ∈ D ; s2 < ξ(s1)}. (3.18)

This partition of D (roughly speaking above and below T ) will be useful to state the optimal synthesis in the
next section.

3.2.4 Numerical computation of the target point

We conclude this section by a numerical computation of the target point s̄ = (s̄1, s̄2) maximizing the static
biogas production using the numerical values in [6]. Following Proposition 2.1, the target point (x̄1, s̄1, x̄2, s̄2)
that maximizes the quantity µ2(s2)x2 among steady states of (2.1) is such that x̄1 > 0 and x̄2 > 0. Such
equilibrium point satisfies

µ1(s̄1) = µ2(s̄2) = u and x̄2 = s1
in + s2

in − s̄1 − s̄2.

Note that the equation µ2(s2) = u admits at most two solutions and s̄2 denotes the smallest one. As a
consequence, the target point is obtained by maximizing the function (with respect to constant values of u)

u 7→ p(u) := u(s1
in + s2

in − µ−1
1 (u)− µ−1

2 (u)), u ∈ [0, µ2(smax)],

where for a given u ≥ 0, µ−1
2 (u) is the smallest solution of the equation µ2(s̄2) = u. The graph of p is depicted

on Fig. 5 and we find numerically that
s̄ := (4.59, 6.75). (3.19)

Finally, figure 6 summarizes the main geometrical features of the system (collinearity curve, singular arc,
and extended target) in the case where the target point is given by (3.19).

4 Optimal synthesis

In this part, we provide an optimal feedback control for (2.12) in the domain D by decomposing this set
into the three subsets A, B (defined by (3.18)), and T (defined by (3.17)). Due to the different behavior of
singular arcs in the sets ∆−0 and ∆+

0 (see Proposition 3.3), the optimal synthesis will be slightly different in
both sets A and B. As a byproduct of this study, we will obtain the controllability of the target depending
on its position on ∆0. We shall see that except if s̄ = s?, the set of initial conditions s0 ∈ D for which there
exists an admissible control steering (2.7) from s0 to s̄ is D.
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Figure 5: Plot of the function u 7→ p(u). The maximum is achieved for u = 0.47.

4.1 Optimal synthesis on the extended target T
We start by stating the following useful property on the behavior of trajectories of (2.7) with the constant
control u = umax (it is in line with Property 3.3).

Property 4.1. Given s0 ∈ D, let s(·) be the unique solution of (2.7) with the control u = umax. Then one
has

lim
t→+∞

s(t) = (s1
in, s

2
in) and lim

t→+∞
s2
in − s2(t)

s1
in − s1(t)

= −1. (4.1)

For brevity, the proof has been postponed into the Appendix. We now prove that for any initial condition
belonging to the extended target set T , it is optimal to stay on this set.

Proposition 4.1. If s0 is an initial condition in C0, resp. C1, then the optimal control is u = 0, resp.
u = umax until reaching s̄.

Proof. We consider an initial condition s0 6= s̄ on the curve C0 and we suppose by contradiction that it has
a switching point from u = 0 to u = umax at a time tc before reaching {s̄}. Note that by construction of
the extended target set, then s(tc) /∈ ∆−0 ∩ ∆+

SA (recall (3.15)). We now consider the three following cases
depending on the location of s(tc) on the curve C0.

First case. We assume that s(tc) ∈ ∆−0 ∩∆−SA or s(tc) ∈ ∆+
0 ∩∆+

SA. Then, we have φ̇(tc) ≥ 0 which contradicts

that φ̇(tc) = −θ(s(tc)) < 0 (recall Proposition 3.1 (ii)). Hence, this case is not possible.

Second case. Suppose that s(tc) ∈ ∆+
0 ∩∆−SA. Then, the trajectory cannot switch from u = umax to u = 0

in ∆+
0 ∩∆−SA at some time t > tc (recall Proposition 3.1 (ii)). Thus, it necessarily exits the set ∆+

0 entering
into ∆−0 ∩ ∆−SA (indeed, trajectories with u = umax cross ∆0 in ∆−SA only). The trajectory necessarily has
another switching point t′c > tc from u = umax to u = 0 (otherwise it does not reach the target). We conclude
that it would have two switching points in ∆+

0 and ∆−0 which contradicts Lemma 3.2. Hence, this case is not
possible.

Third case. Finally, we suppose that it has a switching point at a time tc from u = 0 to the singular locus (if this
case is possible depending on the position of s̄ with respect to s?). Then, one necessarily has s(tc) ∈ ∆+

0 ∩∆SA.
Moreover, the corresponding singular trajectory must have a second switching point (otherwise it converges
asymptotically to s? and it does not reach the target). Hence, the trajectory necessarily switches either to
u = 0 or to u = umax in the set B. Again from Proposition 3.1 (ii), we deduce that the trajectory necessarily
enters into the set ∆−0 either with u = 0 or u = umax. In both cases, the trajectory does not reach the target
if it does not contain a switching point in ∆−0 . Hence, we have a contradiction as it would have two switching
points in ∆+

0 and ∆−0 . Thus, this case is not possible.

To conclude, we have proved that for any initial condition in C0, an optimal control consists in taking u = 0
until reaching s̄. Similar arguments show that for any initial condition on the curve C1, then the optimal
control is u = umax until reaching s̄.
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Figure 6: Main characteristics of system (2.7) : Invariant domain D, collinearity set ∆0 (together with ∆±0 ),
singular locus ∆SA (together with ∆±SA), extended target T = C0 ∪ C1.

4.2 Optimal synthesis in the set A

In this section, we introduce a feedback control5 u[·, ·] defined in the set A (recall (3.18)) by:

u[s1, s2] :=

 0 if s1 < δSA(s2),
us(s2) if s1 = δSA(s2),

1 if s1 > δSA(s2).
(4.2)

Hereafter, we shall refer to the singular arc strategy (SAS) for the operation of the feedback control (4.2) on
the system (2.7). In the set A, we have the following optimality result (see Fig. 7).

Proposition 4.2. Suppose that (3.13) holds true. Then, for any s̄ ∈ ∆0 such that s̄ 6= s?, the feedback control
(4.2) drives optimally any initial condition in A to the extended target set T .

Proof. First, let us recall that the singular locus ∆SA restricted to ∆+
0 is time minimizing i.e. any singular

arc contained in this set is locally optimal (see Proposition 3.3). Moreover such arcs are non-saturating from
(3.13).

Now, since s̄ 6= s?, we have the following cases:
First case. Consider an initial condition s0 ∈ ∆+

0 ∩∆−SA. Then, if one has u = umax, the trajectory must exit
the set ∆+

0 (recall Proposition 3.1 (ii)) and it necessarily enters into the set ∆−0 . In that case, the trajectory
cannot reach the extended target T with u = umax, thus it must have a first switching point to u = 0 in ∆−0 .
If the trajectory reaches the target point, it necessarily also has a switching point in the set ∆+

0 since the
target set T cannot be reached from the set A∩∆−0 . We thus have a contradiction as the trajectory contains
switching points both in ∆+

0 and ∆−0 . This shows that we must have u = 0 until reaching the singular arc.

Second case. Consider an initial condition s0 ∈ ∆−0 ∩ ∆−SA. If one has u = umax at time t = 0, then the
trajectory must have a switching point in ∆−0 (since this trajectory converges to the point (s1

in, s
2
in) without

intersecting T in ∆−0 ) and, as it reaches the target, it must also have a switching point in ∆+
0 (as in the

previous case) which contradicts Lemma 3.2. Thus, we necessarily have also u = 0 in ∆−0 ∩∆−SA.
This proves that the optimal control is u = 0 in the set ∆−SA∩A. Similar arguments show that the optimal

control is u = umax in the set ∆+
SA∩A. Moreover, singular trajectories are optimal until reaching T , otherwise

there would exist a time t where a singular trajectory leaves the singular locus in ∆+
0 either with u = 0 or

5The notation u[s1, s2] indicates that u is a feedback control that depends on the state variable whereas u(·) ∈ U denotes an
open loop control.
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with u = umax. We would obtain a contradiction using the previous analysis. Hence, to remain in the singular
locus is optimal until reaching T .

Remark 4.1. If s̄ = s? the target point is not reachable from initial conditions in A (see Fig. 8). Indeed, we
know that T is tangent to ∆0 at s? (see e.g. [4]). Thus, one has T \ {s̄} ⊂ ∆−0 since ∆0 ∩∆SA is reduced to a
singleton and limt→+∞ s̃0(t, s̄) = (s1

in, s
2
in) (see (3.14)). Note also that singular trajectories reach the point s?

in infinite horizon, thus any trajectory reaching T from the set A necessarily reaches C0\{s?} with u = umax
or C1\{s?} with u = 0. Hence, the trajectory must have a switching point from u = umax to u = 0 on C0\{s?}
or from u = 0 to u = umax on C1\{s?}. Moreover, it belongs to the set A in a left neighborhood of such a
switching point. This is a contradiction with Proposition 3.1 (ii) as T \{s̄} ⊂ ∆−0 . Hence, the target point
cannot be reached from A when s̄ = s?.

Remark 4.2. Proposition 4.2 shows that optimal trajectories starting from A should reach the singular locus
in minimal time and stay on this set until reaching the extended target set T . This optimal strategy in the
set A illustrates the turnpike property of the singular locus in ∆+

0 (see Fig. 7) established in Proposition 3.3.
As a byproduct, we also obtain that the set A ∪ T is optimally invariant (even though A is non-necessarily
invariant by (2.7)).

4.3 Optimal synthesis in the set B and cut-locus

We first, verify that the target point s̄ can be reached by any point in the set B.

Lemma 4.1. The target set can be reached from any initial condition s0 ∈ B.

Proof. Recall from Property 3.3 that limt→+∞ s̃0(t, s̄) = (s1
in, s

2
in) and limt→+∞

s2in−s̃02(t,s̄)

s1in−s̃01(t,s̄)
= +∞. In view

of Property 4.1, the unique solution of (2.7) with u = umax starting from a given initial condition s0 ∈ B
necessarily intersects C0 in finite time which ends the proof (the target s̄ can be reached from any point of
C0).

First, it can be observed that optimal trajectories starting in the set B should necessarily reach the extended
target set T before reaching s̄. Hence, the set B ∪ T is also optimally invariant utilizing Proposition 4.1.

Due to the anti-turnpike property of the singular locus in ∆−0 , the optimal synthesis will be slightly
different in the set B : the singular locus in ∆−0 is time maximizing, therefore optimal trajectories do not take
advantage of staying on the singular arc. Instead, they should reach the extended target set in minimal time
with an extremal value for the control in such a way to stay far from the singular locus. In the case of a time
maximizing singular arc, extremal trajectories can switch alternatively in the sets ∆+

SA ∩∆−0 and ∆−SA ∩∆−0 .
Nevertheless, optimal trajectories are the extremal trajectories with the minimum number of switching times.
Indeed, for the point to point minimal time control problem, Proposition 27 of [7] (see also [9, 25, 24, 23])
implies that in the case of an elliptic singular arc (i.e. time maximizing), then optimal trajectories have at
most one switching point before reaching {s̄} in a neighborhood of the singular locus. Hence, if we denote by
B± a Bang arc with u = 0 or u = umax, we can expect that optimal trajectories in the set B are of two types:
for each initial condition s0 ∈ B, either the control u = umax until reaching T is optimal or the control u = 0
until reaching T is optimal. Let us then introduce two functions s0 7→ v10(s0), s0 7→ v01(s0) in the set B as
follows:

• The time of the strategy B+B− from a given initial condition s0 ∈ B (i.e. u = umax until reaching C0
and then u = 0 until reaching s̄) is denoted by v10(s0).

• The time of the strategy B−B+ from a given initial condition s0 ∈ B (i.e. u = 0 until reaching C1 and
then u = umax until reaching s̄) is denoted by v01(s0).

It follows that optimal trajectories may be non unique depending if the mapping s0 7→ v10(s0) − v01(s0)
vanishes in the set B or not.

Definition 4.1. A cut-locus L is defined as the set of points where the optimal feedback is non-unique.
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In our setting, the cut-locus then separates the set B into two subsets where in each one, the strategy
B+B− and B−B+ are optimal respectively. Moreover, for any initial condition in L, both trajectories B+B−
and B−B+ reach s̄ in the same time i.e. one has v10(s0) = v01(s0). The numerical computation of L is
explained in section 4.4.

Note that when se1 = 0, the strategy B−B+ is not admissible (in that case, any solution of (2.7) for the
control u = 0 starting in B cannot intersect the curve C1). Hence, L = ∅ and only the strategy B+B− is
optimal until reaching the target point s̄, see Fig. 10.

4.4 Numerical computation of the cut locus

In order to find numerically the set L, we proceed as follows. Let us write

v01 = α01 + β01 and v10 = α10 + β10,

with α01 and α10 the times of the first bang arcs u = 0 and u = 1 respectively and β01, β10 the times of the
second bang arcs u = 1 and u = 0 respectively. Recall that s(·, t0, s0, u(·)) denotes the unique solution of (2.7)
such that s(t0, t0, s0, u(·)) = s0. Next, we consider the following parametrized function Fλ : R3 → R3 defined
as:

x :=

 α01

β10

α10

 7−→ Fλ(x) :=

(
λ+ α01 − β10 − α10

s(0, α01, s(0, λ, s̄, umax), 0)− s(0, α10, s(0, β10, s̄, 0), umax)

)
,

where λ := β01.

Remark 4.3. (i) We consider non-negative times i.e. x ≥ 0 and λ ≥ 0. In Fλ, the solutions of (2.7) are
computed backward in time.
(ii) For any λ̃, the vector x̃ := (0, 0, λ̃) is a solution of Fλ̃(x) = 0, hence to every point of T is associated a
pair (x, λ) such that x = (0, 0, λ) and satisfying Fλ(x) = 0. Besides, for λ = 0 and any time t, the vector
xt := (t, t, 0) satisfies F0(xt) = 0. Hereafter, we call trivial solution any pair (x, λ) of the form ((0, 0, λ), λ) or
((t, t, 0), 0).

One can see on Fig. 7, 8 and 9 that an extremity of the cut-locus belongs to the extended target set while
its interior is formed from non-trivial solutions. To compute the cut-locus, we first need to determine the
range [λmin, λmax] for the values of the parameter λ :

• The maximal value λmax is the time to reach s2 = 0 from s̄ with the constant control u = umax,
integrating backward in time (2.7), that is, λmax satisfies s2(0, λmax, s̄, umax) = 0.

• On the other hand, it is to expect that the cut-locus passes through the other intersection point s̄′ of
T and ∆0 (when s̄ = s?, one has s̄′ = s̄ = s?) and λmin is defined as follows : if s̄ is below s̄′ (i.e.
s̄2 < s̄′2), then λmin = 0 and if s̄ is above s̄′ (i.e. s̄2 > s̄′2), then λmin is defined in such a way that
s(0, λmin, s̄, umax) = s̄′.

The cut-locus without extremities is given by non-trivial solutions of the equation

Fλ(x) = 0,

with λ ∈ (λmin, λmax). If 0 is a regular value of F (x, λ) := Fλ(x), then each connected component of F = 0
is a continuously differentiable curve diffeormophic either to a circle or to the real line (see [1]). The curves
belonging to F−1({0}) are disjoint in the regular cases and each curve is called a path of zeros. The path of
zeros associated to the cut-locus reaches a trivial solution when λ = λmin corresponding to the point s̄′ on
the cut-locus, while there is no solution for λ = λmax since the cut-locus tends to (s1

in, s
2
in) when λ→ λmax.

The path of zeros associated to L is then computed for λ ∈ (λmin, λmax) by differential path following
methods [1] (or homotopy methods) starting from one initial point (x0, λ0) such that λ0 ∈ (λmin, λmax) and
F (x0, λ0) = 0. We use the HamPath package [11] to compute the curve. A predictor-corrector algorithm is
implemented with a high order numerical integrator scheme (with adaptive step-size) for the prediction and
a simplified Newton method for the correction6. One interesting feature of the HamPath code is that the
Jacobian of F is automatically computed.

6The correction was not implemented yet when [11] was published.
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To complete the description on how the cut-locus is computed, let us now explain how the initial point
(x0, λ0) is determined. First, we fix λ0 ∈ (λmin, λmax) and then we solve with the fmincon Matlab function
the optimization problem:

min
(α01,β01,α10)∈R3

−α01 s.t. Fλ0
(α01, β01, α10) = 0 and (α01, β01, α10) ∈ R∗+ × R∗+ × R∗+,

to eliminate the trivial solutions. Finally, the cut-locus is depicted on Fig. 7, 8 and 9 respectively when s̄ is
below s̄′, s̄ = s̄′ = s?, and when s̄ is above s̄′. Note that the cut-locus is computed with high accuracy since
the path of zeros satisfies F = 0 with an error of order less than 10−12 along the path.

4.5 Full synthesis

The following Theorem provides the optimal synthesis for problem (2.12) and summarizes the previous results
obtained in the sets A and B.

Theorem 4.1. Suppose that ∆0 ∩ ∆SA is reduced to a singleton {s?}, that ∆SA is simply connected, and
let s̄ ∈ ∆0 be a target point. In addition, suppose that (2.6), (3.7) and (3.13) hold true. Then, one has the
following optimality results.

(i) If s̄ = s?, then the target set can be reached from initial conditions in the set B only.

(ii) If s̄ 6= s?, then the target set can be reached from any initial conditions in the set D.

(iii) For any s̄ ∈ ∆0, an optimal feedback control for (2.12) is given as follows:

• For any initial condition on C0, resp. C1, an optimal control is u = 0, resp. u = umax until reaching T .

• In the set A, the optimal strategy is SAS and the feedback control (4.2) drives optimally any initial
condition s0 ∈ A to the set T .

• In the set B, from any initial condition, either the strategy B− −B+ or B+ −B− is optimal depending
on the initial condition with respect to the cut-locus L (if it exists).

Remark 4.4. It is worth noting that the optimal synthesis will be similar if the target point s̄ is not in the
collinearity set ∆0. We do not develop this case because in our problem, the target point is the steady state
that maximizes the biogas flow rate at equilibrium and, under our assumptions, this point is in ∆0.

5 Conclusion

In this paper, we provided an optimal feedback control of Problem (2.12) that allows to reach in minimal time
the target point maximizing the biogas production at steady state. To do so, we defined an extended target
set that enabled us to decompose the state space into two subsets A and B and give the optimality results in
each subset. It is worth to mention that the structure of the optimal control is different in A and B due to
the turnpike and anti-turnpike properties of the singular arc in the two subsets ∆±0 .

The optimality results mainly rely on the geometry of the collinearity curve ∆0 and of the singular locus
∆SA, and more precisely on the fact that ∆0 ∩∆SA is reduced to a singleton separating ∆SA into a turnpike
and an anti-turnpike. If more than two steady state singular points appear, the study of global optimality
results would be more intricate and out of the scope of the paper. Let us point out that our methodology
allows to treat quite general minimal time control problems having this particular structure (i.e. one steady
state singular point in the invariant domain together with a turnpike and an anti-turnpike for the singular
locus, see e.g. [4, 8]).

From a practical point of view, the determination of an autonomous feedback control is useful to drive
optimally the control system to the optimal target point at steady state (it is in particular robust to control
the system if uncertainties affect the process). Moreover, the knowledge of the different curves ∆0, ∆SA, and
L may be useful to increase the performance of a fermentor operated by the synthesized feedback control.
In particular, depending on the position of the initial condition w.r.t. these curves, one can then choose an
adequate control policy driving the system to the target point. It is also worth to mention that this control
law can also be used as a sub-optimal strategy (for the time criterion) in the case when initial conditions are
no longer on the set V or when α 6= 1. Since uncertainties can affect the process, the target may be not known
exactly on the curve ∆0, nevertheless, our analysis provides an optimal feedback control for any target point
on ∆0.
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7 Appendix

In this section, we summarize the variable names and the numerical values used in this paper, and we prove
Properties 3.3 and 4.1. We also depict the optimal synthesis of the problem.

• Table 1 describes the name of the variables of (1.1).

• Table 2 indicates the changes of variable to transform (1.1) into (2.1).

• Table 3 provides the numerical values for the parameters that were used for simulations (the variables
values before the change of variable are taken from [6] and are explained below).

In the original variables (see (1.1)) the kinetics are given by

µ̃1(S1) :=
µ1,maxS1

S1 +KS1

and µ̃2(S2) :=
µ2,maxS2

S2 +KS2
+

S2
2

KI2

.

with µ1,max = 1.2, KS1 = 42.14, µ2,max = 0.74, KS2 = 9.28, KI2 = 256, S1
in = 10 and S2

in = 93.6 (see [6]).
According to the change of variable indicated in Table 2, we find that µ̄1 = µ1,max, k = KS1 , µ̄2 = µ2,max,
k′ = k1

k2
KS2

, k′′ = k1

k2
KI2 . This yields to the numerical values indicated in Table 3. The maximum value for

the dilution rate is taken equal to 1 which is in the range of values of [6].

Remark 7.1. Using the numerical values indicated in Table 3, we can check numerically that the singular arc
is always admissible i.e.

|us| < 1. (7.1)

Indeed, recall that ∆SA is the graph of s2 7→ δSA(s2) for s2 ∈ [δ−1
SA(0), smax] (see (3.9)) and that δ−1

SA(0) ' 3.15
and smax ' 17.33. Then, s2 7→ us(s2) indeed satisfies (7.1) over [δ−1

SA(0), smax].
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Variable name Signification unit
X1 acidogenic bacteria g/L
S1 organic substrate g/L
X2 methanogenic bacteria g/L
S2 Volatile fatty acids mmol/L

ki, i = 1, 2, 3 Yield coefficients mmol/g
S1
in Input substrate concentration for S1 g/L
S2
in Input sustrate concentration for S2 mmol/L

µi, i = 1, 2 kinetics of the bacteria d−1

D Dilution rate d−1

α Retention of biomass parameter

Table 1: Variable names in (1.1)

New variables in system (2.1) Original variables in system (1.1)
x1 k1X1

s1 S1

x2
k1k3

k2
X2

s2
k1

k2
S2

u αD
s1
in S1

in

s2
in

k1

k2
S2
in

µ1(s1) µ̃1(s1) = µ̃1(S1)

µ2(s2) µ̃2

(
k2

k1
s2

)
= µ̃2(S2)

Table 2: Change of variables for obtaining (2.1) from (1.1).

Parameter Value
k1 42.14
k2 116.5
k3 268
µ̄1 1.2
k 7.1
µ̄2 0.74
k′ 3.36
k′′ 92.6
s1
in 10
s2
in 33.85
α 1

umax 1

Table 3: Values of the parameters used for simulations after change of variable indicated in Table 2 (see [6]).

Proof of Property 3.3. To simplify the notations, let us denote by (s1(·), s2(·)) in place of s̃0(·, s̄) the unique
solution of (2.7) backward in time with u = 0 starting from s̄. If we set y1 := s1

in − s1 and y2 = s2
in − s2, we

then find that (y1(·), y2(·)) satisfy the ordinary differential equation (ODE):

ẏ1 = −y1µ1(s1
in − y1) and ẏ2 = −y2µ2(s2

in − y2) + (µ1(s1
in − y1)− µ2(s2

in − y2))y1.

Thus, one obtains that y1(t) → 0 when t → +∞. Using that µ1 and µ2 are bounded and that y1(t) goes to
zero when t → +∞, we deduce that y2(t) → 0 when t → +∞ (Barbalat’s Lemma). Now, a straightforward
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computation shows that if w := y2

y1
, one has

ẇ =
ẏ2

y1
− y2

y1

ẏ1

y1
= −wµ2(s2

in − y2) + µ1(s1
in − y1)− µ2(s2

in − y2) + wµ1(s1
in − y1),

= [µ1(s1
in − y1)− µ2(s2

in − y2)](w + 1).

Let us now set z := w + 1 and η(t) := µ1(s1
in − y1(t))− µ2(s2

in − y2(t)) so that z satisfies the ODE

ż = η(t)z.

By a direct integration, we get z(t) = z(0) exp
(∫ t

0
η(t) dt

)
. Note that η(t)→ µ1(s1

in)−µ2(s2
in) when t→ +∞.

Moreover, (2.6) implies that µ1(s1
in) > µ2(s2

in) (note that following [6], one can check that numerical values
of the parameters are such that µ1(s1

in) = 0.7, µ2(s2
in) = 0.51, and µ1(s1

in) > µ2(s2
in)). Hence, we find that

η(t) converges to a positive constant η∞ > 0 when t→ +∞. Thus, η is not integrable over [0,+∞) and thus

z(t) → +∞ when t → +∞. We conclude that w(t) = y2(t)
y1(t) =

s2in−s2(t)

s1in−s1(t)
→ +∞ when t goes to infinity as was

to be proved. �

Proof of Property 4.1. Let (s1(·), s2(·)) be the unique solution of (2.7) with u = umax starting from a given
initial condition s0 ∈ B. If we set y1 := s1

in − s1 and y2 = s2
in − s2, we then find that (y1(·), y2(·)) satisfy the

ODE

ẏ1 = (µ1(s1
in − y1)− umax)y1 and ẏ2 = (µ2(s2

in − y2)− umax)y2 + (µ2(s1
in − y1)− µ1(s2

in − y2))y1.

Similarly as in the proof of Property 3.3, we can show that limt→+∞ s1(t) = s1
in and limt→+∞ s2(t) = s2

in. Let
us now set w := y2/y1. A straightforward computation shows then that one has

ẇ = [µ2(s2
in − y2)− µ1(s1

in − y1)](w + 1).

Hence, if we define the function z as z := w+1, we find that ż = ε(t)z where ε(t) := µ2(s2
in−y2(t))−µ1(s1

in−
y1(t)). As ε(t) congerges to a negative value −η∞ = µ2(s2

in) − µ1(s1
in) < 0, we obtain that z(t) goes to zero

when t→ +∞. Hence, we get that w(t)→ −1 when t goes to infinity as was to be proved.

We finish this appendix with the plot of optimal syntheses, provided in Section 4.5, for different values of
the target point s̄:

• Fig. 7 depicts the optimal synthesis in the case where the target is the point of ∆0 maximizing the
biogas production (see (3.19)).

• Fig. 8 depicts the optimal synthesis in the particular case when s̄ = s? ∈ ∆0 (i.e. the target coincides
with the steady-state singular point).

• Fig. 9 depicts the optimal synthesis for a target point s̄ ∈ ∆0 such that s̄2 > s?2 in the case where the
extended target T intersects the axis s2 = 0.

• Fig. 10 depicts the optimal synthesis for a target point s̄ ∈ ∆0 such that s̄2 > s?2 in the case where T
does not intersect the axis s2 = 0.
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Figure 7: Optimal synthesis for the target point s̄ := (4.59, 6.75) maximizing the biogas production at steady
state. Singular locus, collinearity curve and extended target in black; cut-locus in green. In that case, the
cut-locus passes through s̄′, the other intersection point between ∆0 and T .
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Figure 8: Optimal synthesis when the target point is such that s̄ = s?. Singular locus, collinearity curve and
extended target in black; cut-locus in green. In that case, the target set can be reached from the set B only.
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Figure 9: Optimal synthesis for the target point s̄ = (5.52, 12). Singular locus, collinearity curve and extended
target in black; cut-locus in green. In that case, the cut-locus passes through s̄′, the other intersection point
between ∆0 and T .
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Figure 10: Optimal synthesis for the target point s̄ = (5.72, 17). Singular locus, collinearity curve and extended
target in black. In that case, the strategy B− −B+ in the set B is not admissible and optimal controls in the
set B satisfy u = umax.
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