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Abstract—Providing efficient black-box search procedures
is one of the major concerns for constraint-programming
solvers. Most of the contributions in that area follow the
fail-first principle, which is very useful to close the search
tree or to solve SAT/UNSAT problems. However, for real-
life applications with an optimization criterion, proving
optimality is often unrealistic. Instead, it is very important to
compute a good solution fast. This paper introduces a value
selector heuristic focusing on objective bounds to make the
first solution good. Experiments show that it improves former
approaches on a wide range of problems.

I. INTRODUCTION

One of the main strengths of Constraint Programming
(CP) is the simplicity of modeling offered by its expres-
sive declarative language. Unfortunately, simple models
do not always lead to satisfying performances. For this
reason, CP users may have to implement dedicated
search heuristics. To make this task easier, high level
languages for specifying search strategies have been
integrated into CP solvers [1], [2]. However, design-
ing an efficient strategy still requires time and some
background in CP. Moreover, such efforts may not be
reusable when solving a different problem. Based on
this observation, robust black-box search strategies have
been proposed in the literature. Such works enabled to
improve the trade off between implementation effort and
performances of CP solvers on a wide range of problems.
Nevertheless, making CP solvers easier to be efficiently
used by software engineers remains one of the biggest
challenges for the spread of the CP technology. Most
black-box search procedures rely on the fail-first princi-
ple [3], which is very relevant to constraint satisfaction,
and optimization when it comes to closing the search
tree. However, it is not efficient when one wants to
compute a good quality solution fast, which is the case
in most real life applications.

This paper suggests another step towards this Holy
Grail, by introducing a value selection heuristic, referred
to as Bound-Impact Value Selector (BIVS), which improves
numerous search strategies on a wide variety of bench-
marks, making CP solvers even more competitive when
development resources are limited. This paper is orga-
nized as follows: Section II provides some background
in CP. Then, Section III introduces the BIVS rule, which is
experimentally evaluated in Section IV. Finally, Section
V shows some conclusions.

II. CONSTRAINT PROGRAMMING BACKGROUND

Constraint programming is based on relations between
variables, which are stated by constraints. A Constraint
Satisfaction Problem (CSP) is defined as a triplet 〈V,D, C〉
and consists of a set of n variables V , their associated
domains D, and a collection of m constraints C.

A. Main Concepts
Let X be a universe of values, the domain dv ∈ D

associated to a variable v ∈ V defines the possible values
of v, i.e. dv ⊆ X . An assignment, or instantiation, v? of
a variable v to a value x ∈ dv is the reduction of its
domain dv to a singleton, dv = {x}. Let S ⊆ V , an
assignment S? of S is a set such that for all vi ∈ S,
|dvi | = 1. A constraint c ∈ C is defined over a set of
variables Vc ⊆ V and defines a set of valid assignments
Ac. A solution to c is an assignment of its variables,
V ?c , such that V ?c ∈ Ac. A constraint c is said to be
satisfiable if there exists a solution to c. A solution to
a CSP is an assignment of all variables of V such that
every constraint of C is simultaneously satisfied; a CSP
is satisfiable if and only if it has a solution. A constraint
is equipped with one or more filtering algorithms. A
filtering algorithm reduces current domains of Vc by
identifying variable-value pairs which cannot satisfy
the constraint. The strength of a filtering is qualified
through a level of consistency, and may vary from one
algorithm to another [4]. A propagation algorithm applies
iteratively filtering algorithms of C until no more domain
reductions can be performed. Solving a CSP consists in
performing a Depth First Search (DFS) algorithm with
backtrack, during which branching decisions are com-
puted, applied and negated. Without loss of generality,
2-way branching will be considered hereafter since it is
more powerful and flexible than d-way branching [5].
A branching decision, or simply decision, δ is a triplet
〈v, o, x〉 composed of a variable v (not yet assigned),
an operator o (most of the time =, 6=, ≤ or ≥) and a
value x ∈ dv . This triplet represents a constraint over
dv , the domain of v. Each time a decision is applied
or negated, its impact is propagated to the CSP by
removing some infeasible values from D. If this empties
a domain, i.e., the CSP is not satisfiable, a failure occurs
and the search algorithm backtracks. Otherwise, another
decision is computed, unless a solution has been reached.

Algorithm 1 depicts a recursive implementation of a
search algorithm. The main methods that build a deci-
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sion for the search algorithm are the variable selection
(line 2), the operator selection (line 4) and the value
selection (line 5). First, line 2 chooses a variable v among
all the non-assigned ones. Whenever all variables are
instantiated, the function SELECTVARIABLE returns ∅, in-
dicating that a solution has been found (line 16). Second,
if not all variables are instantiated (line 3), a decision,
e.g. 〈v, o, x〉, is computed (lines 2,4,5), e.g. 〈v,=, 1〉. Next,
lines 7 to 10 depict the application of δ, e.g. 〈v,=, 1〉,
while lines 11 to 14 depict the application of the negation
of the decision, e.g. 〈v, 6=, 1〉. Lines 8 and 12 propagate the
application or negation of a decision through the CSP. If
the function PROPAGATE returns false, then the current
CSP is not satisfiable. Otherwise, the function returns
true and the search goes on.

Algorithm 1 Recursive search algorithm.
1: procedure SEARCH(〈V,D, C〉)
2: Variable v ← SELECTVARIABLE(〈V,D, C〉)
3: if v 6= ∅ then
4: Operator o← SELECTOPERATOR(v, 〈V,D, C〉)
5: Value x← SELECTVALUE(〈v, o〉, 〈V,D, C〉)
6: 〈V,D′, C′〉 ← COPYOF(〈V,D, C〉)
7: APPLY(〈v, o, x〉, 〈V,D, C〉)
8: if PROPAGATE(〈V,D, C〉) then
9: SEARCH(〈V,D, C〉)

10: end if
11: APPLY(〈v, !o, x〉, 〈V,D′, C′〉)
12: if PROPAGATE(〈V,D′, C′〉) then
13: SEARCH(〈V,D′, C′〉)
14: end if
15: else
16: RECORDSOLUTION(〈V,D〉)
17: end if
18: end procedure

A Constraint Optimization Problem (COP) is a CSP
where one objective variable has to be either minimized
or maximized. It is solved as a standard CSP in which a
new constraint is added upon each solution to state that
the next solution should be strictly better. It relies on the
enumeration of improving solutions (SAT) until proving
that none exists (UNSAT), meaning that the last solution
was optimal.

B. Black-Box Search Heuristics
There are many ways of choosing a variable and

computing a decision on it. These are referred to as
search strategies, labelling strategies or heuristics and have
a strong impact on performances. Designing specific
search strategies can be a very tough task to do. The con-
cept of black-box search heuristic has naturally emerged
from this statement. Most common black-box search
strategies observe aspects of the CSP resolution in or-
der to drive the variable selection, and eventually the
decision computation (presumably, a value assignment).
Three main families of heuristic, stemming from the
concepts of variable impact, conflict and variable activity,
can be found in most CP solvers.

The impact-based search heuristic (IBS) [6] is based
on the importance of a decision for the reduction of the
search space, named impact. More precisely, the impact
Ī(〈v,=, x〉) of each possible assignment is estimated

empirically. An assignment which results in a failure
produces a maximal impact. The impact of a variable
I(v) is given by the formula: I(v) =

∑
x∈dv Ī(〈v,=

, x〉)−|dv|. IBS heuristic selects the uninstantiated variable
with largest impact and assigns it the least impact value.
The computation of impacts is preprocessed at the root
node by testing all possible assignments, or a partition
of them in case of large domains.

A well known conflict-based search heuristic is the
weighted degree ordering heuristic (WDEG) [7]. It main-
tains a weight associated to each constraint, i.e., the
number of times it has failed. The weighted degree,
αwdeg(v), of a variable v is defined as the sum of
weights of its associated constraints which involve at
least two uninstantiated variables. WDEG heuristic selects
the uninstantiated variable v with the smallest ratio
|dv|

αwdeg(v)
. It only defines the variable selection, not the

value selection.
The activity-based search heuristic (ABS) [8] records

the activity of variables during propagation. A variable
activity, A(v), is the number of domain modifications in-
duced by decisions involving variable v. An assignment
activity, A(〈v,=, x〉), is based on the number of variables
modified by the application of 〈v,=, x〉. A sampling
process initializes activities prior to search. ABS heuristic
selects the uninstantiated variable v with largest ratio
A(v)
|dv| and assigns it the least activity value.

Last Conflict [9] (LC) and Conflict Ordering Search [10]
(COS) are two variable selectors that tend to branch
on the variables that trigger conflicts the most. They
can be seen as a plugin that can be combined with
another variable selector heuristic. LC only interferes
with the former search upon backtrack whereas COS will
completely replace the former heuristic during search.

Overall, these heuristics are blind to the optimization
function and tend to follow the fail-first principle, which
is by essence in contradiction with finding a good solu-
tion.

III. THE Bound-Impact Value Selector
This section presents the contribution of this paper. It

defines the BIVS heuristic and shows how such a rule
can be easily integrated into a CP solver.

Definition 1: Given a COP in minimization (maximiza-
tion), BIVS is a value selection heuristic that selects the
value with the lowest (highest) objective lower (upper)
bound after propagation of such an assignment.

It is worth noticing that BIVS is not a standalone
heuristic, but only a value selector. Therefore, it can be
combined with any variable selector and operator. This
provides a lot of flexibility.

A. Algorithm
Algorithm 2 describes how BIVS selects the best value

w.r.t. a variable and an operator. An iteration over all
values in D(v) is done in the SELECTVALUE function,
lines 4 to 10, wherein each value x is evaluated calling
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BOUND function, line 5. As loop goes on, the best bound
found so far is stored together with the corresponding
value, lines 6 to 9. Finally, the value that gives the
smallest bound is returned, line 11, or the variable lower
bound otherwise, lines 2 and 3. The BOUND function
applies a fake decision 〈v, o, x〉, line 15, on a copy of
the COP, line 14, and evaluates the reduction effect on
the objective variable f through propagation (lines 16
to 24). If the propagation fails, an arbitrary big value is
returned (line 23) to defer the selection of x. Otherwise,
the lower bound of f (in minimization) or its upper
bound multiplied by -1 (in maximization)1 is returned.

Note that BIVS introduces an overhead over a classical
value selection. Assuming no fail occurs, the number of
nodes explored to reach a solution moves from O(|V|) to
O(|D|). This can be problematic when domain are very
large. If so, Algorithm 2 should be adapted to evaluate
variable bounds only, to keep runtime under control.

Algorithm 2 BIVS value selector.
global Variable f // objective variable
global Boolean isMinimization // whether to minimize or maximize f
1: function SELECTVALUE(〈v, o〉, 〈V,D, C〉)
2: int bestValue← D(v)

3: int bestBound← +∞
4: for x ∈ D(v) do
5: int bound←BOUND(〈v, o, x〉, 〈V,D, C〉)
6: if bound < bestBound then
7: bestValue← x
8: bestBound← bound
9: end if

10: end for
11: return bestValue
12: end function
13: function BOUND(〈v, o, x〉, 〈V,D, C〉)
14: 〈V,D′, C′〉 ← COPYOF(〈V,D, C〉)
15: APPLY(〈v, o, x〉, 〈V,D′, C′〉)
16: if PROPAGATE(〈V,D′, C′〉) then
17: if isMinimization then
18: return D(f)

19: else
20: return −D(f)
21: end if
22: else
23: return +∞
24: end if
25: end function

B. Related work
BIVS is closely related to IBS as it evaluates the effect

of an assignment through propagation. However, the
evaluation of BIVS is limited to a single variable and its
impact is only measured on one objective variable bound.

BIVS is also closely related to HBFS [11], which is a
another hybridization between the classical DFS used in
CP and a Best-First-Search (BFS). The HBFS framework
stores open nodes representing unexplored subproblems,
i.e. left and right child nodes of branching decisions.
Then, the best node w.r.t. the lower (upper) bound of
the objective variable in minimization (maximization) is
popped and explored using a standard DFS limited to a
number of backtracks which, in turn, will push new open

1The upper bound is multiplied by -1 because selectValue func-
tion stored the smallest evaluation.

nodes. The main differences between BIVS and HBFS are
:
• The Breadth aspect of BIVS is local to the domain of

one selected variable, in one node of the search tree,
whereas it is related to left and right child nodes of
the entire search tree in HBFS

• BIVS is a value selector heuristic whereas HBFS is an
exploration framework, which still requires a search
heuristic to compute decisions.

Therefore, BIVS and HBFS can be combined.
Note also that this heuristic may identify infeasible

assignments (see line 23 of Algorithm 2). If we filter
out these values from variable domains, then BIVS may
be seen as a form of Singleton Arc Consistency [12],
restricted to the current decision variable. However,
implementing it would be slightly more intrusive and
adding another propagation step would delay even more
branching on a good value, whereas our will is to
compute a good solution fast. Thus, we do not discuss
this point further.

IV. EVALUATIONS

This section demonstrates the benefit of plugging
BIVS into search procedures, over a wide spectrum
of problems. BIVS was implemented in the Choco
Solver 4.0.5 [13], a Java library for constraint program-
ming. All the experiments were done on a Mac Pro
with a 8-core Intel Xeon E5 at 3Ghz running on MacOS
10.12.5, and Java 1.8.0_25. All experimental details are
available on demand.

A. Evaluation on a combinatorial problem

In this experiment, we consider the Traveling Sales-
man Problem, which is a good illustration of combinato-
rial optimization. In this problem, constraint satisfaction
is trivial: every permutation is a feasible solution, lead-
ing to an exponential number of solutions. The difficulty
lies in the cost function. Therefore, if the search heuristic
is blind to costs, results will be presumably poor. This
gets even worse if the search heuristic is oriented to
fail-first (note that the fail-first principle is relevant to
close the search tree once we have a near-optimal upper
bound [14] but not to reach a good solution, which is
the focus of this paper).

To avoid wasting time exploring low-quality solutions,
CP developers generally implement a search heuristic in
their model. We consider the classical CP formulation of
the TSP, which relies on successor variables, a CIRCUIT
constraint, and ELEMENT constraints to capture the cost
of each unit travel. The most natural approach when
designing a search heuristic for this model is to branch
on the successor variables and select the value associated
to the smallest distance. We therefore compare BIVS to
this approach in order to evaluate the gap between our
generic approach and what an expert would do in few
minutes. More precisely, we compare three heuristics:
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• DEFAULT: WDEG combined with LC, selecting the
lower bound for each variable. This corresponds to
what most users would get2.

• MINCOST: selects variables according to their input
(static) ordering, selecting the value associated to
the cheapest distance. This corresponds to what an
advanced user would do.

• BIVS: selects variables according to their input
(static) ordering, selecting the value leading to the
minimal objective lower bound (BIVS). This is the
contribution of this paper.

For this purpose, we randomly generated 90 TSP
instances, having 10, 50 or 100 nodes. Results3 on the
first solution and after 30 seconds of solving are reported
on Table I. Note that the first solution value has a
strong impact in practice. Indeed, it is common to solve
optimization problems in a satisfaction way, i.e. stopping
at the first solution found, provided that the search
heuristic ensures that it will be good enough [15].

TABLE I
TSP EVALUATION

TSP Search 1st sol. 1st sol. last sol.
size time (s) value value
10 DEFAULT 0.01 748 241
10 MINCOST 0.01 380 241
10 BIVS 0.01 310 241
50 DEFAULT 0.02 3775 2043
50 MINCOST 0.03 629 352
50 BIVS 0.60 455 327
100 DEFAULT 0.16 7627 6008
100 MINCOST 0.17 748 497
100 BIVS 9.80 570 428

Results confirms the first claim that when the heuristic
is blind to costs, which is the case of the DEFAULT search,
results are very poor. The first solution is really bad and
30 seconds are not sufficient to achieve a decent solution
quality. In opposite, both MINCOST and BIVS provide
much better good solutions. Quite surprisingly, there is
a large gap between the first solution value of BIVS and
MINCOST. More astonishing is the same gap after the
time limit. As BIVS requires more runtime, it could be
expected that MINCOST catches back over BIVS. Indeed,
we observe in practice the theoretical runtime overhead
induced by BIVS, which evaluates each assignment, lead-
ing to O(n2) nodes instead of exactly n nodes to compute
the first solution (note that the first solution is found
without failing). This shows that the strength of BIVS
clearly compensates its overhead.

B. Benchmarking
In order to obtain a larger view over the potential

benefits of using BIVS to solve other problems, it has been
evaluated on a wide range of optimization problems
from the MiniZinc [16], [17] distribution, which are
used in CP solver competitions. The set of benchmarks

2Such heuristic is the default one in Choco Solver.
3Results are an average over the 30 instances of each size

used consists of the COP instances from the MiniZinc
Challenges [18] (2012 to 2016) and is composed of 403
instances from 58 problems. The models rely on a large
variety of constraints, including global constraints. Each
model specifies a dedicated search strategy, which pos-
sibly includes domain splitting.

We compare the performances of using the search
defined in the MiniZinc file (FIX) with various black-
box search heuristics (ABS, IBS and WDEG4, all asso-
ciated with LC). Finally, we evaluate the combination
of WDEG(+LC) with BIVS as a value selector. Figure 1
displays the number of instances for which each search
configuration was able to find the best solution. Each run
had a 15-minute timeout. As can be seen, BIVS allows to
obtain the best solution on a larger number of instances.
Overall, results show that BIVS is a good value selector
for black-box search strategies.
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Fig. 1. Evaluation of BIVS on MiniZinc Challenge instances
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Fig. 2. Evaluation of BIVS on MiniZinc Challenge instances using
Large Neighborhood Search together with DomOverWDeg variable
selection.

Then, we evaluate the impact of BIVS within
a Large Neighborhood Search (LNS) [19] approach,
which is probably the most common approach to
tackle real-life optimization problems using Constraint-
Programming [20], [21], [22]. More precisely we consider
the generic approach of [23] that is based on constraint
propagation and randomness, and use WDEG as a vari-
able selector. Recall that, mimicking local-search, LNS

4Using InDomainMin as value selector.
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partially unassigns some variables from a given solution
and attempts to instantiate them to a close yet different
assignment that betters the objective variable. Having
a good solution as input, which BIVS presumably does,
should improves the entire process. Figure 2 displays the
number of instances for which each search configuration
was able to find the best solution within a 15-minute
timeout. Results show that BIVS allows to obtain the best
solution on 28 more instances. Therefore, BIVS combines
very well with LNS.

V. CONCLUSION

This paper introduces the Bound-Impact Value Selector
(BIVS), which selects the value of a variable that would
lead to the best objective bound after propagation of
the branching decision. This generic heuristic enables to
ensure that the first solution is relatively good, without
having to implement a dedicated search strategy. This
is very useful for industrial applications that require
computing a good enough solution as fast as possible.

This heuristic is compatible with any variable selector
and operator, leading to a large usage potential. A wide
variety of benchmarks have shown BIVS to be highly
efficient on numerous problems. Since it is both simple
and effective, BIVS is definitely worthwhile to implement
into constraint programming solvers. BIVS is used in the
default search of Choco Solver since version 4.0.5.

Nevertheless, this selector is not recommended when
no solution exists, which happens during the optimality
proof. This is where the fail-first should be considered.
Unfortunately, knowing when to switch from one ap-
proach to the other remains an open question. Without
such a rule, our approach is to use both in a parallel
portfolio sharing the objective bound. In particular, this
has been used by Choco Solver for the parallel tracks of
MiniZinc5 and XCSP36 competitions of 2017, where the
solver is used as a black-box.
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