Mahmoud Abdelrahim 
  
Romain Postoyan 
  
Jamal Daafouz 
  
Dragan Nešić 
  
W P M H Heemels 
  
Co-design of output

   

Introduction

In event-triggered control, the feedback loop is closed only when a state/output dependent criterion is violated. As a result, the amount of communication between the sensors, the controllers, and the actuators is adapted to the current state of the controlled system, which may be significantly reduced compared to conventional timetriggered setups, see [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and the references therein. This feature is particularly appealing when the communication resources are limited and need to be efficiently used such as in networked control systems (NCS), in which the feedback information and the control input updates Email addresses: m.abdelrahim@aun.edu.eg (M. Abdelrahim), romain.postoyan@univ-lorraine.fr (R. Postoyan), jamal.daafouz@univ-lorraine.fr (J. Daafouz), dnesic@unimelb.edu.au (D. Nešić), m.heemels@tue.nl (W.P.M.H. Heemels).

are transmitted over a shared network.

Most existing event-triggering strategies are developed using the emulation approach, see, e.g., [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] and the references therein. In other words, the feedback law is first synthesized to stabilize the plant in the absence of network. Afterwards, the effect of network is considered and the sampling rule is constructed. A possible disadvantage of emulation is that the performance of the system, like the (guaranteed) L 2 -gain, is limited by the initial choice of the feedback law. To overcome this restriction, the controller and the event-triggering condition should be designed simultaneously, which is usually more challenging. In this respect, three directions of research are proposed in the literature: the joint design of control inputs and self-triggering conditions, e.g., [START_REF] Gommans | Self-triggered linear quadratic control[END_REF][START_REF] Kögel | On self-triggered reducedattention control for constrained systems[END_REF], optimal event-triggered control, e.g., [START_REF] Brunner | Robust selftriggered MPC for constrained linear systems: A tube-based approach[END_REF][START_REF] Molin | Optimal event-triggered control under costly observations[END_REF], and the codesign of feedback laws and event-triggering conditions, e.g., [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF][START_REF] Li | An improved event-triggered communication mechanism and L∞ control co-design for network control systems[END_REF][START_REF] Meng | Event detection and control co-design of sampled-data systems[END_REF][START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF]. We are interested in the last approach.

We consider the scenario where the plant dynamics is linear time-invariant (LTI) and is affected by external disturbances and both the output measurement and the control input are corrupted by noises. We assume that the plant output and the control input are transmitted over two different channels, which are governed by two independent event-triggering conditions. Each triggering condition can only depend on the information available locally at each channel, that is the noisy measurement of the plant output or of the noisy control input. Similar setups have been studied in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF][START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF] but with the emulation approach. Our objective here is to co-design dynamic output feedback laws and the triggering rules to ensure the L 2 -stability of the closed-loop system with a given upper-bound on the L 2 -gain.

We consider dynamic output feedback laws of the same dimension as the plant, as well as the same type of triggering rules as in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. The difference is that we want to design both the controller and the parameters of the triggering rules simultaneously. The triggering rules consist in waiting fixed amount of times T y , T u > 0 since the last transmission instant of the plant output and of the control input, respectively, and then checking the event-triggering rules. The enforced bounds T y and T u exclude the occurrence of Zeno behaviour at each channel, which might appear otherwise. The overall system is modeled as a hybrid system in the formalism of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. We first revisit the results presented in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF] for LTI systems to ease the development of a co-design procedure afterwards. In particular, we provide a new linear matrix inequality (LMI), which ensures the L 2 -stability of the closed-loop system, by making different modeling and design choices. Still, this matrix inequality becomes nonlinear when the feedback law has to be designed and standard linearization techniques, like congruence transformations cannot be applied. To overcome this issue, we introduce additional LMI constraints. The LMI formulation of the co-design algorithm is then exploited to adapt some transmission characteristics given a desired bound on the L 2 -gain, which quantifies the robustness of the system. First, the LMI conditions are exploited to maximize the guaranteed minimum times T y , T u . This task is motivated by the fact that the resulting T y , T u may be very small, and thus may not meet the hardware limitations because of the choice of the feedback law. Hence, it is of interest to enlarge the lower bounds T y , T u , which are the true minimum times between two successive transmissions on the corresponding channel, as we will prove. Second, we present a heuristic method to enlarge the inter-transmission times of the output measurement and of the control input, which may lead to further reductions in the amount of transmissions. The effectiveness of the approach is illustrated on a numerical example. The simulations show that the co-design technique leads to a great reduction in the amount of transmissions compared to the emulation approach while guaranteeing the same (or slightly increased) estimate of the L 2 -gain. The results also encompass the particular case of time-triggered control as the guaranteed minimum times T y , T u mentioned above can be used as a maximum sampling period for each corresponding channel.

Compared to [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF][START_REF] Li | An improved event-triggered communication mechanism and L∞ control co-design for network control systems[END_REF][START_REF] Meng | Event detection and control co-design of sampled-data systems[END_REF][START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF], we synthesize continuous event-triggered controllers while these works are all dedicated to the case of discrete event-triggered control, i.e., the plant dynamics is first discretized and then an eventtriggered controller is designed for the discrete-time system, which is a different sampling paradigm. Moreover, we consider different types of exogenous inputs affecting the control system, as the plant is subject to external disturbances and both the output measurement and the control input are corrupted by noise. The effect of noise on the transmitted variables is not trivial to handle and has only been considered in [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF] for the plant output only, but not for the control input. Furthermore, we give analytical insights on the potential of the co-design technique to generate less transmissions than with the emulation approach, which has not been studied before in the literature, to the best of our knowledge.

Compared to the preliminary version of this work [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF], we investigate robust stabilization, namely L 2 -stability, as opposed to asymptotic stabilization. Moreover, inspired by [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF][START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], the proposed technique applies to the case where the plant output and the control input are transmitted asynchronously, which is different than the setup studied in [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF], where both transmissions occur synchronously.

The rest of the paper is organized as follows. Preliminaries are given in Section 2. The hybrid model and the problem formulation are presented in Section 3. We first design event-triggered controllers by emulation in Section 4. Then, the co-design procedure is developed in Section 5. We discuss how to optimize the parameters of the event-triggering mechanism in Section 6. Numerical simulations are given in Section 7. Conclusions are provided in Section 8. The proofs are given in the Appendix.

Preliminaries

Let R := (-∞, ∞), R ≥0 := [0, ∞), Z ≥0 := {0, 1, 2, . . .} and Z >0 := {1, 2, . . .}. A continuous function γ : R ≥0 → R ≥0 is of class K if it is zero at zero, strictly increasing, and it is of class K ∞ if in addition γ(s) → ∞ as s → ∞. We write A T and A -T to respectively denote the transpose and the inverse of transpose of A (when it exists) and diag (A 1 , • • • , A N ) is the block-diagonal matrix with the entries A 1 , • • • , A N on the diagonal. The symbol ⋆ stands for symmetric blocks in matrices. We use I n to denote the identity matrix of dimension n. We denote by |.| the Euclidean norm. We use (x, y) to represent the vector [x T , y T ] T for x ∈ R n and y ∈ R m .

The Schur complement formula states that an LMI

A B T B C < 0 is satisfied when C < 0 and A-B T C -1 B < 0 both hold.
We consider hybrid systems of the following form [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] 

ẋ = F (x, w) x ∈ C, x + ∈ G(x) x ∈ D, (1) 
where x ∈ R nx is the state, w ∈ R nw is an exogenous input, C is the flow set, F is the flow map, D is the jump set and G is the jump map. The exogenous input w only affects the flow dynamics in [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF] and not the flow and the jump sets, as this will be the case in this study. For more details on the notion of solution for system (1), we refer the reader to [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF].

We adopt the following definition of L 2 -norm of hybrid signals [START_REF] Nešić | Finitegain Lp stability for hybrid dynamical systems[END_REF].

Definition 1 For a hybrid signal z defined on the hybrid

time domain dom z = J-1 j=0 [t j , t j+1 ] × {j} with J possibly ∞ and/or t J = ∞, the L 2 -norm of z is defined as ||z|| 2 := J-1 j=0 tj+1 tj |z(t, j)| 2 dt 1 2
, provided that the right-hand side exists and is finite, in which case we write z ∈ L 2 . ✷ Based on Definition 1, we define L 2 -stability for system (1) as in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF][START_REF] Nešić | Finitegain Lp stability for hybrid dynamical systems[END_REF].

Definition 2 System (1) is L 2 -stable from the input w ∈ L 2 to the output z := h(x, w) with gain less than or equal to η ≥ 0 if there exists β ∈ K ∞ such that any solution pair (x, w) to (1) satisfies ||z|| 2 ≤ β(|x(0, 0)|) + η||w|| 2 . ✷

Hybrid model and problem statement

Consider the LTI plant model

ẋp = A p x p + B p û + E p w, y = C p x p + d y , (2) 
where x p ∈ R np is the plant state, û ∈ R nu is the most recently transmitted value of the control input u ∈ R nu to the plant, w ∈ R nw is an external disturbance on the plant, y ∈ R ny is the measured output, which is affected by the additive measurement noise d y ∈ R ny . We assume that w ∈ L 2 , and that the signal d y is absolutely continuous and its time-derivative exists for almost all the time and is in L 2 . We focus on dynamic controllers of the form

ẋc = A c x c + B c ŷ, u = C c x c + d u , (3) 
where x c ∈ R nc is the controller state, ŷ ∈ R ny is the most recently transmitted value of the output measurement y to the controller, and d u ∈ R nu is a vector of noises affecting the control input, e.g., additive torque disturbance in robotic systems [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF] or acceleration disturbances on the control input in the vertical takeoff and landing (VTOL) aircraft [START_REF] Chwa | Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and inputdependent disturbances[END_REF]. We assume that the signal d u is absolutely continuous and its time-derivative exists for almost all the time and is in L 2 . We consider that n c = n p , i.e., the plant state and the controller state are of the same dimension.

We study the scenario where the communications between plant (2) and controller (3) are realized over digital channels, see Figure 1. In particular, the transmission instants t y i , i ∈ I y ⊆ Z ≥0 of the output measurement and the update instants t u i , i ∈ I u ⊆ Z ≥0 of the control input are generated by two independent triggering conditions. Hence, t y i = t u j , i = j in general, i.e., t y i and t u j are not necessarily synchronized a priori, see also [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF][START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF]. At each transmission instant t y i , i ∈ I y , the current output measurement y is transmitted to the controller to update the value of ŷ in [START_REF] Brunner | Robust selftriggered MPC for constrained linear systems: A tube-based approach[END_REF]. On the other hand, the control input u is only broadcasted to the actuators at transmission instants t u i , i ∈ I u to update û in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. We ignore possible transmissions delays, but these can be handled as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. The values of ŷ and û are kept constant between two successive transmission instants of the output measurement and of the control input, respectively, by means of zero-order-hold elements. At each transmission instant t y i , ŷ is reset to the actual value of y. Similarly, û is reset to the actual value of u at t u j . We define the network-induced error as e y = ŷ -y and e u = û -u.

Hence, e y and e u are reset to zero at t y i , i ∈ I y and at t u j , j ∈ I u , respectively.

We introduce two timers τ y , τ u ∈ R ≥0 to describe the time elapsed since the last transmission instant of y and of u, respectively, which have the dynamics

τy = 1 for almost all t ∈ [t y i , t y i+1 ], τ y (t y+ i ) = 0 τu = 1 for almost all t ∈ [t u i , t u i+1 ], τ u (t u+ i ) = 0. (4) 
These variables will be useful to define the triggering conditions.

Define C y := C p 0 , C u := 0 C c and let x := (x p , x c ) ∈ R np+nc , q := (x, e y , e u , τ y , τ u ) ∈ R nq with n q = R np+nc+ny+nu+2 , ξ := (w, d y , d u ) ∈ R n ξ with n ξ = n w + n y + n u , and υ := ( ḋy , ḋu ) ∈ R ny+nu . As in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], the system can be modeled as the following hybrid

system q =         A 1 x + B 1 e y + M 1 e u + E 1 ξ A 2 x + M 2 e u + E 2 ξ + F 2 υ A 3 x + B 3 e y + E 3 ξ + F 3 υ 1 1         q ∈ C y ∩ C u q + ∈          (x, 0, e u , 0, τ u ) q ∈ D y \D u (x, e y , 0, τ y , 0) q ∈ D u \D y (x, 0, e u , 0, τ u ), (x, e y , 0, τ y , 0) q ∈ D y ∩ D u , (5) 
where

A 1 := A p B p C c B c C p A c , B 1 := 0 B c , M 1 := B p 0 , E 1 := E p 0 B p 0 B c 0 , A 2 = -C y A 1 , M 2 := -C y M 1 , E 2 := -C y E 1 , F 2 := -1 0 , A 3 = -C u A 1 , B 3 := -C u B 1 , E 3 := -C u E 1 , and 
F 3 := 0 -1 .
The sets C y , D y are defined according to the triggering condition for the output measurement y, and the sets C u , D u are constructed based on the triggering condition for the control input u. The first two cases in the jump map in (5) correspond to the situations when only the triggering condition of the output measurements or of the control input is verified, respectively. The last case in the jump map describes the time instants when both triggering conditions are satisfied, i.e., when t y i = t u j for some i ∈ I y and j ∈ I u 1 . We design the flow and the jump sets in [START_REF] Chwa | Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and inputdependent disturbances[END_REF] as follows (as in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF])

C y := q : |e y | ≤ ρ y |y| or τ y ∈ [0, T y ] D y := q : |e y | ≥ ρ y |y| and τ y ≥ T y C u := q : |e u | ≤ ρ u |u| or τ u ∈ [0, T u ] D u := q : |e u | ≥ ρ u |u| and τ u ≥ T u , (6) 
where ρ y , ρ u ≥ 0 are design parameters. The constants T y ∈ (0, T y (γ y )) and T u ∈ (0, T u (γ u )) are the minimum times that we enforce between two consecutive transmission instants of the output measurement y and of the control input u, respectively, where

T y (γ y ) := 1 γy π 2 , T u (γ u ) := 1 γu π 2 (7) 
and γ y and γ u are designed in the sequel. The upper bounds T y (γ y ), T u (γ u ) are related to maximally allowable 1 The definition of G in this case ensures that it is outer semicontinuous, which is one of the hybrid basic conditions ensuring the well-posedness of system (5). This would not be the case if we would define G(q) as {(x, 0, 0, 0, 0)} when q ∈ Dy ∩ Du, see [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF].

transmission intervals (MATI) of time-triggered conin the context of sampled-data systems [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF].

Remark 1

The upper bounds T y (γ y ), T u (γ u ) in ( 7) are obtained similarly to [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. Although their values can subject to some conservatism, we only use those constant times to prevent the occurrence of Zeno at each channel, which is sufficient to the purpose of this study. Their expressions in [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF] are simplified versions of those given in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], see also [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. This is due to the fact that the control input u in (3) does not involve a feedthrough term and that the plant output and the control input are transmitted asynchronously, which leads to L y1 = L u1 = 0 in (27) in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. ✷

We consider the following controlled output

z = [C p z 0]x + [D w z D y z D u z ]ξ := C z x + D z ξ, (8) 
where C p z , D w z , D y z , D u z are matrices of appropriate dimensions.

The objective of this study is to synthesize both controller (3), i.e., the matrices A c , B c , C c , and the flow and the jump sets in (6), i.e., the parameters ρ y , ρ u , T y , T u , such that system (5) is L 2 -stable from (ξ, υ) to z with a guaranteed L 2 -gain. We first revisit the emulation results of [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF] for this purpose, then we develop the co-design procedure.

Emulation

In emulation, we first assume that a stabilizing feedback law (3) is already available and we only construct C y , C u and D y , D u . We use boldface symbols to emphasize the LMIs decision variables. Proposition 1 Consider system (5) with the flow and the jump sets defined in [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF] and the output z in [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. Assume that a stabilizing feedback law (3) is given. Suppose that there exist real scalars ε y , ε u , µ y , µ u , ϑ ξ , ϑ υ > 0, λ y , λ u ∈ (0, 1) and a positive definite symmetric real matrix P such that (8) holds, where D y := [0 1 0] and D u := [0 0 1]. Let the parameters of the event-triggering mechanism (6) and of the times T y (γ y ), T u (γ u ) in (7) be selected as

ρ y = √ εy λy γy , ρ u = √ εu λuγu with λ y = λ y , λ u = √ λ u , γ y = µ y λy , γ u = µ u
λu , ε y = ε y and ε y = ε u . Then, system (5), ( 6) is L 2 -stable from (ξ, υ) to z with an L 2 -gain less than or equal to η := max{ϑ ξ , ϑ υ }. ✷

The proof of Proposition 1 follows similar lines as in the proof of Proposition 1 in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF] and as in Section VI-C in [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], it is therefore omitted. The decision variables ε y , ε u , µ y , µ u , λ y , λ u are used to determine the transmission parameters of the event-triggering mechanism (6), i.e., the triggering threshold parameters ρ y , ρ u and

       Ω 11 ⋆ ⋆ ⋆ ⋆ B T 1 P + λ u B T 3 A 3 λ u B T 3 B 3 -µ y I ny ⋆ ⋆ ⋆ M T 1 P + λ y M T 2 A 2 0 λ y M T 2 M 2 -µ u I nu ⋆ ⋆ Ω 41 λ u E T 3 B 3 λ y E T 2 M 2 Ω 44 ⋆ λ y F T 2 A 2 + λ u F T 3 A 3 λ u F T 3 B 3 λ y F T 2 M 2 λ y F T 2 E 2 + λ u F T 3 E 3 λ y F T 2 F 2 + λ u F T 3 F 3 -ϑ υ I nυ        < 0, (8) 
Ω 11 := A T 1 P + P A 1 + C T z C z + λ y A T 2 A 2 + λ u A T 3 A 3 + ε y C T y C y + ε u C T u C u Ω 41 := E T 1 P +D T z C z +λ y E T 2 A 2 + λ u E T 3 A 3 + ε y D T y C y + ε u D T u C u Ω 44 := D T z D z +λ y E T 2 E 2 +λ u E T 3 E 3 + ε y D T y D y + ε u D T u D u -ϑ ξ I n ξ .
the enforced lower bounds T y , T u . In particular, the decision variables ϑ ξ , ϑ υ define the guaranteed L 2 -gain η.

The parameters γ y and γ u are related to the L 2 -gains with which e y and e u affect the x-system. Smaller values of γ y , γ u leads to smaller L 2 -gains and larger bounds T y , T u , respectively, and vice versa, in view of [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF]. Finally, the parameters λ y , λ u and ε y , ε u are introduced to relax condition (8); we could have stated [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF] with ε y = ε u = 1 and λ y = λ u = 1, but this leads to a more conservative condition.

The guaranteed L 2 -stability in Proposition 1 is from the disturbances (ξ, υ) to z with υ is the derivative of the measurement noises (d y , d u ). The dependence of the L 2gain on υ is because of the sampling of the noisy measurements of the plant output and the control input, see ( 2), (3) and the definitions of the sampling-induced errors e y , e u . As a result, the dynamics of e y and e u between two transmission instants of the plant output and of the control input, respectively, will depend on the derivatives ḋy and ḋu of the measurement noise. Similar type of results have naturally appeared in, e.g., sampled-data systems [START_REF] Nešić | A note on input-to-state stabilization for nonlinear sampled-data systems[END_REF] and hybrid dynamical systems [START_REF] Wang | Input-to-state stability for a class of hybrid dynamical systems via averaging[END_REF].

It is important to mention that condition (8) represents an LMI constraint only if the controller matrices A c , B c , C c are known. When this is not the case, nonlinear terms appear in (8) such as A T 2 A 2 and A T 3 A 3 in Ω 11 , since A 2 , A 3 depend on the controller matrices, in view of their definition after [START_REF] Chwa | Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and inputdependent disturbances[END_REF]. The encountered nonlinearities in this case are not trivial to handle and cannot be resolved by standard congruence transformations due to the presence of non-invertible matrices, as shown in the proof of forthcoming Theorem 3. This forms one of the main challenges in this study.

Remark 2 Proposition 1 exhibits substantial differences compared to Proposition 1 in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. First, the exogenous inputs are concatenated in two vectors ξ, υ and not in one vector as in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. This modeling choice allows to resolve some nonlinearities that appear in (8) when the controller is no longer known. Second, the effect of the sampling induced errors e y and e u on each other is handled in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF] by the event-triggering rules, see [START_REF] Wang | Input-to-state stability for a class of hybrid dynamical systems via averaging[END_REF] in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. Alternatively, the interaction between e y and e u in this study is dealt with the time-triggering rules. This design choice leads to L y2 = L u2 = 0 in ( 24) in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], which further simplifies the co-design procedure, see Section V in [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF]. Besides the benefits on the co-design analysis, the above differences also highlight the flexibility of the proposed eventtriggering scheme in [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. ✷ 5 LMI for co-design

Main result

We present the co-design procedure for the general case where both the plant output and the control input are transmitted asynchronously, which relies on the next result.

Theorem 3 Consider system (5) with the flow and the jump sets defined in ( 6) and the output z in [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. Suppose that for given real scalars λ y , λ u ∈ (0, 1), ϑ ξ , ϑ υ > 0, there exist symmetric positive definite real matrices X, Y ∈ R np×np , real matrices M ∈ R np×np , Z ∈ R np×ny , N ∈ R nu×np and real scalars µ y , µ u , σ y , σ u > 0 such that ( 9), ( 10) are satisfied, where ϑ υ := ϑ υ -max{λ 2 y , λ 2 u } in [START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF]. Let the dynamic controller (3) be given by

A c = V -1 (M -Y A p X -Y B p N -ZC p X)U -T B c = V -1 Z, C c = N U -T , (11) 
with U, V ∈ R np×np any square and invertible matrices such that 2 U V T = I np -XY . Select the parameters of the event-triggering mechanism [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF] 

such that ρ y = √ εy λyγy , ρ u = √ εu λuγu with γ y = √ µ y λy , γ u = √ µ u λu , ε y = σ -1 y
and ε u = σ -1 u . Then, system (5), ( 6) is L 2 -stable from (ξ, υ) to z with an L 2 -gain less than or equal to η = max{ϑ ξ , ϑ υ }. ✷

2 In view of the Schur complement of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], we deduce that Y In p In p X > 0, which implies that X -Y -1 > 0 and thus In p -XY is nonsingular. Hence, the existence of nonsingular matrices U, V , which is needed in view of [START_REF] Gommans | Self-triggered linear quadratic control[END_REF], is always ensured.



                Γ 1 + Γ T 0 0 -λ -2 u Γ 3 ⋆ ⋆ ⋆ Xp 0 0 D y 0 0 0 -σ y I ny ⋆ ⋆ Ñ 0 0 D u 0 0 0 0 -σ u I nu ⋆ Xz 0 0 D z 0 0 0 0 0 -I nz                  < 0 (9)     -I ny ⋆ ⋆ 0 -I nu ⋆ -λ 2 y XT p -λ 2 u Ñ T -Γ 3     < 0, -I ny ⋆ - XT p -Γ 3 < 0, -I nu ⋆ - Ñ T -Γ 3 < 0, (10) 
Γ 1 := Y A p + ZC p M A p A p X + B p N , Γ 2 := Y E p Z Y B p E p 0 B p , Γ 3 := Y I np I np Y , Z := Z 0 Ỹ := Y B p B p , Xp := (C p C p X), Xz := (C p z C p z X), Ñ := (0 N ).
The proof of Theorem 3 consists of showing that the feasibility of ( 9)-( 10) leads to [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], which in turn implies the L 2 -stability of the hybrid system (5), ( 6) according to Proposition 1. To obtain the LMI conditions ( 9)-( 10), we rely on the following facts. First, we used the property that condition ( 8) is symmetric and that we do not consider the feedthrough term in [START_REF] Brunner | Robust selftriggered MPC for constrained linear systems: A tube-based approach[END_REF]. Second, we applied the change of variables technique, inspired by [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], to handle some nonlinear terms, as shown in the proof of Theorem 3. Third, we introduced the additional constraints in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] to overcome other nonlinear terms that could not be solved by standard techniques. We explain in the next section how to exploit Theorem 3 to optimize properties of the transmission times.

Remark 3

The co-design procedure generates a tradeoff between the upper-bound η on the L 2 -gain and the anteed minimum times T y , T u . As mentioned before, the feasibility of ( 9)-(10) leads to [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. The feasibility of (8) in turn can be only guaranteed if the diagonal entries in (8) are negative, which will be the case when the values of λ y , λ u , ε y , ε u are sufficiently small and the values of ϑ ξ , ϑ υ are sufficiently large. Consequently, this creates an intuitive tradeoff between the transmission parameters λ y , λ u , ε y , ε u and the upper-bound η on the L 2 -gain, in view of [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF] and the definition of η in Theorem 3. In other words, smaller values of λ y , λ u lead to larger values of the MATI bounds T y , T u . However, the estimated L 2 -gain η might increase, and vice versa. ✷

Time-triggered control

Our co-design results are also relevant and new for timetriggered control. In this case, the flow and the jump sets in [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF] become

C y = {q : τ y ∈ [0, T y ]}, D y = {q : τ y ∈ [ǫ y , T y ]} C u = {q : τ u ∈ [0, T u ]}, D u = {q : τ u ∈ [ǫ u , T u ]},
where ǫ y ∈ (0, T y ], ǫ u ∈ (0, T u ] are introduced to prevent Zeno behaviour, and T y , T u are strictly smaller than T y (γ y ), T u (γ u ) defined in [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF]. When ǫ y = T y and ǫ u = T u , the sets in (6) lead to periodic and asynchronous transmissions of the output measurement and of the control input, respectively. Hence, the co-design problem reduces to jointly synthesizing the dynamic controller (3) and the times T y , T u . Then, the conclusion of Theorem 3 holds, by following similar lines as in the proof of Theorem 3, when conditions ( 9)-( 10) are verified. Note that in the case of time-triggered control, the parameters σ y , σ u in [START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] are not needed since we do not have the event-triggering rules |e y | ≥ ρ y |y|, |e u | ≥ ρ u |u| in this case and thus condition (9) can be relaxed by eliminating the 8th and the 9th rows and columns from [START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF].

Optimization problems

We first exploit the results of Section 5 to enlarge the guaranteed minimum times T y , T u between two successive transmissions at each channel. We then propose a heuristic method to reduce the amount of transmissions.

Enlarging the minimum inter-transmission times

The enforced minimum times T y , T u are a priori only bounds on the inter-transmission times. The next lemma reveals that these are actually the minimum inter-transmission times for the transmission instants of the output measurement and of the control input, respectively.

Lemma 1 For any q 0 ∈ C ∪ D, let S(q 0 ) be the set of solution pairs (φ q , φ ξ ) to system ( 5), ( 6) with φ q (0, 0) = q 0 . For a solution (φ q , φ ξ ), we denote by (t jy , j y ) with j y ∈ Z >0 the hybrid times such that φ q (t jy , j y ) ∈ D y and φ q (t jy , j y + 1) / ∈ D y . Similarly, for a solution (φ q , φ ξ ), we denote by (t ju , j u ) with j u ∈ Z >0 the hybrid times such that φ q (t ju , j u ) ∈ D u and φ q (t ju , j u + 1) / ∈ D u , respectively. Then, for any q 0 ∈ C ∪ D, there exists (φ q , φ * ξ ) ∈ S(q 0 ) and T y = min{t jy+1 -t jy : ∃j y ∈ Z >0 , (t jy , j y ), (t jy , j y + 1), (t jy+1 , j y + 1), (t jy+1 , j y + 2) ∈ dom φ q } and T u = min{t ju+1 -t ju : ∃j u ∈ Z >0 , (t ju , j u ), (t ju , j u + 1), (t ju+1 , j u + 1), (t ju+1 , j u + 2) ∈ dom φ q }. ✷ Lemma 1 means that for any initial condition, we can find certain exogenous inputs w, d y , d u such that the minimum time elapsed between two successive transmissions of the plant output and of the control input over the solution to system (5), ( 6) is exactly T y and T u , respectively. This consequently means that T y and T u are the actual minimum inter-transmission times of the output measurement y and of the control input u, respectively.

In order to enlarge T y , T u , we need to enlarge T y (γ y ), T u (γ u ). For this purpose, in view of [START_REF] Dawson | Robust control of rigid-link electrically-driven robot manipulators[END_REF], we need to minimize γ y , γ u , given λ y , λ u ∈ (0, 1). Since γ y = √ µy λy , γ u = √ µu λu and µ y , µ u are decision variables of ( 9), [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. This multi-objective problem can be addressed by solving the following problem, for fixed values of λ y , λ u , ϑ ξ , ϑ υ min δ 1 µ y + δ 2 µ u subject to (9), (10) [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] for some weights δ 1 , δ 2 ≥ 0.

Reducing the amount of transmissions

While enlarging T y , T u can be useful to increase the guaranteed minimum times between two transmission instants of the plant output and of the control input, respectively, this may not necessarily lead to a further reduction in the average amount of transmissions. For the last purpose, a heuristic way to proceed is to maximize the parameters ρ y , ρ u of the event-triggering rules in [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF].

In view of (6), the event-triggering rule of the output measurement y is |e y | ≥ ρ y |y|. Since ρ y = √ εy λyγy , then minimizing γ y , by minimizing µ y in ( 9)- [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], and maximizing ε y , by minimizing σ y , σ u in ( 9)-(10) may result in enlarging the time it takes for event-triggering rule to be violated, i.e., that may enlarge the inter-transmission times, see Remark 4 below for further insights. Similar arguments apply for reducing the amount of transmissions of the control input u.

Since ε y = σ -1 y , ε u = σ -1 u and σ y , σ u are decision variables of ( 9)-( 10), we solve this problem by implementing the following algorithm, for fixed values of λ y , λ u , ϑ ξ , ϑ υ min δ 1 µ y + δ 2 µ u + δ 3 σ y + δ 4 σ u subject to ( 9), (10)

for some weights δ 1 , δ 2 , δ 3 , δ 4 ≥ 0.

Remark 4 When we optimize the parameters γ y , γ u , ε y , ε u , the obtained controller matrices A c , B c , C c will consequently be changed. As a result, even if ρ y and ρ u are maximized, the dynamics of e y and e u will be different and it may be the case that these reach their thresholds ρ y |y| and ρ u |u|, respectively, faster so that the intertransmission times are not necessarily larger. That is the reason why the method in this subsection is heuristic. The simulation results in Section 7 show that this does not occur for the considered example and that the optimization problem (13) can greatly reduce the amount of transmissions. ✷

Illustrative example

Consider the plant model in Example 3 in [START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] affected by external disturbances and measurement noises, where the plant matrices are given by A p = 0 1

-2 -3 , B p = [ 0 1 ] T , E p = [ 0 1 ] T , C p = [ 1 
0 ]. We consider C p z = [ 1 0.5 ] and D z = [ 0.5 0 0 ] for the performance output z in [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. We first apply the emulation approach in Section 4 with the controller given in [START_REF] Donkers | Outputbased event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] and then we implement the co-design algorithm and we compare the obtained results. We affect the system by exogenous inputs w, d y , d u satisfying |w(t, j)| ≤ 0.5, d y (t, j) = 0.1 sin(50t) and d u (t, j) = 0.01 sin(50t). We run simulations for 5 seconds with 100 initial conditions such that x(0, 0) is randomly distributed in a ball of radius 100, e(0, 0) = (0, 0) and τ (0, 0) = (0, 0). The guaranteed L 2 -gain η using the emulated controller is η = 1.0195 and the guaranteed lower bounds T y and T u are shown in Table 1. Then, we apply the co-design procedure in Section 5. We found that conditions (9), ( 10) are feasible with η = 1.1832, which is slightly larger than the value obtained by emulation. However, the enforced lower bounds T y and T u have been enlarged by more than 50000% and 8000%, respectively, using the optimization algorithms [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] with δ 1 = δ 2 = 1 and (13) with δ i = 1, i ∈ {1, . . . , 4} as shown Table 1. In this case, the optimization algorithm (12) leads to almost periodic sampling, since τ y avg ≈ T y and τ u avg ≈ T u . This behaviour is justified by the fact that the obtained values of γ y , γ u are very large compared to the values of ε y , ε u , respectively, which lead to very

               A T 0 0 -λ -2 u C u SC T u ⋆ ⋆ ⋆ C y 0 0 D y 0 0 0 -σ y I n y ⋆ ⋆ C u 0 0 D u 0 0 0 0 -σ u I n u ⋆ C z 0 0 D z 0 0 0 0 0 -I n z                < 0. ( 14 
)
small values of ρ y = √ εy λy γy and ρ u = √ εu λuγu . This consequently leads to quick violations of the event-triggering rules |e y | ≤ ρ y |y| and |e u | ≤ ρ u |u|. We have then used the results of Section 6.2 to overcome this issue, which resulted in τ y avg > τ y min and τ u avg > τ u min , as shown in third line of Table 1. We emphasize that the obtained results 

Conclusion

We have investigated the joint design of dynamic output feedback laws and event-triggering conditions for linear systems subject to exogenous Sufficient conditions have been provided, in terms of LMIs, to ensure an L 2 -stability property for the closed-loop system. Two optimization algorithms have been presented to enlarge the enforced lower bounds on the inter-transmission times and/or to reduce the average amount of transmissions. The effectiveness of the approach has been illustrated on a numerical example.

and the jump sets in [START_REF] Davoodi | Eventtriggered multiobjective control and fault diagnosis: A unified framework[END_REF] guarantee that τ y min ≥ T y and τ u min ≥ T u . We now show that τ y min ≤ T y and τ u min ≤ T u . Since φ dy (t, j) = -C y φ x (t, j) for all (t, j) ∈ dom φ q , we have that φ y (t, j y ) = C y φ x (t, j y ) + φ dy (t, j y ) = 0, see [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], for all (t, j y ) ∈ dom φ q . Then, it holds that |φ ey (t, j y )| ≥ ρ y |φ y (t, j y )| = 0 for all (t, j y ) ∈ dom φ q . As a result, t jy+1 = t jy + T y . Hence, two successive jumps of the plant output are separated by T y units of time. Similar arguments apply for the inter-jump times of the control input u. Consequently, T y ≥ τ y min and T u ≥ τ u min . We have shown that T y = τ y min and T u = τ u min . ✷
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 1 Fig. 1. Asynchronous event-triggered control.

Table 1

 1 Emulation: Proposition 1 5.9483 × 10 -5 6.6127 × 10 -5 1.3197 × 10 -4 1.4672 × 10 -4 Comparison between emulation and co-design.depend on the choice of the weights δ i , i ∈ {1, . . . , 4}, and that different choices will lead to different performances. The controller matrices in (3) for the last case in Table1 are

			Ty		τ y avg	Tu	τ u avg
	Optimization 1: (12)	0.0736	0.0737	0.0175	0.0176
	Optimization 2: (13)	0.0388	0.1594	0.0125	0.0589
	Ac =	-2.0964 0.6938 -0.9671 -0.9093	, Bc =	5.4891 3.3864	, Cc =	-0.0459 0.0404
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Appendix

Proof of Theorem 3. We define the following matrices

where X, Ŷ ∈ R np×np are symmetric positive definite real matrices of appropriate dimension. Since

We also introduce the

. After some direct calculations, in view of [START_REF] Gommans | Self-triggered linear quadratic control[END_REF], we obtain (recall that

By substituting the above equalities in ( 9), [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], then multiplying (9) from the left by diag {S -1 Γ -T , 1, 1, 1, GΓ -T , -C y Γ -T , -C u Γ -T , 1, 1, 1} and from the right by diag

, 1, 1} and by taking P = S -1 , we obtain [START_REF] Kögel | On self-triggered reducedattention control for constrained systems[END_REF]. In view of the Schur complement of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], it holds that

Moreover, in view of ( 5) and the definition of the matrix G, we have that

By using [START_REF] Li | An improved event-triggered communication mechanism and L∞ control co-design for network control systems[END_REF] and the above equalities in [START_REF] Kögel | On self-triggered reducedattention control for constrained systems[END_REF] and then by applying the Schur complement (recall that ε y = σ -1 y and ε u = σ -1 u ), we deduce that (14) leads to [START_REF] Dolk | Outputbased and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. Thus, by virtue of Proposition 1, the L 2 -stability of system ( 5) is concluded with a guaranteed L 2 -gain η = max{ϑ ξ , ϑ υ }. ✷ Proof of Lemma 1. Let q 0 ∈ C ∪ D and φ q be a hybrid arc such that φ q (0, 0) = q 0 . Define φ ξ = (0, -C y φ x , -C u φ x ). The definitions of the flow