
HAL Id: hal-01629145
https://hal.science/hal-01629145v1

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-design of output feedback laws and event-triggering
conditions for the L2 -stabilization of linear systems

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz, Dragan Nešić,
Maurice Heemels

To cite this version:
Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz, Dragan Nešić, Maurice Heemels. Co-design
of output feedback laws and event-triggering conditions for the L2 -stabilization of linear systems.
Automatica, 2018, 87, pp.337-344. �10.1016/j.automatica.2017.10.008�. �hal-01629145�

https://hal.science/hal-01629145v1
https://hal.archives-ouvertes.fr


Co-designof output feedback laws and event-triggering

conditions for theL2-stabilizationof linear systems

M. Abdelrahima,e, R. Postoyanb,c, J. Daafouzb,c, D. Nešićd, W.P.M.H. Heemelsa

a Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
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Abstract

We investigate the L2-stabilization of linear systems using output feedback event-triggered controllers. In particular, we are
interested in the scenario where the plant output and the control input are transmitted to the controller and to the actuators,
respectively, over two different digital channels, which have their own sampling rule. The plant dynamics is affected by external
disturbances and the output measurement and the control input are corrupted by noises. We present a co-design procedure to
simultaneously synthesize dynamic output feedback laws and event-triggering conditions such that the closed-loop system is
L2-stable with a given upper-bound on the L2-gain. The required conditions are formulated in terms of the feasibility of linear
matrix inequalities (LMIs). Then, we exploit these LMIs to maximize the guaranteed minimum time between two transmissions
of the plant output and/or of the control input. We also present a heuristic method to reduce the amount of transmissions
for each channel. The developed technique encompasses time-driven (and so periodic) sampling as a particular case and the
result is also new in this context. The effectiveness of the proposed methods is illustrated on a numerical example.

1 Introduction

In event-triggered control, the feedback loop is closed
only when a state/output dependent criterion is vio-
lated. As a result, the amount of communication between
the sensors, the controllers, and the actuators is adapted
to the current state of the controlled system, which may
be significantly reduced compared to conventional time-
triggered setups, see [12] and the references therein. This
feature is particularly appealing when the communica-
tion resources are limited and need to be efficiently used
such as in networked control systems (NCS), in which
the feedback information and the control input updates
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are transmitted over a shared network.

Most existing event-triggering strategies are developed
using the emulation approach, see, e.g., [21] and the ref-
erences therein. In other words, the feedback law is first
synthesized to stabilize the plant in the absence of net-
work. Afterwards, the effect of network is considered and
the sampling rule is constructed. A possible disadvan-
tage of emulation is that the performance of the system,
like the (guaranteed) L2-gain, is limited by the initial
choice of the feedback law. To overcome this restriction,
the controller and the event-triggering condition should
be designed simultaneously, which is usually more chal-
lenging. In this respect, three directions of research are
proposed in the literature: the joint design of control
inputs and self-triggering conditions, e.g., [11, 14], op-
timal event-triggered control, e.g., [3, 17], and the co-
design of feedback laws and event-triggering conditions,
e.g., [6,15,16,25].We are interested in the last approach.

We consider the scenario where the plant dynamics is
linear time-invariant (LTI) and is affected by external
disturbances and both the output measurement and the
control input are corrupted by noises. We assume that
the plant output and the control input are transmitted
over two different channels, which are governed by two
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independent event-triggering conditions. Each trigger-
ing condition can only depend on the information avail-
able locally at each channel, that is the noisy measure-
ment of the plant output or of the noisy control input.
Similar setups have been studied in [2, 8] but with the
emulation approach. Our objective here is to co-design
dynamic output feedback laws and the triggering rules
to ensure the L2-stability of the closed-loop system with
a given upper-bound on the L2-gain.

We consider dynamic output feedback laws of the same
dimension as the plant, as well as the same type of trig-
gering rules as in [2]. The difference is that we want
to design both the controller and the parameters of the
triggering rules simultaneously. The triggering rules con-
sist in waiting fixed amount of times Ty, Tu > 0 since
the last transmission instant of the plant output and of
the control input, respectively, and then checking the
event-triggering rules. The enforced bounds Ty and Tu

exclude the occurrence of Zeno behaviour at each chan-
nel, which might appear otherwise. The overall system
is modeled as a hybrid system in the formalism of [10].
We first revisit the results presented in [2] for LTI sys-
tems to ease the development of a co-design procedure
afterwards. In particular, we provide a new linear ma-
trix inequality (LMI), which ensures the L2-stability of
the closed-loop system, by making different modeling
and design choices. Still, this matrix inequality becomes
nonlinear when the feedback law has to be designed and
standard linearization techniques, like congruence trans-
formations cannot be applied. To overcome this issue,
we introduce additional LMI constraints. The LMI for-
mulation of the co-design algorithm is then exploited to
adapt some transmission characteristics given a desired
bound on the L2-gain, which quantifies the robustness
of the system. First, the LMI conditions are exploited to
maximize the guaranteed minimum times Ty, Tu. This
task is motivated by the fact that the resulting Ty, Tu

may be very small, and thus may not meet the hardware
limitations because of the choice of the feedback law.
Hence, it is of interest to enlarge the lower bounds Ty, Tu,
which are the true minimum times between two succes-
sive transmissions on the corresponding channel, as we
will prove. Second, we present a heuristic method to en-
large the inter-transmission times of the output mea-
surement and of the control input, which may lead to
further reductions in the amount of transmissions. The
effectiveness of the approach is illustrated on a numer-
ical example. The simulations show that the co-design
technique leads to a great reduction in the amount of
transmissions compared to the emulation approachwhile
guaranteeing the same (or slightly increased) estimate
of the L2-gain. The results also encompass the particu-
lar case of time-triggered control as the guaranteed min-
imum times Ty, Tu mentioned above can be used as a
maximum sampling period for each corresponding chan-
nel.

Compared to [6, 15, 16, 25], we synthesize continuous

event-triggered controllers while these works are all ded-
icated to the case of discrete event-triggered control, i.e.,
the plant dynamics is first discretized and then an event-
triggered controller is designed for the discrete-time sys-
tem, which is a different sampling paradigm. Moreover,
we consider different types of exogenous inputs affecting
the control system, as the plant is subject to external
disturbances and both the output measurement and the
control input are corrupted by noise. The effect of noise
on the transmitted variables is not trivial to handle and
has only been considered in [6] for the plant output only,
but not for the control input. Furthermore, we give an-
alytical insights on the potential of the co-design tech-
nique to generate less transmissions than with the em-
ulation approach, which has not been studied before in
the literature, to the best of our knowledge.

Compared to the preliminary version of this work [1], we
investigate robust stabilization, namely L2-stability, as
opposed to asymptotic stabilization. Moreover, inspired
by [2,8], the proposed technique applies to the case where
the plant output and the control input are transmitted
asynchronously, which is different than the setup studied
in [1], where both transmissions occur synchronously.

The rest of the paper is organized as follows. Prelimi-
naries are given in Section 2. The hybrid model and the
problem formulation are presented in Section 3. We first
design event-triggered controllers by emulation in Sec-
tion 4. Then, the co-design procedure is developed in
Section 5. We discuss how to optimize the parameters of
the event-triggering mechanism in Section 6. Numerical
simulations are given in Section 7. Conclusions are pro-
vided in Section 8. The proofs are given in the Appendix.

2 Preliminaries

Let R := (−∞,∞), R≥0 := [0,∞), Z≥0 := {0, 1, 2, . . .}
and Z>0 := {1, 2, . . .}. A continuous function γ : R≥0 →
R≥0 is of class K if it is zero at zero, strictly increasing,

and it is of class K∞ if in addition γ(s) → ∞ as s → ∞.
We write AT and A−T to respectively denote the trans-
pose and the inverse of transpose of A (when it exists)
and diag (A1, · · · , AN ) is the block-diagonal matrix with
the entries A1, · · · , AN on the diagonal. The symbol ⋆
stands for symmetric blocks in matrices. We use In to
denote the identity matrix of dimension n. We denote
by |.| the Euclidean norm. We use (x, y) to represent the
vector [xT , yT ]T for x ∈ R

n and y ∈ R
m.

The Schur complement formula states that an LMI[
A BT

B C

]
< 0 is satisfied when C < 0 andA−BTC−1B <

0 both hold.

We consider hybrid systems of the following form [4,10]

ẋ = F (x,w) x ∈ C, x+ ∈ G(x) x ∈ D, (1)
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where x ∈ R
nx is the state, w ∈ R

nw is an exogenous
input, C is the flow set, F is the flow map, D is the jump
set and G is the jump map. The exogenous input w only
affects the flow dynamics in (1) and not the flow and the
jump sets, as this will be the case in this study. For more
details on the notion of solution for system (1), we refer
the reader to [4, 10].

We adopt the following definition of L2-norm of hybrid
signals [20].

Definition 1 For a hybrid signal z defined on the hybrid

time domain dom z =

J−1⋃

j=0

[tj , tj+1]× {j} with J possibly

∞ and/or tJ = ∞, theL2-norm of z is defined as ||z||2 :=
(∑J−1

j=0

∫ tj+1

tj
|z(t, j)|2dt

) 1
2

, provided that the right-hand

side exists and is finite, in which case we write z ∈ L2. ✷

Based on Definition 1, we define L2-stability for system
(1) as in [13, 20].

Definition 2 System (1) isL2-stable from the inputw ∈
L2 to the output z := h(x,w) with gain less than or equal
to η ≥ 0 if there exists β ∈ K∞ such that any solution
pair (x,w) to (1) satisfies ||z||2 ≤ β(|x(0, 0)|) + η||w||2.
✷

3 Hybrid model and problem statement

Consider the LTI plant model

ẋp = Apxp +Bpû+ Epw, y = Cpxp + dy, (2)

where xp ∈ R
np is the plant state, û ∈ R

nu is the most
recently transmitted value of the control input u ∈ R

nu

to the plant, w ∈ R
nw is an external disturbance on the

plant, y ∈ R
ny is the measured output, which is affected

by the additive measurement noise dy ∈ R
ny . We as-

sume that w ∈ L2, and that the signal dy is absolutely
continuous and its time-derivative exists for almost all
the time and is in L2. We focus on dynamic controllers
of the form

ẋc = Acxc +Bcŷ, u = Ccxc + du, (3)

where xc ∈ R
nc is the controller state, ŷ ∈ R

ny is the
most recently transmitted value of the output measure-
ment y to the controller, and du ∈ R

nu is a vector of
noises affecting the control input, e.g., additive torque
disturbance in robotic systems [7] or acceleration distur-
bances on the control input in the vertical takeoff and
landing (VTOL) aircraft [5]. We assume that the signal
du is absolutely continuous and its time-derivative exists
for almost all the time and is in L2. We consider that

nc = np, i.e., the plant state and the controller state are
of the same dimension.

We study the scenario where the communications be-
tween plant (2) and controller (3) are realized over digi-
tal channels, see Figure 1. In particular, the transmission
instants tyi , i ∈ Iy ⊆ Z≥0 of the output measurement
and the update instants tui , i ∈ Iu ⊆ Z≥0 of the control
input are generated by two independent triggering con-
ditions. Hence, tyi 6= tuj , i = j in general, i.e., tyi and tuj
are not necessarily synchronized a priori, see also [8,9].

Plant

Controller

Triggering Triggering
mechanism 1mechanism 2

y

ŷu

û

w dy

du

Fig. 1. Asynchronous event-triggered control.

At each transmission instant tyi , i ∈ Iy, the current out-
put measurement y is transmitted to the controller to
update the value of ŷ in (3). On the other hand, the con-
trol input u is only broadcasted to the actuators at trans-
mission instants tui , i ∈ Iu to update û in (2). We ignore
possible transmissions delays, but these can be handled
as in [23]. The values of ŷ and û are kept constant be-
tween two successive transmission instants of the output
measurement and of the control input, respectively, by
means of zero-order-hold elements. At each transmission
instant tyi , ŷ is reset to the actual value of y. Similarly,
û is reset to the actual value of u at tuj . We define the
network-induced error as ey = ŷ − y and eu = û − u.
Hence, ey and eu are reset to zero at tyi , i ∈ Iy and at
tuj , j ∈ Iu, respectively.

We introduce two timers τy, τu ∈ R≥0 to describe the
time elapsed since the last transmission instant of y and
of u, respectively, which have the dynamics

τ̇y = 1 for almost all t ∈ [tyi , t
y
i+1], τy(t

y+
i ) = 0

τ̇u = 1 for almost all t ∈ [tui , t
u
i+1], τu(t

u+
i ) = 0.

(4)

These variables will be useful to define the triggering
conditions.

Define Cy :=
[
Cp 0

]
, Cu :=

[
0 Cc

]
and let x :=

(xp, xc) ∈ R
np+nc , q := (x, ey, eu, τy, τu) ∈ R

nq with
nq = R

np+nc+ny+nu+2, ξ := (w, dy , du) ∈ R
nξ with

nξ = nw + ny + nu, and υ := (ḋy, ḋu) ∈ R
ny+nu . As

in [2], the system can be modeled as the following hybrid
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system

q̇ =




A1x+ B1ey +M1eu + E1ξ
A2x+M2eu + E2ξ + F2υ

A3x+ B3ey + E3ξ + F3υ

1

1




q ∈ Cy ∩ Cu

q+ ∈





{
(x, 0, eu, 0, τu)

}
q ∈ Dy\Du

{
(x, ey, 0, τy, 0)

}
q ∈ Du\Dy

{
(x, 0, eu, 0, τu), (x, ey , 0, τy, 0)

}
q ∈ Dy ∩ Du,

(5)

where A1 :=

[
Ap BpCc

BcCp Ac

]
, B1 :=

[
0

Bc

]
, M1 :=

[
Bp

0

]
,

E1 :=

[
Ep 0 Bp

0 Bc 0

]
, A2 = −CyA1, M2 := −CyM1,

E2 := −CyE1, F2 :=
[
−1 0

]
, A3 = −CuA1, B3 :=

−CuB1, E3 := −CuE1, and F3 :=
[
0 −1

]
.

The sets Cy,Dy are defined according to the triggering
condition for the output measurement y, and the sets
Cu,Du are constructed based on the triggering condition
for the control input u. The first two cases in the jump
map in (5) correspond to the situations when only the
triggering condition of the output measurements or of
the control input is verified, respectively. The last case
in the jump map describes the time instants when both
triggering conditions are satisfied, i.e., when tyi = tuj for

some i ∈ Iy and j ∈ Iu 1 . We design the flow and the
jump sets in (5) as follows (as in [2])

Cy :=
{
q : |ey| ≤ ρy|y| or τy ∈ [0, Ty]

}

Dy :=
{
q : |ey| ≥ ρy|y| and τy ≥ Ty

}

Cu :=
{
q : |eu| ≤ ρu|u| or τu ∈ [0, Tu]

}

Du :=
{
q : |eu| ≥ ρu|u| and τu ≥ Tu

}
,

(6)

where ρy, ρu ≥ 0 are design parameters. The constants
Ty ∈ (0, Ty(γy)) and Tu ∈ (0, Tu(γu)) are the minimum
times that we enforce between two consecutive transmis-
sion instants of the output measurement y and of the
control input u, respectively, where

Ty(γy) := 1
γy

π
2
, Tu(γu) := 1

γu

π
2

(7)

and γy and γu are designed in the sequel. The upper
bounds Ty(γy), Tu(γu) are related tomaximally allowable

1 The definition of G in this case ensures that it is outer
semicontinuous, which is one of the hybrid basic conditions
ensuring the well-posedness of system (5). This would not
be the case if we would define G(q) as {(x, 0, 0, 0, 0)} when
q ∈ Dy ∩ Du, see [2].

transmission intervals (MATI) of time-triggered con-
trollers in the context of sampled-data systems [19].

Remark 1 The upper bounds Ty(γy), Tu(γu) in (7) are
obtained similarly to [19]. Although their values can sub-
ject to some conservatism, we only use those constant
times to prevent the occurrence of Zeno at each chan-
nel, which is sufficient to the purpose of this study. Their
expressions in (7) are simplified versions of those given
in [2], see also [8]. This is due to the fact that the con-
trol input u in (3) does not involve a feedthrough term
and that the plant output and the control input are trans-
mitted asynchronously, which leads to Ly1

= Lu1
= 0 in

(27) in [2]. ✷

We consider the following controlled output

z = [Cp
z 0]x+ [Dw

z Dy
z Du

z ]ξ := Czx+Dzξ, (8)

where Cp
z , D

w
z , D

y
z , D

u
z are matrices of appropriate di-

mensions.

The objective of this study is to synthesize both con-
troller (3), i.e., the matrices Ac, Bc, Cc, and the flow and
the jump sets in (6), i.e., the parameters ρy, ρu, Ty, Tu,
such that system (5) is L2-stable from (ξ, υ) to z with
a guaranteed L2-gain. We first revisit the emulation re-
sults of [2] for this purpose, then we develop the co-design
procedure.

4 Emulation

In emulation, we first assume that a stabilizing feedback
law (3) is already available and we only construct Cy, Cu
and Dy,Du. We use boldface symbols to emphasize the
LMIs decision variables.

Proposition 1 Consider system (5) with the flow and
the jump sets defined in (6) and the output z in (8). As-
sume that a stabilizing feedback law (3) is given. Suppose
that there exist real scalars εy, εu,µy,µu,ϑξ,ϑυ > 0,
λy,λu ∈ (0, 1) and a positive definite symmetric real
matrix P such that (8) holds, where Dy := [0 1 0] and
Du := [0 0 1]. Let the parameters of the event-triggering
mechanism (6) and of the times Ty(γy), Tu(γu) in (7) be

selected as ρy =
√
εy

λyγy
, ρu =

√
εu

λuγu
with λy =

√
λy, λu =

√
λu, γy =

√
µy

λy
, γu =

√
µu

λu
, εy = εy and εy = εu.

Then, system (5), (6) is L2-stable from (ξ, υ) to z with

an L2-gain less than or equal to η :=
√
max{ϑξ,ϑυ}. ✷

The proof of Proposition 1 follows similar lines as in
the proof of Proposition 1 in [2] and as in Section VI-
C in [8], it is therefore omitted. The decision variables
εy, εu,µy,µu,λy,λu are used to determine the trans-
mission parameters of the event-triggering mechanism
(6), i.e., the triggering threshold parameters ρy, ρu and
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Ω11 ⋆ ⋆ ⋆ ⋆

BT
1 P + λuBT

3 A3 λuBT
3 B3 − µyIny

⋆ ⋆ ⋆

MT
1 P + λyMT

2 A2 0 λyMT
2 M2 − µuInu

⋆ ⋆

Ω41 λuET
3 B3 λyET

2 M2 Ω44 ⋆

λyFT
2 A2 + λuFT

3 A3 λuFT
3 B3 λyFT

2 M2 λyFT
2 E2 + λuFT

3 E3 λyFT
2 F2 + λuFT

3 F3−ϑυInυ




< 0, (8)

Ω11 := AT
1 P + PA1 + CT

z Cz + λyAT
2 A2 + λuAT

3 A3 + εyC
T
y Cy + εuC

T
u Cu

Ω41 := ET
1 P+DT

z Cz+λyET
2 A2 + λuET

3 A3 + εyD
T
y Cy + εuD

T
uCu

Ω44 := DT
z Dz+λyET

2 E2+λuET
3 E3 + εyD

T
y Dy + εuD

T
uDu−ϑξInξ

.

the enforced lower bounds Ty, Tu. In particular, the de-
cision variables ϑξ,ϑυ define the guaranteed L2-gain η.
The parameters γy and γu are related to the L2-gains
with which ey and eu affect the x-system. Smaller val-
ues of γy, γu leads to smaller L2-gains and larger bounds
Ty, Tu, respectively, and vice versa, in view of (7). Fi-
nally, the parameters λy , λu and εy, εu are introduced
to relax condition (8); we could have stated (8) with
εy = εu = 1 and λy = λu = 1, but this leads to a more
conservative condition.

The guaranteed L2-stability in Proposition 1 is from the
disturbances (ξ, υ) to z with υ is the derivative of the
measurement noises (dy, du). The dependence of the L2-
gain on υ is because of the sampling of the noisymeasure-
ments of the plant output and the control input, see (2),
(3) and the definitions of the sampling-induced errors
ey, eu. As a result, the dynamics of ey and eu between
two transmission instants of the plant output and of the
control input, respectively, will depend on the deriva-
tives ḋy and ḋu of the measurement noise. Similar type
of results have naturally appeared in, e.g., sampled-data
systems [18] and hybrid dynamical systems [24].

It is important to mention that condition (8) repre-
sents an LMI constraint only if the controller matrices
Ac, Bc, Cc are known. When this is not the case, nonlin-
ear terms appear in (8) such asAT

2 A2 andAT
3 A3 in Ω11,

since A2,A3 depend on the controller matrices, in view
of their definition after (5). The encountered nonlinear-
ities in this case are not trivial to handle and cannot be
resolved by standard congruence transformations due to
the presence of non-invertible matrices, as shown in the
proof of forthcoming Theorem 3. This forms one of the
main challenges in this study.

Remark 2 Proposition 1 exhibits substantial differences
compared to Proposition 1 in [2]. First, the exogenous in-
puts are concatenated in two vectors ξ, υ and not in one
vector as in [2]. This modeling choice allows to resolve
some nonlinearities that appear in (8) when the controller
is no longer known. Second, the effect of the sampling in-
duced errors ey and eu on each other is handled in [2] by
the event-triggering rules, see (24) in [2]. Alternatively,
the interaction between ey and eu in this study is dealt

with the time-triggering rules. This design choice leads
to Ly2

= Lu2
= 0 in (24) in [2], which further simpli-

fies the co-design procedure, see Section V in [1]. Besides
the benefits on the co-design analysis, the above differ-
ences also highlight the flexibility of the proposed event-
triggering scheme in [2]. ✷

5 LMI for co-design

5.1 Main result

We present the co-design procedure for the general case
where both the plant output and the control input are
transmitted asynchronously, which relies on the next re-
sult.

Theorem 3 Consider system (5) with the flow and
the jump sets defined in (6) and the output z in
(8). Suppose that for given real scalars λy, λu ∈
(0, 1), ϑξ, ϑυ > 0, there exist symmetric positive def-
inite real matrices X,Y ∈ R

np×np , real matrices
M ∈ R

np×np ,Z ∈ R
np×ny ,N ∈ R

nu×np and real
scalars µy,µu,σy,σu > 0 such that (9), (10) are sat-

isfied, where ϑ̃υ := ϑυ − max{λ2
y, λ

2
u} in (9). Let the

dynamic controller (3) be given by

Ac = V −1(M − Y ApX − Y BpN −ZCpX)U−T

Bc = V −1Z, Cc = NU−T ,

(11)
with U, V ∈ R

np×np any square and invertible matrices
such that 2 UV T = Inp

− XY . Select the parameters
of the event-triggering mechanism (6) such that ρy =√

εy
λyγy

, ρu =
√
εu

λuγu
with γy =

√
µy

λy
, γu =

√
µu

λu
, εy = σ−1

y

and εu = σ−1
u . Then, system (5), (6) is L2-stable from

(ξ, υ) to z with an L2-gain less than or equal to η =√
max{ϑξ, ϑυ}. ✷

2 In view of the Schur complement of (10), we deduce that
(

Y Inp

Inp X

)

> 0, which implies that X − Y
−1 > 0 and thus

Inp−XY is nonsingular. Hence, the existence of nonsingular
matrices U,V , which is needed in view of (11), is always
ensured.
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Γ1 + ΓT
1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Z̃
T −µyIny

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Ỹ
T

0 −µuInu
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

ΓT
2 0 0 −ϑξInξ

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Γ1 Z̃ Ỹ Γ2 −ϑ̃υΓ3 ⋆ ⋆ ⋆ ⋆ ⋆
Γ1 0 Ỹ Γ2 0 −λ−2

y Γ3 ⋆ ⋆ ⋆ ⋆

Γ1 Z̃ 0 Γ2 0 0 −λ−2
u Γ3 ⋆ ⋆ ⋆

X̃p 0 0 Dy 0 0 0 −σyIny
⋆ ⋆

Ñ 0 0 Du 0 0 0 0 −σuInu
⋆

X̃z 0 0 Dz 0 0 0 0 0 −Inz




< 0 (9)




−Iny
⋆ ⋆

0 −Inu
⋆

−λ2
yX̃

T

p −λ2
uÑ

T −Γ3


 < 0,

(
−Iny

⋆

−X̃
T

p −Γ3

)
< 0,

(
−Inu

⋆

−Ñ
T −Γ3

)
< 0, (10)

Γ1 :=
(
Y Ap + ZCp M

Ap ApX +BpN

)
, Γ2 :=

(
Y Ep Z Y Bp

Ep 0 Bp

)
, Γ3 :=

(
Y Inp

Inp
Y

)
, Z̃ :=

(
Z
0

)

Ỹ :=
(
Y Bp

Bp

)
, X̃p := (Cp CpX), X̃z := (Cp

z Cp
zX), Ñ := (0 N).

The proof of Theorem 3 consists of showing that the fea-
sibility of (9)-(10) leads to (8), which in turn implies the
L2-stability of the hybrid system (5), (6) according to
Proposition 1. To obtain the LMI conditions (9)-(10),
we rely on the following facts. First, we used the prop-
erty that condition (8) is symmetric and that we do not
consider the feedthrough term in (3). Second, we ap-
plied the change of variables technique, inspired by [22],
to handle some nonlinear terms, as shown in the proof
of Theorem 3. Third, we introduced the additional con-
straints in (10) to overcome other nonlinear terms that
could not be solved by standard techniques. We explain
in the next section how to exploit Theorem 3 to optimize
properties of the transmission times.

Remark 3 The co-design procedure generates a tradeoff
between the upper-bound η on the L2-gain and the guar-
anteed minimum times Ty, Tu. As mentioned before, the
feasibility of (9)-(10) leads to (8). The feasibility of (8)
in turn can be only guaranteed if the diagonal entries in
(8) are negative, which will be the case when the values
of λy,λu, εy, εu are sufficiently small and the values of
ϑξ,ϑυ are sufficiently large. Consequently, this creates
an intuitive tradeoff between the transmission parame-
ters λy,λu, εy, εu and the upper-bound η on the L2-gain,
in view of (7) and the definition of η in Theorem 3. In
other words, smaller values of λy,λu lead to larger val-
ues of the MATI bounds Ty, Tu. However, the estimated
L2-gain η might increase, and vice versa. ✷

5.2 Time-triggered control

Our co-design results are also relevant and new for time-
triggered control. In this case, the flow and the jump sets

in (6) become

Cy = {q : τy ∈ [0, Ty]}, Dy = {q : τy ∈ [ǫy, Ty]}
Cu = {q : τu ∈ [0, Tu]}, Du = {q : τu ∈ [ǫu, Tu]},

where ǫy ∈ (0, Ty], ǫu ∈ (0, Tu] are introduced to pre-
vent Zeno behaviour, and Ty, Tu are strictly smaller than
Ty(γy), Tu(γu) defined in (7). When ǫy = Ty and ǫu =
Tu, the sets in (6) lead to periodic and asynchronous
transmissions of the output measurement and of the con-
trol input, respectively. Hence, the co-design problem
reduces to jointly synthesizing the dynamic controller
(3) and the times Ty, Tu. Then, the conclusion of Theo-
rem 3 holds, by following similar lines as in the proof of
Theorem 3, when conditions (9)-(10) are verified. Note
that in the case of time-triggered control, the parame-
ters σy , σu in (9) are not needed since we do not have the
event-triggering rules |ey| ≥ ρy|y|, |eu| ≥ ρu|u| in this
case and thus condition (9) can be relaxed by eliminat-
ing the 8th and the 9th rows and columns from (9).

6 Optimization problems

We first exploit the results of Section 5 to enlarge the
guaranteed minimum times Ty, Tu between two succes-
sive transmissions at each channel. We then propose a
heuristic method to reduce the amount of transmissions.

6.1 Enlarging the minimum inter-transmission times

The enforced minimum times Ty, Tu are a priori only
lower bounds on the inter-transmission times. The next

6



lemma reveals that these are actually the minimum
inter-transmission times for the transmission instants
of the output measurement and of the control input,
respectively.

Lemma 1 For any q0 ∈ C ∪ D, let S(q0) be the
set of solution pairs (φq , φξ) to system (5), (6) with
φq(0, 0) = q0. For a solution (φq , φξ), we denote by
(tjy , jy) with jy ∈ Z>0 the hybrid times such that
φq(tjy , jy) ∈ Dy and φq(tjy , jy + 1) /∈ Dy. Similarly,
for a solution (φq , φξ), we denote by (tju , ju) with
ju ∈ Z>0 the hybrid times such that φq(tju , ju) ∈ Du

and φq(tju , ju + 1) /∈ Du, respectively. Then, for
any q0 ∈ C ∪ D, there exists (φq , φ

∗
ξ) ∈ S(q0) and

Ty = min{tjy+1 − tjy : ∃jy ∈ Z>0, (tjy , jy), (tjy , jy +
1), (tjy+1, jy + 1), (tjy+1, jy + 2) ∈ domφq} and
Tu = min{tju+1 − tju : ∃ju ∈ Z>0, (tju , ju), (tju , ju +
1), (tju+1, ju + 1), (tju+1, ju + 2) ∈ domφq}. ✷

Lemma 1 means that for any initial condition, we can
find certain exogenous inputs w, dy , du such that the
minimum time elapsed between two successive transmis-
sions of the plant output and of the control input over the
solution to system (5), (6) is exactly Ty and Tu, respec-
tively. This consequently means that Ty and Tu are the
actual minimum inter-transmission times of the output
measurement y and of the control input u, respectively.

In order to enlarge Ty, Tu, we need to enlarge Ty(γy),
Tu(γu). For this purpose, in view of (7), we need to min-

imize γy, γu, given λy , λu ∈ (0, 1). Since γy =
√
µy

λy
, γu =

√
µu

λu
and µy, µu are decision variables of (9), (10). This

multi-objective problem can be addressed by solving the
following problem, for fixed values of λy , λu, ϑξ, ϑυ

min δ1µy + δ2µu

subject to (9), (10)
(12)

for some weights δ1, δ2 ≥ 0.

6.2 Reducing the amount of transmissions

While enlarging Ty, Tu can be useful to increase the
guaranteed minimum times between two transmission
instants of the plant output and of the control input, re-
spectively, this may not necessarily lead to a further re-
duction in the average amount of transmissions. For the
last purpose, a heuristic way to proceed is to maximize
the parameters ρy, ρu of the event-triggering rules in (6).

In view of (6), the event-triggering rule of the output

measurement y is |ey| ≥ ρy|y|. Since ρy =
√
εy

λyγy
, then

minimizing γy, by minimizing µy in (9)-(10), and max-
imizing εy, by minimizing σy, σu in (9)-(10) may result
in enlarging the time it takes for event-triggering rule to
be violated, i.e., that may enlarge the inter-transmission

times, see Remark 4 below for further insights. Similar
arguments apply for reducing the amount of transmis-
sions of the control input u.

Since εy = σ−1
y , εu = σ−1

u and σy, σu are decision vari-
ables of (9)-(10), we solve this problem by implementing
the following algorithm, for fixed values of λy, λu, ϑξ, ϑυ

min δ1µy + δ2µu + δ3σy + δ4σu

subject to (9), (10)
(13)

for some weights δ1, δ2, δ3, δ4 ≥ 0.

Remark 4 When we optimize the parameters γy, γu,
εy, εu, the obtained controller matrices Ac, Bc, Cc will
consequently be changed. As a result, even if ρy and ρu
are maximized, the dynamics of ey and eu will be differ-
ent and it may be the case that these reach their thresh-
olds ρy|y| and ρu|u|, respectively, faster so that the inter-
transmission times are not necessarily larger. That is the
reason why the method in this subsection is heuristic.
The simulation results in Section 7 show that this does
not occur for the considered example and that the opti-
mization problem (13) can greatly reduce the amount of
transmissions. ✷

7 Illustrative example

Consider the plant model in Example 3 in [9] affected
by external disturbances andmeasurement noises, where

the plant matrices are given by Ap =

[
0 1

−2 −3

]
, Bp =

[0 1 ]
T
, Ep = [0 1 ]

T
, Cp = [1 0 ]. We consider Cp

z =
[1 0.5 ] andDz = [0.5 0 0 ] for the performance output
z in (8).We first apply the emulation approach in Section
4 with the controller given in [9] and then we implement
the co-design algorithm andwe compare the obtained re-
sults. We affect the system by exogenous inputs w, dy , du
satisfying |w(t, j)| ≤ 0.5, dy(t, j) = 0.1 sin(50t) and
du(t, j) = 0.01 sin(50t). We run simulations for 5 sec-
onds with 100 initial conditions such that x(0, 0) is ran-
domly distributed in a ball of radius 100, e(0, 0) = (0, 0)
and τ(0, 0) = (0, 0). The guaranteed L2-gain η using the
emulated controller is η = 1.0195 and the guaranteed
lower bounds Ty and Tu are shown in Table 1. Then, we
apply the co-design procedure in Section 5. We found
that conditions (9), (10) are feasible with η = 1.1832,
which is slightly larger than the value obtained by em-
ulation. However, the enforced lower bounds Ty and Tu

have been enlarged by more than 50000% and 8000%, re-
spectively, using the optimization algorithms (12) with
δ1 = δ2 = 1 and (13) with δi = 1, i ∈ {1, . . . , 4} as shown
in Table 1. In this case, the optimization algorithm (12)
leads to almost periodic sampling, since τyavg ≈ Ty and
τuavg ≈ Tu. This behaviour is justified by the fact that
the obtained values of γy, γu are very large compared
to the values of εy, εu, respectively, which lead to very
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AT
1 P + PA1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
BT
1 P −µyIny

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
MT

1 P 0 −µuInu
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

ET
1 P 0 0 −ϑξInξ

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

GA1 GB1 GM1 GE1 −ϑ̃υGSGT ⋆ ⋆ ⋆ ⋆ ⋆
−CyA1 0 −CyM1 −CyE1 0 −λ−2

y CySC
T
y ⋆ ⋆ ⋆ ⋆

−CuA1 −CuB1 0 −CuE1 0 0 −λ−2
u CuSC

T
u ⋆ ⋆ ⋆

Cy 0 0 Dy 0 0 0 −σyIny
⋆ ⋆

Cu 0 0 Du 0 0 0 0 −σuInu
⋆

Cz 0 0 Dz 0 0 0 0 0 −Inz




< 0.

(14)

small values of ρy =
√
εy

λyγy
and ρu =

√
εu

λuγu
. This conse-

quently leads to quick violations of the event-triggering
rules |ey| ≤ ρy|y| and |eu| ≤ ρu|u|. We have then used
the results of Section 6.2 to overcome this issue, which re-
sulted in τyavg > τymin and τuavg > τumin, as shown in third
line of Table 1. We emphasize that the obtained results

Ty τy
avg Tu τu

avg

Emulation: Proposition 1 5.9483 × 10−5 6.6127 × 10−5 1.3197 × 10−4 1.4672 × 10−4

Optimization 1: (12) 0.0736 0.0737 0.0175 0.0176

Optimization 2: (13) 0.0388 0.1594 0.0125 0.0589

Table 1
Comparison between emulation and co-design.

depend on the choice of the weights δi, i ∈ {1, . . . , 4},
and that different choices will lead to different perfor-
mances. The controller matrices in (3) for the last case
in Table 1 are

Ac =

[

−2.0964 0.6938

−0.9671−0.9093

]

, Bc =

[

5.4891

3.3864

]

, Cc =

[

−0.0459

0.0404

]T

.

8 Conclusion

We have investigated the joint design of dynamic output
feedback laws and event-triggering conditions for linear
systems subject to exogenous inputs. Sufficient condi-
tions have been provided, in terms of LMIs, to ensure an
L2-stability property for the closed-loop system. Two
optimization algorithms have been presented to enlarge
the enforced lower bounds on the inter-transmission
times and/or to reduce the average amount of trans-
missions. The effectiveness of the approach has been
illustrated on a numerical example.

Appendix

Proof of Theorem 3.We define the following matrices

S =





X U

UT X̂



, S−1 =





Y V

V T Ŷ



, Γ =





Y Inp

V T 0



,

where X̂, Ŷ ∈ R
np×np are symmetric positive definite

real matrices of appropriate dimension. Since SS−1 =
I2np

, it holds that XY +UV T = UTV + X̂Ŷ = Inp
and

XV + UŶ = UTY + X̂V T = 0. We also introduce the

following matrix G =

(
λ2
yCp 0

0 λ2
uCc

)
. After some di-

rect calculations, in view of (11), we obtain (recall that
Cy = [Cp 0], Cu = [0 Cc], Cz = [Cp

z 0])

SΓ =

(
Inp

X

0 UT

)
, GSΓ =

(
λ2
yX̃p

λ2
uÑ

)
, ΓTSΓ = Γ3,

BT
1 Γ = Z̃T , MT

1 Γ = Ỹ T , ET
1 Γ = Γ2, ΓTA1SΓ = Γ1

CySΓ = X̃p, CuSΓ = Ñ, CzSΓ = X̃z.

By substituting the above equalities in (9), (10), then
multiplying (9) from the left by diag {S−1Γ−T , 1, 1, 1,
GΓ−T ,−CyΓ

−T ,−CuΓ
−T , 1, 1, 1} and from the right by

diag {Γ−1S−1, 1, 1, 1,Γ−1GT ,−Γ−1CT
y ,−Γ−1CT

u , 1, 1, 1}
and by taking P = S−1, we obtain (14). In view of the
Schur complement of (10), it holds that

−Inυ
< −GSGT , −Iny

< −CySC
T
y , −Inu

< −CuSC
T
u .

(15)
Note also that A2 = −CyA1, M2 = −CyM1,
E2 = −CyE1, A3 = −CuA1, B3 = −CuB1, E3 = −CuE1.
Moreover, in view of (5) and the definition of the matrix
G, we have that GA1 = λ2

yFT
2 A2 + λ2

uFT
3 A3, GB1 =

λ2
uFT

3 B3, GM1 = λ2
yFT

2 M2, GE1 = λ2
yFT

2 E2 + λ2
uFT

3 E3
and −ϑ̃υInυ

= −ϑυInυ
+ λ2

yFT
2 F2 + λ2

uFT
3 F3. By us-

ing (15) and the above equalities in (14) and then by
applying the Schur complement (recall that εy = σ−1

y

and εu = σ−1
u ), we deduce that (14) leads to (8).

Thus, by virtue of Proposition 1, the L2-stability of
system (5) is concluded with a guaranteed L2-gain

η =
√
max{ϑξ,ϑυ}. ✷

Proof of Lemma 1. Let q0 ∈ C ∪ D and φq

be a hybrid arc such that φq(0, 0) = q0. Define
φξ = (0,−Cyφx,−Cuφx). The definitions of the flow
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and the jump sets in (6) guarantee that τymin ≥ Ty and
τumin ≥ Tu. We now show that τymin ≤ Ty and τumin ≤ Tu.
Since φdy

(t, j) = −Cyφx(t, j) for all (t, j) ∈ domφq,
we have that φy(t, jy) = Cyφx(t, jy) + φdy

(t, jy) = 0,
see (2), for all (t, jy) ∈ domφq. Then, it holds that
|φey (t, jy)| ≥ ρy|φy(t, jy)| = 0 for all (t, jy) ∈ domφq.
As a result, tjy+1 = tjy + Ty. Hence, two successive
jumps of the plant output are separated by Ty units
of time. Similar arguments apply for the inter-jump
times of the control input u. Consequently, Ty ≥ τymin

and Tu ≥ τumin. We have shown that Ty = τymin and
Tu = τumin. ✷
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[18] D. Nešić and D.S. Laila. A note on input-to-state stabilization
for nonlinear sampled-data systems. IEEE Transactions on

Automatic Control, 47(7):1153–1158, 2002.

[19] D. Nešić, A.R. Teel, and D. Carnevale. Explicit computation
of the sampling period in emulation of controllers for
nonlinear sampled-data systems. IEEE Transactions on

Automatic Control, 54(3):619–624, 2009.
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