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Abstract  

Brown's bowing and passing model for persistent slip bands (PSBs) was extended in Cu and 

Ni to the whole range of temperatures in which a saturation plateau is observed. Advantage 

was taken of the similitude relation to rewrite in dimensionless form the equations of the 

original model and of a more accurate revisited version. Input quantities for computing the 

solutions were taken from a previous study of experimental results; all unknown quantities  

could then be directly calculated without any assumption or approximation. The comparison 

between experimental results and the predictions of the revisited model confirms the basic 

assumptions of the bowing and passing model, according to which the thermally activated 

annihilation of screw dipoles is governing the channel widths, the Orowan stresses and the 

critical stresses in the channels. All other assumptions and numerical predictions are perfectly 

confirmed, save for the occurrence of small resistive stresses in the channels. In addition, a 

better understanding of the complex behavior of  PSB walls under stress is necessary in order 

to accurately determine the plastic strain amplitude of PSBs.  Mesoscale and atomistic 

simulations are needed for further modeling of the wall properties and the screw dipole 

annihilations. 
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1  Introduction 

Persistent slip bands (PSBs) are formed in ductile materials cycled in single slip at 

imposed plastic strain amplitudes per cycle typically between 10-4 and 10-2. Since their

discovery in the 1950s these localized bands of plastic strain have drawn a lot of attention for 

practical reasons related to fatigue damage as well as for fundamental reasons. Indeed, they 

constitute a unique example of mechanical response exhibiting a constant saturation stress. 

Hence, there is a wealth of experimental and theoretical literature on the relation between 

their almost periodic wall-and-channel dislocation structure and their properties [1-4].  

The PSB channels contain a constant density of screw dislocations, which shuttle 

forward and backward during cycling. These dislocations mutually annihilate by cross-slip 

after having travelled a certain mean free path and deposited edge segments along the PSB 

walls. A small fraction of these edge segments is able to cross the walls; it emerges and 

expands in the neighboring channels where it produces fresh screw dislocations of both signs. 

Hence, the saturation of the screw dislocation density results from an exact balance between 

creation and annihilation mechanisms. The PSB walls contain a large density of short edge 

segments, mostly in the primary plane but also in the cross-slip plane. The microstructure was 

found to be rather complex [5] and, as yet, former models for saturation in the walls were not 

revisited. The walls are partly permeable to edge dislocations, but screw dislocation motion in 

the channels is producing the largest part of the imposed plastic strain amplitude.  

In its simplest form, the similitude relation expresses that the characteristic dimension of 

a dislocation microstructure, λ, is proportional to the average length of the dislocation 

segments, l , whereas the flow stress τ� is inversely proportional to it. Thus, the flow stress is 

inversely proportional to the characteristic dimension and is written τ� = Kµb/λ, where K is a 
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similitude constant, µ is the shear modulus and b is the magnitude of the Burgers vector [7]. 

The saturation stress of PSBs is strongly temperature dependent, so that investigations on 

similitude require measurements performed on microstructures formed at different 

temperatures.  

In the recent study [8], the similitude properties of PSB channels and their consequences 

were investigated in full detail from experimental results in  copper and nickel crystals cycled 

at saturation. The domains of temperature investigated encompassed the whole domain of 

occurrence of PSBs. It was found that both PSB channels and PSBs follow similitude 

relations. This may seem paradoxical in the case of PSBs since the wall-widths do not depend 

on temperature; it is so because of a compensating term arising from PSB channels, in which 

the critical stress for screw dipole annihilations is smaller than the saturation stress (see the 

discussion in Section 3 of [8]). The obtained results were confronted to the predictions of 

Brown's bowing and passing model [9], according to which the critical flow stress of PSB 

channels is governed by the annihilation of screw dipoles by cross-slip. This critical stress is 

defined as the stress corresponding to the maximum height of stable dipoles, that is, to their 

passing stress. As a whole, the predictions of the bowing and passing model were found to be 

in reasonable agreement with experimental results. However, as the model does not account 

for any other interaction than the ones between screw dislocations, the critical stresses in the 

channels were found smaller than the saturation stresses by a few MPa.  

An alternative model, the composite model, was developed over the years by Mughrabi 

and co-workers, essentially at room temperature  (see [4] for a full review). This model 

emphasizes the occurrence of significant internal stresses in the walls and channels and 

assumes that the annihilations of screw dipoles occurs spontaneously without the help of 

thermal activation.  
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Till now, debates about the modeling of the saturation stress essentially focused on the 

properties of screw dislocations in PSB channels at 300 K. The motivation of the present 

work is to provide an extension to a wide range of temperatures. The most basic equation of 

the bowing and passing model [9] is rather intricate and full predictions cannot be expressed 

in analytical form. Thus, the model was cast into a more transparent form with the help of a 

few simplifying assumptions, which were validated at room temperature. In the present work, 

the basic equation is solved numerically. This makes it possible to predict without any 

approximation the values of all the relevant quantities as a function of flow stress and 

temperature. For this purpose, use is made of the results drawn in [8] from experimental 

studies on copper and nickel.  

In Section 2, the basic equations of the model are set in dimensionless forms, which 

incorporate the similitude constants of PSB channels determined in [8]. The results presented 

in Section 3 are concerned with the temperature and critical stress dependencies of the critical 

screw dipole heights and of the coefficient determining the respective contributions of the 

bowing and passing stresses to the critical stress. Except for the small differences between 

critical and saturation stresses mentioned above, a striking agreement is found between the 

model predictions and experimental results on copper and nickel. A few other predictions, in 

particular on the intrinsic plastic shear amplitudes of PSBs, are discussed in Section 4 and 

concluding remarks highlighting the major results are presented in Section 5.  

 

2. The bowing and passing model revisited 

 

This part recalls first the original bowing and passing model and next the way it is 

expanded to a wide range of temperatures. Further, a revisited version is established in order 
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to verify whether or not an approximation made at room temperature is valid at all 

temperatures.  

 

2.1. The original bowing and passing model     

In its original form, Brown's bowing and passing model [9] has brought an improved 

analytical answer to comments by Mughrabi and Pschenitzka [10] on a previous attempt [11] 

to estimate the saturation stress in PSB channels.  

The discussion of the model is based on Eq. (10*)1. This equation yields the critical 

stress of the channels τc as a linear combination of the Orowan stress τOr, which sets screw 

dislocations in motion, and the passing stress, τpass, which corresponds to the maximum 

critical height, hc, for the annihilation of  screw dipoles  

τ c =αBτ Or +τ pass =α B

2Eedge

bdch

+ µb

4πhc

            (1) 

 

In the assumed absence of any other stress contribution, the flow stress τc is assumed to 

be the stress at saturation. The constant coefficient αB accounts for the contribution of the 

Orowan stress to the flow stress. In this Orowan stress, Eedge is the line energy of edge 

segments (see Supplementary Section S1 for line tensions and line energies) trailed by the 

bowing screws in channels of width dch
2
. The contribution of the passing stress is expressed 

in terms of the critical dipole height, hc. In the present context, it is convenient to introduce 

similitude in Eq. (1) by rewriting it in the form 

                                                 
1
 In what follows, starred equations are those of the original bowing and passing model [9]. 

2 In Brown's model [9], the channel widths (or wall spacings) are denoted by d. In what 
follows, d denotes the periodicity of a PSB, d = dch + dw, where dw is the wall thickness. 
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 Kch = τ cdch

µb
=

2α BEedge

µb2
+ 1

4π
dch

hc









,            (2) 

                         
where the first equality expresses the similitude relation in the channels and Kch is the related 

similitude slope.  In Eqs. (1) or (2) the channel widths and wall thicknesses are known from 

experiment. The value usually quoted in the literature for the critical annihilation distance of 

copper at room temperature is hc ≈ 50 nm for copper at room temperature [1,12]. The value of 

the coefficient αB is critical too because it contributes to the magnitude of resistive stresses in 

the channels, δτch = τPSB –τc, where τPSB is the saturation stress. Such resistive stresses were 

found in the previous study [8] but, as they are not included in the bowing and passing model, 

they do not appear in its equations. 

 

In the model, the coefficient αB is drawn from a rather complex master equation 

describing the critical configuration of a dipole of flexible screw dislocations at the passing 

stress. For this purpose, a small transition zone is defined close to the PSB walls. It connects 

the straight edge lines deposited on the walls by the motion of the screws to the two 

interacting screw lines with large critical radii in the central part of the channels. In the 

transition zone, the characters of the interacting lines go from nearly edge to nearly screw and 

the curvature radii are quite small. The equilibrium condition for this critical configuration is 

estimated using an effective value of the line tension, Teff , which is taken for line orientations 

of 45° (see Sections S1 and S2.2). As a result, one obtains the master equation given by Eq. 

(9*): 

τ c =
2Eedge

bdch

+ µb

4πhc

1−
b2dch

4 τ c − µb

4πhc











2

640hc
2Tscrew

2





















k,          (3) 
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where k = (1–2 Teff/τcdchb) and Tscrew is the line tension of screw dislocations (Eqs. S1-2 and 

S2-3). At room temperature k does not differ much from unity, so that it is assumed that k = 1 

at all temperatures. Eq. (3) is then rewritten in terms of the coefficient αB as given by Eqs. (1) 

or (2). This leads to Eq. (11*)  

  

1−αB −α B
2 µb2

2Eedge

1

640π
dch

hc











3
Eedge

Tscrew











2

= 0          (4) 

 

The derivation of Eq. (4) is reproduced at end of Section S2.2. The value of αB is 

obtained by introducing into Eq. (4) a plausible value dch/hc ≈ 30 in copper at 300 K. This 

yields αB  ≈ 0.5, which is adopted for further developments of the original model. According 

to Eq. (1), the internal stresses calculated by Mughrabi and Pschenitzka [10] should then 

correspond to a smaller value of αB. 

  

2.2. The revisited bowing and passing model 

 

In the original model, Eq. (3) is simplified by taking k = 1. The equations of the revisited 

model are obtained by fully treating the term k and solving numerically Eq. (3) for the critical 

dipole height hc. This allows Eq. (4) to be further solved for the coefficient αB. For this 

purpose, and as was done for Eq. (1), Eqs. (3) and (4) are rewritten in such a way as to 

incorporate the similitude coefficient of the channels, Kch. The expanded forms of Eqs. (3) 

and (4) are derived in Section S2.2. The revisited form of Eq. (3) is written 

 

F
dch

hc









= 0 = −Kch + k

4π
dch

hc









+

2Eedge

µb2
−k

dch

hc











3 Kch − 1
4π

dch

hc





















2

4π640(Tscrew / µb2 )2     (5) 
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This polynomial equation of fifth order in dch/hc has a single-valued solution in the 

domain of temperatures where PSBs are observed. Hence, the temperature dependence of hc 

can be determined unequivocally. The revisited Eq. (4) is written 

 

 (1−αB)−αB
2 µb2

2Eedge

k

640π
dch

hc











3
Eedge

Tscrew











2

− (1−k)µb2

8πEedge

dch

hc









= 0      (6) 

 

Equation (6) has a single positive root in the interval 0 ≤ αB ≤ 1. At this step, the critical 

stress in the channels can be obtained directly from Eq. (2) and other properties can be 

determined by further developing the bowing and passing model. As shown in Section S2.2, 

setting k = 1 into Eq. (5) yields Eq. (3) of the original model. One can also easily verify that 

Eq. (6) reduces to Eq. (4) of the original model.  

 

 
3. The expanded bowing and passing model: numerical results 

 

This part reports on the predictions drawn from the original and revisited models 

expanded as a function of temperature. The experimental data on Cu and Ni are recalled first; 

they provide input values for solving the two models. The quantities successively determined 

are the critical dipole heights hc, the coefficient αB, the critical stresses τc and the dependence 

of critical dipole heights on critical stresses. All computations were performed using 

Mathematica v. 6 (Wolfram Research).  

 

3.1. Experimental data 
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The experimental data used in the present study are taken from reference [8], which can 

be consulted for more detail. For copper, two sets of experimental measurements were 

lumped together, one by Basinski and Basinski [3] between 4.2 and 295 K and the other by 

Holzwarth and Essmann [13,14] between 77 and 430 K. The highest investigated 

temperatures correspond to the vanishing of the saturation plateau. In what follows, these two 

data sets are referred to as CuBB and CuHE. Although the channel widths exhibit large 

fluctuations [14], they could be measured with a reasonably good accuracy. The wall 

thicknesses are constant with dw = 0.11 ± 0.01 µm and, as they were not measured in [3], it 

was assumed that the value of  dw is unchanged below 77 K.  

In nickel, the measurements by Tippelt et al. [5] and Hähner et al. [15] include four data 

points between 77 to 600 K. A data point at 750 K was removed in [8] because of the 

coexistence of dislocation cells and PSBs in the microstructure. The wall thicknesses are also 

constant in nickel with dw = 0.155 µm ± 10% [6], but no scatter is available for the channel 

widths .  

The additional data given in Table 1 are drawn from [8] and will be used in what follows. 

One may notice, as was done in [8], that the similitude properties and the saturation stresses at 

0 K of Cu and Ni differ from each other.  

 

Table 1 about here 
 

The similitude properties of PSBs as a whole were drawn by plotting τPSB/µ  as a 

function of b/d and taking the slope of the regression line KPSB = τPSBd/µ�. The 

corresponding determination coefficients were always found larger than R2 = 0.99. For Cu 

and Ni, the regression lines pass through the origin within quite small stress intercepts, 

respectively, -5×10
-2

 MPa and 1.02 MPa. As far as the channels are concerned, the situation is 
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different as the stress intercepts are much larger (Table 1). The positive values indicate that 

the flow stresses of the channels are smaller than the saturation stresses. Similar stress 

intercepts were measured by Bretschneider et al. [16] in Ni and drawn from several 

experimental data by Brown (see Section 4 of [9]).  

 

As previously done in [8], all the numerical calculations presented in what follows 

employ the approximation proposed by Scattergood and Bacon for the shear moduli and 

Poisson's ratios (ν ) of Cu and Ni (Section S1). The temperature dependence of the elastic 

stiffnesses was taken into account (Section S3). In what follows, the main source of error 

arises from the measurements of channel widths. The measurements on CuHE are more 

accurate (± 4%) than the ones on CuBB (± 7%). The error on wall thicknesses is comparatively 

smaller3 but it is included.  

 

3.2. The critical dipole heights in the channels 

 

The ratio dch/hc was calculated from the revisited Eq. (5), in which the input quantities 

are the similitude slope Kch of the channels, the channel widths dch and the wall thicknesses. 

The values at T = 0 K were included. The critical dipole heights were directly obtained from 

the product hc = dch(dch/hc)
-1. According to the original model, the ratio dch/hc should be 

about 30 or perhaps a bit less. In Table 2, the values of the coefficient k, the ratio dch/hc and 

the critical dipole heights obtained from the revisited and original versions of the model are 

compared at three temperatures.  

 
Table 2 about here 

                                                 
3 The wall thickness only appears in the logarithmic term of the line energy of edge dislocations (Eq. S1-1). 
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In the revisited model, the values of the coefficient k decrease in a non-negligible manner 

with increasing temperature. Hence, it seems that the approximation k = 1 is rather rough. 

Whereas the original model yields ratios dch/hc that decrease with increasing temperature, 

these ratios are almost constant in the revisited model. This arises from a compensating effect 

of the term k. In the revisited model, the critical screw dipole heights at room temperature are 

close to the most frequently quoted value of 50 nm for copper [1,12], specifically 44.8 ± 3 nm 

for a saturation stress of 29 MPa in CuBB and 49.3 ± 2 nm for a saturation stress of 28 MPa in 

CuHE. For nickel hc (293 K) ≈ 48 nm. 

 

Figure 1a shows revisited similitude plots of the scaled saturation stresses as a function 

of the scaled critical dipole heights in Cu and Ni. The similitude slopes are almost the same 

and  the positive stress intercepts reveal the occurrence of resistive stresses, which will be 

further discussed in Section 3.3. Fig. 1b shows the temperature dependence of the revisited 

critical dipole heights.  

Figure 1ab about here  

 

  One can see from overlapping data in Fig. 1b that the dipole heights are almost identical 

in Cu and Ni. The only significant differences reside in the critical stresses at 0 K (Table 1) 

and in the maximum temperatures at which a saturation plateau was obtained. The same 

features were experimentally observed on the temperature dependence of the scaled stresses 

τIII in monotonic deformation (see [17] p. 160 and Fig. 28 of [6]). Hence, in spite of their 

similarities in an intermediate temperature domain, the stress dependences of the activation 

energies for screw dipole annihilations in Cu and Ni are expected to be different. This is not 

surprising since the scaled stacking fault energies γ/µb are also different, 4.0×103 for Cu and 

6.0×103 for Ni (see Table B1 of [18]).  
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In copper, the critical dipole heights at 0 K are hco(Cu) ≈ 16 nm and hco(Ni) ≈ 20 nm. 

The simulations by Pauš et al. [19] shown in Fig. 1b yield similar values for Cu at all 

temperatures, with hc(Cu) = 23 nm at 4.2 K. Similar values were also found for nickel at 77 

and 300 K (see Table 1 of [19]). Mitchell [17] also compiled extrapolated resolved stresses 

for the onset of the dynamic recovery stage at 0 K in monotonic deformation4. From his data 

and the similitude relations of the critical dipole heights (Fig. 1a), one draws hco(Cu) = 9 – 17  

nm and  hco(Ni) = 12 – 35 nm. These comparisons show that the present results are 

compatible with experiment and confirm the thermally activated character of screw dipole 

annihilations. 

 Although atomistic simulations also confirmed that screw dislocation cross-slip is 

thermally activated [20], only few of them were devoted to the annihilation of screw dipoles 

(e.g., [20-22]). Unfortunately, they did not incorporate the contribution of the externally 

applied stress, so that the critical dipole heights at 0 K were too small and the critical stresses 

too high. In such stress-free conditions, it is not possible to obtain a realistic insight into the 

bowing and passing mechanism. 

 
 
3.3. The coefficient αB and the critical stresses in the channels 
 
 

As the values of k and dch/hc are known, the coefficient αB can be calculated from Eqs. 

(4) and (6) for the two versions of the expanded model. The results are given in Table 3. 

 
Table 3 about here 

 

The original model yields αB values that increase with increasing temperature. The 

stabilizing effect of the term k manifests itself again in the revisited model. In Cu, one has αB 

                                                 
4 In metals with low stacking fault energy, twinning may interfere with dynamic recovery.  
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(Cu) = 0.503 ± 0.007 over the whole temperature range. Hence, the value estimated by Brown 

[9] at 300 K, αB ≈ 0.5, is actually temperature-independent. For Ni,  αB(Ni) = 0.532 ± 0.04.  

As the values of dch/hc and αB are known, the critical stresses τc can be directly estimated 

from Eq. (2). In the two versions of the model, the similitude coefficient of the channels, Kch, 

is an input property. For both Cu and Ni, the critical stresses are found smaller than the 

saturation stresses. Hence, the stress difference δτch = τPSB - τc represents additional resistive 

stresses. The stresses δτch and τc yielded by the original model are obtained as follows. The 

similitude relation in the channels is written Kch = τcdch/µb  and the resistive stresses are 

obtained from 

δτ ch = τ PSB −τ c = τ PSB − Kchµb

dch

,            (7) 

                       
where all numerical values are known from experiment in the last term at the right-hand side. 

The original model yields almost exactly the same results as the comparison with experiment 

performed in [8]. For instance, the average values, 5.33 MPa for Cu and 5.97 MPa for Ni, are 

very close to the ones previously determined by another method (Table 1). The same holds for 

the individual resistive stresses. In the revisited model, the term k slightly modifies the 

similitude relation because it contains a drifting logarithmic term (Eq. S2-3). As a result, the 

average resistive stresses δτch decrease to 5.0 MPa in Cu and 4.84 MPa in Ni.  

All the stresses discussed above, plus the bowing stress, are plotted as a function of 

temperature in Fig. 2a. The resistive stresses are obtained through a difference between two 

large quantities. Thus, they exhibit large fluctuations, at least ± 8% for CuHE and ± 14% for 

CuBB, owing to the accumulation of known and unknown experimental uncertainties. In 

addition, they do not seem to exhibit a well-marked temperature dependence.  
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Fig. 2ab about here 
 

 
Figure 2b  shows a similitude plot of the critical stresses in the revisited model as a 

function of the critical dipole heights in Cu and Ni. The similitude coefficients (Khc) only 

slightly differ from each other and from the ones obtained for the whole PSBs in the revisited 

model (Fig. 1a). The stress intercepts are negligibly small and well below experimental 

uncertainties. The similitude properties of the channels in the revisited model are only slightly 

modified with respect to the ones previously obtained in Ref. [8]. For Cu and Ni, the 

coefficients Khc = τc, rev. dch./µb respectively differ by 2% and 0.5‰.  

 

In summary the revisited model is more accurate than the original one. It yields constant 

values for the coefficient αB and the ratio dch/hc as well as critical stresses in the channels that 

are smaller than the saturation stresses by a few MPa. The critical screw dipole heights are 

thermally activated, they follow a similitude relation and their values at 300 K is hc ≈ 50 nm.  

 
   
4. Additional predictions of the revisited bowing and passing model 

 

Brown's model [9] contains a few predictions for persistent slip, which do not derive 

directly from the complex Eq. (5) and are drawn from various other considerations.  

 

4.1. Equilibrium of PSB walls and similitude 

 

The basic Eq. (1) is rewritten in Eq. (12*) as a sum of the Orowan stress and a 

complementary passing stress term τp  
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τ c = τ Or +τ p = τ Or + µb

4πhc

− (1−α B)τ Or









,           (8) 

 
The original model [9] is further developed on the basis of Eq. (8) by making an hypothesis 

about the equilibrium of PSB walls. Considering that the motion of screws under the Orowan 

stress τOr tends to push too closely spaced walls back in place, whereas the formation of 

screw dipoles tends to pull the walls together, the equilibrium of wall spacings requires that 

τOr /τp = 1 or, equivalently, τc = 2τOr. By importing these two relations in Eq. (8) one obtains 

Eq. (14*) of the original model, τc = µb/2π(2-αB)hc. This  last equation is rewritten in the 

the form of a similitude relation  

 

 Khc = τ chc

µb
= 2τ Orhc

µb
= 1

2π(2 −αB)
≈

1

3π
          (9) 

 

The relations drawn from the equilibrium hypothesis were tested on the revisited version 

of the model. For Cu and Ni, the ratios τOr/τp  are almost independent of temperature with 

average values larger than unity, 1.200 ± 0.003 in Cu and 1.36 ± 0.03 in Ni. The ratios τc/τOr 

behave in the same manner with average values smaller than two, 1.83 ± 0.03 in Cu and 1.73 

± 0.01 in Ni. By reproducing the simple calculation performed above without attributing 

values to the two ratios and to αB, one obtains the following corrected form of Eq. (9)  

 

Khc = τ chc

µb
= (τ c / τ Or )τ Orhc

µb
= (τ c / τ Or )

4π(1+ (τ p / τ Or )−αB)
= 0.109 (Cu); 0.114 (Ni)          (10) 

 

This relation reproduces almost perfectly the two values of the similitude coefficients 

given in Fig. 2b. Thus, the two stress ratios τOr/τp  and τc/τOr do have constant values.  

 



ACCEPTED MANUSCRIPT

 16

The measured channel widths, which are input quantities, are all fixed; in copper they 

are all given with error bars representing the amplitude of their fluctuations. Eq. (10) shows 

that in such conditions, the hypothesis based on the equilibrium of the walls is by construction 

embedded into the bowing and passing model. Thus, no assumption is needed because the 

constancy of the two stress ratios simply derives from the fact that the critical dipole heights 

follow a similitude relation.  

 

4.2. The intrinsic plastic strain amplitude of PSBs   

 

The intrinsic plastic strain amplitude of PSBs is defined as the shear strain γPSB per 

quarter of cycle under the saturation stress τPSB. Reliable experimental values of this quantity 

are rather scarce. Here, use is made of the data by Holzwarth and Essmann [14] in copper, 

which agree well with other published values. The plastic strain amplitude was found to 

depend linearly on the saturation stress. Four values of γPSB were determined at different 

temperatures from direct measurements of the active volume fraction of PSBs.  

 

The plastic strain amplitude γPSB was estimated by Brown in 2004 [11]. The probability 

for complete annihilations of screw dislocations was calculated as a function of the 

probability p that an edge dislocation crosses a wall (Eq. (20) of [11]). In the improved model 

[9], the introduction of the coefficient αB  does not modify the previous result. As all 

experimental results were plotted as a function of τPSB the critical stress τc (Eq. (15*) of [9]) is 

replaced here by τPSB. A linear relation in then obtained between γPSB and τPSB  

 

 γPSB = π(1+ p)2

(1− p)2

3dch

3dch +dw

τ PSB

µ
= 4π 3dch

3dch +dw

τ PSB

µ
≈ 4πτ PSB

µ
      (11) 
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It was shown in [11] that p ≈ 1/3, so that the term containing the probability p is equal to 

4π. The next term is a tentative correction close to unity, which accounts for screw dipole 

annihilations in the walls. The prediction drawn from Eq. (11) holds for the two versions of 

the model since the involved quantities are the same in both cases. It is compared to the 

experimental results on CuHE in Fig. 3a. The experimental and predicted linear dependences 

on saturation stress are somehow different. An attempt was made to fit the experimental data 

by adjusting the value of the coefficient p. The best result was obtained by taking p = 0.39.  

 
Fig. 3ab about here  

    

Brown [11] proposed a simplified alternative model for γPSB based on the annihilations of 

rectangular edge-screw loops expanding through walls and channels (see Section S4 for more 

detail on the model). The intrinsic plastic shear strain amplitude of PSBs is given by  

γPSB = b/2Fhc,                 
 (12) 

 

where F is a free statistical parameter. With F = 1.43, Eq. (12) reproduces rather well the 

experimental results (Fig. 3b).  

 

 Figure 3 shows that the predictive ability of Eqs. (11) and (12) may be improved by 

adjusting in each case the value of a single coefficient. In the two equations it is assumed that 

the channels and walls deform under an uniform saturation stress. This cannot be since the 

flow stress of the channels is smaller than the saturation stress, so that the flow stress of the 

walls is necessarily larger than τPSB. Furthermore, the real microstructure of the walls that was 

described by Tippelt et al. [5] is much more complex than the traditional ones that were used 

to derive Eqs. (11) and (12). In particular the walls contain a large density of small prismatic 

dislocation loops lying in the cross-slip plane, which should strongly interact with incoming 
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dislocations. Thus, the loops expanding through the walls must exhibit quite complicated 

shapes. 

 

 
5. Concluding remarks   
 
 

The bowing and passing model for PSBs [9] was extended to the whole domain of 

temperatures in which a saturation plateau is observed. Advantage was taken of the similitude 

relation to rewrite in dimensionless form the equations of the original model and of a revisited 

model, which is more accurate. Input quantities for the computation of solutions were taken 

from a previous study of experimental results on copper and nickel. In such conditions, all 

unknown coefficients and variables were directly calculated without any assumption or 

approximation.  

The comparison between experimental results and the predictions of the original and 

revisited bowing and passing models were discussed in the previous sections. This part 

emphasizes the major results obtained from the revisited model and their consequences. 

•  Two important quantities were found to  be constant irrespective of temperature. i) – The 

ratio dch/hc of the channel width to the critical dipole height is about 29 in Cu, close to the 

value assumed by Brown [9] at 300 K, and about 25 in Ni. ii) – The coefficient αB governs 

the contribution of the Orowan stress to the critical stress and the magnitude of the resistive 

stress in the channels. Its values are αB (Cu) = 0.5, as was assumed by Brown [9] at 300 K, 

and αB (Ni) = 0.53.  

•  The critical dipole heights, hc, were computed as a function of temperature in the whole 

domain of existence of PSBs. At room temperature, the revisited model yields values close to 

50 nm in copper, in agreement with the experimental estimate given in [1,12], and in nickel. 

At 0 K, the critical dipole heights are hco(Cu) = 16 nm and hco(Ni) = 20 nm. Although  
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atomistic simulations confirmed that cross-slip is a thermally activated phenomenon, they did 

not provide realistic predictions for the critical dipole heights. The present results may serve 

as a benchmark test for further studies, in which an external loading is applied to the 

interacting screw dislocations. 

•  The critical dipole heights are related to the critical stresses in the channels, τc, through a 

perfect similitude relation passing through the origin (Fig. 2b). The channels widths are also 

related to the critical stresses through another perfect similitude relation (Fig. 6 of [8]). This 

arises because the ratio dch/hc is a constant. The ratio τc/τOr of the critical stress to the Orowan 

stress in the channels was assumed in [9] to be a constant from considerations on the 

equilibrium of the walls. The value of this ratio is actually rooted in the similitude relation 

between the critical dipole heights and the critical stresses (Section 3.1). Finally, the critical 

stresses at 0 K are similar to the critical stresses for the onset of the dynamic recovery stage 

III in monotonic deformation (Section 3.2). These results are of prime importance because 

they confirm again the basic assumption of the bowing and passing model, according to 

which the thermally activated annihilation of screw dipoles is governing the channel widths, 

the Orowan stresses and the critical stresses in the channels. In contrast, the central role 

played by the critical dipole height challenges a basic assumption of the composite model 

according to which the annihilation of screw dipoles is only stress-assisted. 

•  In this study no new information could be drawn about the origin of the small resistive 

stresses in the channels. It is only confirmed that the critical stresses in the channels are 

slightly smaller than the saturation stresses by a few MPa and that they do not exhibit a well-

marked temperature dependence [8]. In this previous study  the critical stresses were directly 

obtained from experiment through the stress intercepts of the similitude relation in the 

channels. It was shown in Section 3.1 of [8] that the use of the line tension proposed by 

Scattergod and Bacon [S3] would slightly improve the  results. Nevertheless, the magnitudes 
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of the resistive stresses in the channels are now reasonably well know. Their existence was 

not considered in the bowing and passing model; taking them into account allowed all other 

predictions of the model to be confirmed. According to Mughrabi and Pschnenitzka [10], the 

critical stress τc should be about 20% larger than the largest of the contributions from the 

Orowan and dipole bowing stresses. In copper at room temperature, we obtained from the 

present data a resistive stress of 11 MPa, whereas the revisited model yields a resistive stress 

around 4 MPa, and a coefficient αB ≈ 0.2 instead of 0.5. Thus the model [10] overestimates 

the resistive stresses.  

•  The first dislocation dynamics simulations on channels of persistent slip bands [23–25] 

were intended to compare the predictions of Brown's original model [9] and the model by 

Mughrabi and Pschnenitzka [10]. No real consensus was obtained because these simulations, 

as well as the model, strongly depended on simplifying assumptions made about the complex 

microstructure of the walls. More recent DD simulations (e.g. [19]) and mass simulations that 

are now in progress will certainly contribute to clarify the situation. 

•  The models proposed by Brown [9,11] for the intrinsic plastic strain amplitude of PSBs 

take into account the penetration and crossing of PSB walls by edge dislocations. However, to 

obtain accurate predictions, it is necessary to account in a more realistic manner for the 

microstructure of the walls. This modeling task should be performed in parallel with 

dislocation dynamics simulations and atomistic simulations for short-range interactions. 

In summary, the numerical solutions of Brown's expanded and revisited model for 

bowing and passing [9] are in excellent agreement with its basic assumptions and predictions. 

The only exception is the occurrence of small resistive stresses in the channels. In addition, 

much remains to be understood about the behavior of the walls. Analytical approaches may be 

extremely complex and only mesoscale mass simulations and atomistic simulations can help 



ACCEPTED MANUSCRIPT

 21

going further. Finally, it may be interesting to examine as a function of temperature the 

compatibility of the composite model [4] with the bowing and passing model. 

 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found at 
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Fig. 1.  Critical dipole heights, hc, in Cu and Ni as yielded by the revisited model. The values 

at 0K and available error bars are included (± 8% for CuHE and ± 14% for CuBB). (a) 

Similitude plot of the scaled saturation stress τPSB/µ vs. hc/b. The arrow near the origin points 

at small intercepts with the stress axis. (b) Temperature dependence of the critical dipole 

heights. The data CuDD is taken from dislocation dynamics simulations of the bowing and 

passing model performed by Pauš et al. [19].  
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Fig. 2. (a) Temperature dependence of several stresses in Cu and Ni. τPSB is the saturation 

stress, τc, or. and τc, rev. are the critical stresses in the channels in the original and revisited 

versions of the model and τbowing is the bowing stress in the revisited model. (b) Similitude 

plot of the scaled critical stresses τc, rev. /µ as a function of b/hc. The stress values at 0 K are 

included in both figures. The error bars are ± 8% for CuHE and ± 14% for CuBB. 
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Fig. 3.  

The plastic strain amplitude of PSBs, γPSB, as a function of the scaled critical stress τPSB in 

CuHE (after [14]) compared to the predictions of the bowing and passing model. (a) 

Predictions drawn from Eq. (11), with p = 1/3 and from a fit with p = 0.39. (b) Prediction 

obtained from  Eq. (12) for the revisited model with a value F = 1.43 for the free-parameter. 

The error bars of the measured and predicted values are included. 
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Table 1 
 
Data drawn from experimental results on Cu (CuBB and CuHE merged together) and Ni. From 

left to right: – the extrapolated saturation stresses at 0 K scaled by the shear modulus at 0 K, – 

the similitude slopes for PSBs (KPSB) and PSB channels (Kch) with, in parentheses, the stress 

intercepts (in MPa) and the correlation coefficients, – the average values of the moderately 

temperature-dependent resistive stresses in the channels (in MPa). The stresses at 0 K are 

included in the last three sets of results. 

 

  τo/µο

   
 KPSB Kch <δτch> 

Cu 1.90 103 4.06, (-0.05 – 0.992) 3.10, (5.40 – 0.992) 5.31 

Ni 1.55 103 3.58, (1.02 – 0.999) 2.78, (5.53 – 0.998) 5.96 
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Table 2  

 
Values of k, dch/hc and the critical dipole heights hc in Cu and Ni at 0 K, room temperature 

(RT) and the maximum temperature of the saturation plateau (Tmax ≈ 430 K for Cu and ≈ 600 

K for Ni). The calculations were performed on the expanded original (or.) and revisited (rev.) 

versions of Brown's model [9]. The room temperature values are 295 K for CuBB (left), 300 K 

for CuHE (right) and 293 K for Ni. 

 

T(K) 0 300 Tmax  

kB 1 1 1 or. 

kB (Cu) 
kB (Ni) 

1.0 
0.98 

0.94   0.93 
0.92 

0.905 
0.86 

rev. 
rev. 

dch/hc(Cu) 
 

28.6 
28 

26.6   26.4 
29.0   29.1 

25.4 
29.5 

or. 
rev. 

dch/hc(Ni) 
24 

24.6 
23.6 
25.0 

18.8 
24.7 

or. 
rev. 

hc(Cu) nm 
hc(Ni) nm 

15.95 
19.8 

48.95 
47.9 

84.1 
121.5 

rev. 
rev. 
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Table 3 
  
Rounded values of αB in Cu and Ni at 0 K, room temperature (RT) and the maximum 

temperature (Tmax = 430 K for Cu and 600 K for Ni) in the original (or.) and revisited (rev.) 

versions of Brown's model [9]. The room temperature values are 295 K for CuBB (left), 300 K 

for CuHE (right) and 293 K for Ni. 

 

T(K) 0 300 Tmax  

αB (Cu) 
 

0.49 
0.50 

0.57   0.58 
0.51   0.50 

0.62 
0.51 

or. 
rev. 

αB (Ni) 
 

0.53 
0.52 

0.63 
0.53 

0.74 
0.56 

or. 
rev. 

 

 

 
 
 

 

 
 


