
HAL Id: hal-01629076
https://hal.science/hal-01629076

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User Interests Clustering in Business Intelligence
Interactions

Krista Drushku, Julien Aligon, Nicolas Labroche, Patrick Marcel, Veronika
Peralta, Bruno Dumant

To cite this version:
Krista Drushku, Julien Aligon, Nicolas Labroche, Patrick Marcel, Veronika Peralta, et al.. User Inter-
ests Clustering in Business Intelligence Interactions. International Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2017), Jun 2017, Essen, Germany. �10.1007/978-3-319-59536-8_10�.
�hal-01629076�

https://hal.science/hal-01629076
https://hal.archives-ouvertes.fr

User interests clustering in Business Intelligence
interactions

Krista Drushku1,2 Julien Aligon2,3, Nicolas Labroche2, Patrick Marcel2,
Veronika Peralta2, and Bruno Dumant1

1 SAP Research, France
firstname.lastname@sap.com
2 University of Tours, France

firstname.lastname@univ-tours.fr
3 University of Toulouse 1 Capitole, France

julien.aligon@ut-capitole.fr

Abstract. It is quite common these days for experts, casual analysts,
executives or data enthusiasts, to analyze large datasets using user-
friendly interfaces on top of Business Intelligence (BI) systems. How-
ever, current BI systems do not adequately detect and characterize user
interests, which may lead to tedious and unproductive interactions. In
this paper, we propose to identify such user interests by characterizing
the intent of the interaction with the BI system. With an eye on user
modeling for proactive search systems, we identify a set of features for
an adequate description of intents, and a similarity measure for grouping
intents into coherent interests. We validate experimentally our approach
with a user study, where we analyze traces of BI navigation. We show
that our similarity measure outperforms a state-of-the-art query similar-
ity measure and yields a very good precision with respect to expressed
user interests.

Keywords: User interest, Feature construction, Clustering, BI analyses

1 Introduction

BI system users range from executives to data enthusiasts who share a common
way of interaction: they navigate large datasets by means of sequences of analyt-
ical queries elaborated through user-friendly interfaces. For example, users may
express their information needs via keywords, and let the system infer from them
the most probable formal queries (generally MDX or SQL) to be sent to the un-
derlying data sources (generally data warehouses or databases). As information
needs do not have a status per se, it usually takes many interactions with the
system to satisfy an information need, and the overall session is often a tedious
process, especially in the case when the information need is not even clear for
the user. This bears resemblance with web search where users typically need to
repeatedly query the search engine to determine whether there is an interesting
content.

Being able to automatically identify user interests from BI interactions is a
challenging problem that has many potential applications: collaborative recom-
mendation (of data or dashboards), repetitive task prediction, alert raising, etc.
that would participate in reducing the tediousness of the analysis. The difficulty
of this problem lies in the fact that user interests are hidden in the interactions,
and two users with the same interest would probably interact with the system
differently. As in web search where users may have no idea of the retrieval algo-
rithm, BI user are generally ignorant of the data sources and the formal queries
they trigger. However once logged, all this information (keywords, sources, for-
mal queries, etc.) provide a rich basis for discovering user interests.

In web search, state-of-the-art approaches [6, 12, 16] characterize user inter-
ests by means of features extracted from user traces, and classify them to group
queries related to the same information needs. We consider that an interaction
relies on a sequence of keyword queries over some data sources. Each keyword
query produces an ordered set of formal queries suggested from the set of key-
words. One of these formal queries, chosen by the user, is evaluated over the
data source and the answer retrieved is displayed to the user. All this (keyword
query, suggestions and chosen query) is called an observation. We extract a set
of features that describe each observation of all user interactions. To group ob-
servations into coherent user interests, we first use supervised classification to
define a similarity measure that basically assigns a weight to each of the fea-
tures. Then, we use our measure with an off-the-shelf clustering algorithm to
group observations.

If our approach is inspired by the work Guha et al. did in the context of
web search [6], it deviates from it on major aspects. First we present our own
formal model tailored to BI interactions and we address a specific type of intents.
Consistently, we use a specific set of features. Contrarily to [6] we focus more on
the expressiveness of the model rather than on specific optimizations for scaling
to web data volumes. Finally, our approach is automatic and we present our own
evaluation of it, that includes a user study.

More precisely, our contributions include:

– a simple formal model of BI interactions,
– the identification of a set of features for characterizing BI user interests,
– the learning of a similarity measure based on these features,
– an approach to automatically discover user interests based on our measure

and an off-the-shelf clustering algorithm,
– an extensive set of experiments for the tuning and validation of our approach,

the comparison of our measure with a state-of-the-art metric tailored for
OLAP queries [3], and the study of its behaviour in various practical situa-
tions.

The paper is organized as follows: Section 2 presents our formal model of
BI interactions and user interests. Section 3 details the set of features used
to characterize user interests and our algorithm for discovering coherent cross-
interaction interests. Section 4 presents our experimental validation. Section 5
gives an overview of related work and Section 6 concludes the paper.

2 Formal model of BI interactions

This section presents our model of BI interaction. Given the proximity of BI
interactions in modern BI systems and web searches, our modeling of BI in-
teractions is inspired by the modeling of web search sessions. Note that the
generation of formal (MDX or SQL) queries from keywords is out of the scope
of this paper.

2.1 BI Questions, Suggestions and Queries

Let D be a database schema, I an instance of D and Q the set of formal queries
one can express over D. For simplicity, in this paper, we consider relational
databases under a star schema, queried with multidimensional queries [14]. Let
A be the set of attributes of the relations of D. Let M ⊂ A be a set of attributes
defined on numerical domains called measures. Let H = {h1, . . . , hn} be a finite
set of hierarchies, each characterized by (1) a subset Lev(hi) ⊂ A of attributes
called levels, (2) a roll-up total order �hi

of Lev(hi). Let adom(I) be the set of
constants of the instance I of D. We call a database entity an element of the
set A∪ adom(I). The result (or answer) of a query q over a database instance I
is denoted q(I).

Let T be a countably infinite set of keywords named tokens. A BI question
(or question for short) K, is a set of tokens entered by a user. Each token can
be matched with the entities in A ∪ adom(I) to generate queries. To simplify,
we describe a multidimensional query q in Q as a set of query parts, as in [2]. A
query part is either a level of a hierarchy in H used for grouping, a measure in
M , or a simple Boolean predicate of the form A = v involving an attribute A.

For example, starting from BI question ”Revenue for France as Country”
the following tokens {”Revenue”, ”France”, ”Country”} can be identified by
excluding stop words. Then, a query may contain the following query parts:
Revenue is a measure, Country a level in a hierarchy, and France is a constant,
resulting in Country=France being a Boolean predicate.

If a query part p is a selection predicate of the form A = v, or a grouping at-
tribute A, we use level(p) to denote attribute A. Given two query parts p1 and p2,
FD(p1, p2) denotes that there is a functional dependency level(p1)→ level(p2).
Given two queries q1 and q2, the boolean expression OP (q1, q2) indicates if they
differ in at most one query part. This allows to detect OLAP operations when
users navigate along hierarchies or change selection conditions.

As keywords are entered, a BI system might on the fly suggest further tokens
to complete the current ones, letting the user choose among them, as in web
search engines. The underlying idea is that a suggestion completes the original
BI question in order to obtain a well-formed query over a database. We formalize
the notion of suggestions as follows. A suggestion S is a triple 〈K,D, q〉 where
K is a BI question, D is a database schema (called source) and q is a query over
D. For short, given a suggestion S = 〈K,D, q〉, we note tokens(S), source(S)
and query(S) for refering to K, D and q respectively.

2.2 Observations, Interactions and user interests

In web search, search histories (i.e., interactions with a search engine) are ana-
lyzed to identify coherent information needs, as basis for recommendation gen-
eration. For instance, Guha et al. [6] propose to model information needs as
sequences of observations, an observation being a search engine query with its
associated web results (Search Engine Result Page or SERP for short) and clicks.
We adapt the model of [6] to model contexts of BI interactions. This adaptation
relies on the following simple analogy: (i) the search engine query corresponds
to the BI question, (ii) the SERP corresponds to the set of suggestions associ-
ated with the BI question, and (iii) a click on one SERP link corresponds to the
choice of a suggestion and hence to the evaluation of the query associated with
the suggestion.

Formally, an observation o is a triple o = 〈K,S, s〉 where K is a question,
S = {s1, . . . , sn} is a set of suggestions for question K, and s ∈ {s1, . . . , sn}
is the suggestion selected by the user. Given an observation o, we note Ko the
question K of o, suggestions(o) its set of suggestions, and chosen(o) the cho-
sen suggestion. We note query(o) = query(chosen(o)), the query of the chosen
suggestion, and result(o) = query(o)(I), the result set of the query over a data
source instance I. In addition, we annotate each observation o with a binary
property indicating the expertise of the user who interacted with the system,
denoted expertise(o). For example, consider the question “Revenue for France”
of an observation o. There are several suggestions proposed, whose respective
questions are: ”Revenue for France as Country”, ”Revenue for France as Mar-
ket Unit”, ”Revenue Closed for France as MU/Country/Super Reg”, ”Revenue
Closed for France as Country”, etc. Assuming the first suggestion is chosen by
the user, it is chosen(o) and the result of the formal query query(o) is result(o).

An interaction of length v is a sequence of v observations i = 〈o1, . . . , ov〉
that represents the user interaction with the BI system. E.g., other questions as:
”revenue for France 2010” or ”revenue for France 2015” or ”revenue closed for
France” can follow our question K to create a complete interaction of the user
with the system, analyzing the economic growth of France.

Without loss of generality and to keep the formalism simple, we assume
that an observation is part of only one interaction. The function interaction(o)
returns the interaction to which o belongs. Given two observations ox and oy in
an interaction, we say that oy refines (is a refinement of) ox if ox precedes oy
and either Kox = Koy ∪{t} or Koy = Kox ∪{t} or Koy = Kox \{t}∪{t′}, where
t, t′ ∈ T .

A user interest is a finite set U = {o1, . . . , on} of observations that repre-
sents one particular information need.

Table 1 presents the basic characteristics we use in our features to describe
user interests. Note that ∪B denotes bag union (preserving duplicates to compute
frequencies), P is a set of query parts and matches(t, p) is a binary function
indicating if token t matches query part p.

Characteristics Definition Interpretation

questions(U) ∪o∈U{Ko} all the questions
tokens(U) ∪B

o∈UK
o all the tokens

suggestions(U) ∪o∈Usuggestions(o) all the suggestions
chosenSuggest(U) ∪o∈Uchosen(o) all the chosen suggestions
queries(U) ∪B

o∈U{query(o)} all the chosen queries
qParts(U) ∪B

o∈Uquery(o) all the chosen query parts
interactions(U) ∪B

o∈U interaction(o) all the interactions
results(U) ∪o∈Uresult(o) all the results
sources(U) ∪o∈Usource(chosen(o)) all the sources
expertise(U) ∪o∈Uexpertise(o) all the expertises
refTok(U) {t ∈ tokens(U) | ∃o, o′ ∈ U, tokens that refine other ones

t ∈ (Ko \Ko′), o refines o′}
matchTok(U,P) {t ∈ tokens(U) | ∃p ∈ P, tokens that match a given set

matches(t, p)} of query parts
Table 1. Basic characteristics of user interests

3 Characterizing and clustering user interests

Following [6], we formalize the problem of discovering coherent user interests
as a clustering problem, for which a similarity measure is learned over a set
of descriptive features. These features allow to group observations (and user
interests) not only based on their intentions expressed by the BI question, but
also based on their objectives as expressed by the chosen suggestion, and on their
knowledge as provided by the evaluation of the chosen query. To compare two
user interests, a global similarity is computed as a weighted sum of feature-based
similarity measures. We first define the set of features we consider, together with
their similarities, then explain how the features are weighted and how contexts
are clustered.

3.1 User interest description features

To provide the best characterization of user interest, we define a set of candidate
features, that we subsequently analyze to identify those maximizing the accuracy
from the user’s perspective. We considered three groups of features. The first
group of features relates to the BI questions and suggestions (features 1-6). The
second group relates to the chosen suggestions, and especially their query parts
(features 7-9). Both groups proved effective in identifying interests in the context
of Web searches [6]. The third group consists of specific BI features, and relates
to formal queries and their answers (features 10-15).

Table 2 details the features by giving their formal definition and the feature-
based similarity measure used for comparing two user interests. The definition is
given for a user interest U1 = {o11, . . . , o1n} to be compared to user interest U2 =
{o21, . . . , o2m}. Given a bag of elements x, freq(x) is a vector counting the number
of occurrences of each element of x. For each feature, we propose a similarity

Feature Formal definition Similarity

1 Frequency of tokens freq(tokens(U1)) Cosine
2 Frequency of refining tokens freq(refTok(U1)) Cosine
3 Suggestions suggestions(U1) NormInt.
4 BI questions questions(U1) NormInt.
5 U1 questions that are {K ∈ questions(U1) | MaxFrac.

sub-questions in U2 ∃K′ ∈ questions(U2),K′ ⊂ K}
6 U1 questions in the same {Ko | o ∈ U1,∃o′ ∈ U2, MaxFrac.

interaction as a question in U2 interactions(o) = interactions(o′)}

7 Frequency of chosen query parts freq(qParts(U1)) Cosine
8 Frequency of tokens of U1 that freq(matchTok(U1, qParts(U2))) Cosine

match chosen query parts of U2

9 Chosen suggestions chosenSuggest(U1) NormInt.

10 Levels in chosen query parts {Level(p) | p ∈ qParts(U1)} Jaccard
11 Tuples retrieved by chosen queries results(U1) NormInt.
12 Queries in U1 that differ by one {q ∈ queries(U1) | MaxFrac.

query part from a query in U2 ∃q′ ∈ queries(U2), OP (q, q′)}
13 Sources sources(U1) MaxFrac.
14 Attributes of U1 functionally {level(p) | p ∈ qParts(U1) MaxFrac.

identifying attributes in U2 ∃p′ ∈ qParts(U2), FD(p, p′)}
15 Expertise of users expertise(U1) MaxFrac.

Table 2. Features considered

measure that is the most suited for it (e.g., cosine for vectors of frequencies,
Jaccard for sets). The definition of similarity measures MaxFrac and NormInt
are drawn from [6]. MaxFrac measures the maximum fraction of observations of
each user interest that match an observation in the other user interest. Given
two interests U1 and U2, it is defined by: MaxFrac(U1, U2) = max(

|Os
1|

|O1| ,
Os

2

|O2|),

where Os
i are the observations that satisfy some property s over the total number

of observations Oi of Ui. NormInt is a version of Jaccard similarity, that aims
at evaluating the number of features two user interests share. It is defined by

NormInt(U1, U2) = |F1∩F2|
min(|U1|,|U2|) , where Fi are the features of Ui and |Ui| is the

number of the set of features for the ith user interest.

3.2 Clustering user interests

Grouping observations into user interests, and then grouping similar user in-
terests, requires addressing two problems: (i) determining a similarity measure
between user interests and (ii) finding a clustering algorithm that can work on
the sole basis of this similarity.

Regarding problem (i), our aim is to distinguish among the candidate features
presented above those who are the most suitable to identify coherent interests
from a user standpoint. To this end, we formalize the problem as a classification
task, which proved effective in [15, 6]. We use a simple linear combination of

feature-based similarity score. The similarity S(U1, U2) between user interests
U1 and U2 is defined by:

S(U1, U2) =

n∑
i=1

wivi(U1, U2) (1)

where n is the number of features, vi is the similarity measure indicated in
Table 2 for feature i and ωi is a weight representing this feature’s importance
in the comparison. To set the weights ωi we use an off-the-shelve SVM linear
classifier paired with some ground truth knowledge about user interests to learn
the predictive value of the feature. More precisely, for a feature i, the weight
ωi is set to the conditional probability that two observations correspond to the
same user interest knowing that they coincide on feature i. This way we solve
the tuning problem of finding an appropriate balance between all the features
based on the interests that are to be discovered.

Problem (ii) is addressed by experimenting with off-the-shelves well-known
and trusted relational clustering algorithms implementing different strategies:
centroid-based clustering, connectivity-based clustering and density-based clus-
tering, as explained in the next Section.

4 Experiments

Our objective is to determine a metric based on the features introduced in Sec-
tion 3.1 that allows, when paired with a clustering algorithm, to group user
observations into clusters that reflect accurately user interests. In this regard,
the first experiment aims at determining and validating the best subset of fea-
tures from the set presented in Table 2. Then, a comparative experiment with the
state-of-the-art similarity measure for OLAP sessions proposed in [3] shows the
effectiveness of our proposal in the particular context of user interests discovery.
Incidentally, our experiments also reveal that considering the reference metric [3]
as a feature in our similarity measure in some cases improves the overall quality
of our approach.

Finally, we propose several side experiments to further validate our approach:
(i) sensitivity to the clustering algorithm, (ii) behaviour of our metric when
confronted to observations or clusters of observations related to a business need,
(iii) behaviour of our metric when confronted to unseen business needs, and (iv)
behaviour of our metric in detecting intra-interaction interests.

4.1 Experimental protocol

Data set The data used for our experiments consists in navigation traces of 14
volunteers of SAP covering a range of skills in data exploration, classed, based
on their position in the company, in two expertise groups: beginners and expert
users. In order to evaluate to which extent actual user interests were discovered
by our method, we set 10 business needs (named Q1 to Q10), each corresponding

to a specific user interest. Users were asked to analyze some of the 7 available
data sources to answer each of the 10 business needs, using a SAP prototype
that supports keyword-based BI queries4. The business needs were grouped in
different business cases like: ”For each European country, detect which genres
of films did not reach the expected sales” or ”In which Income Group would
you classify a candidate country with a GDP of $6 billion?”. In order to be more
realistic, business needs were defined expecting some overlap in terms of accessed
data and queries. In the context of user interest discovery, the business needs
Q1 to Q10 serve as our ground truth, our objective being to cluster together
observations (potentially from different user interactions) that addressed the
same business need.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Difficulty low med med med low high low low med high
Number of interactions 19 11 10 10 10 8 9 9 9 8
Number of queries 84 65 60 41 50 43 61 51 26 49
Number of relevant queries 34 26 30 16 26 10 27 24 24 9
Queries / interaction 4.4 5.9 6.0 4.1 5.0 5.4 6.8 5.7 2.9 6.1
Relevant queries / interaction 1.8 2.4 3.0 1.6 2.6 1.25 3.0 2.7 2.7 1.1

Table 3. Analysis of business needs

In total, our data set named Complete hereafter contains 23 user interac-
tions, each one possibly concerning several business needs, accounting for 530
queries. Table 3 describes, for each business need, its difficulty, estimated by an
expert (in terms of time, number of queries and exploited sources expected in
its resolving), the number of interactions devised for solving it, the number of
queries and the number of queries perceived as relevant by users in their own
activity. In order to have several difficulty settings, we also build two reduced
data sets named Reduced 1 and 2, each corresponding to 4 business needs and
4 distinct data sources, which in turn removes most of the potential overlap.
Each of them contains 225 observations. Importantly, Reduced 1 and 2 are not
related to the same business needs. When dealing with these data sets only 4
well separated clusters are to be found, contrary to the Complete data set in
which 10 clusters with overlap are expected.

Evaluation of results Our objective is to build groups of observations that are
only related to a single user interest. The main indicator of success in our case is
thus the precision of the clustering when compared to the theoretical grouping of
observations provided by the business questions. At a second level, recall allows
to determine to which extent each cluster covers all of the observations related
to a user interest. Finally, we classically use the Adjusted Rand Index (ARI) to
evaluate the overall quality of the clustering. The values of this index range from

4 Patent Reference: 14/856,984 : BI Query and Answering using full text search and
keyword semantics

around 0 (when the clustering performs badly and produces a partition close to
a random clustering) and 1 (when the clustering is perfect) [4].

Metric learning The feature weights are learned over 50% of all observations
chosen randomly, with a balance in the number of observations per business
needs. Our objective is two-fold and aims at finding the smallest subset of fea-
tures to avoid any problem of over-fitting when the number of dimensions in-
creases, while still maximizing the quality of the discovery of user interests. To
this aim, we tested several subsets of features and trained the weights of the
metric with a linear SVM algorithm as presented in Section 3.2 on the sole basis
of these features. The subsets of features are selected as follows. We consider all
15 features described in Table 2 and learn the metric. The linear SVM outputs
weights that traduce the relative importance of each feature. It is thus possible
to order features by the absolute value of their weights. This ranking allows to
form subsets of features starting from those with only highly weighted features
to subsets that cover more widely the whole set of features. In order to limit
to a few subsets, we give results for the following subsets. G2={1, 3, 7, 8, 9},
G3=G2∪{5, 10, 11, 13, 14} and ALL respectively include the features with the
highest relative importance (the top-5, top-10 and all features). We also consti-
tute a group G1={7, 8, 9, 10, 13} that includes top-5 features selected by repeti-
tively adding to the group those features that increase precision, similarly to [6].
Note that G3 includes both G1 and G2. Finally, groups G4={1, 2, 3, 4, 5, 6} and
G5={7, 8, 9, 10, 12, 13, 14} are specific groups of features related only to keywords
(G4) and query parts (G5).

Clustering algorithms As no hypothesis can a priori be made on the shape
of expected groups of observations, we use in our tests various clustering al-
gorithms that are representative of the diversity of common methods from the
literature. The only constraint imposed by the formulation of our problem is that
these methods must be relational i.e., only based on the expression of a distance
or dissimilarity between pairs of data instances. The first method is the PAM
algorithm [8] that is a k-medoids algorithm that finds hyperspherical clusters
centered around the k most representative observations. We also use agglom-
erative hierarchical clustering algorithms [7] with single and complete linkage
criterion to either allow for elongated or compact clusters. Finally, we use the
traditional DBSCAN algorithm [5] that is not restricted to a specific shape of
cluster but constraint clusters to share the same density of points.

Implementation Our approach is implemented in Java but also uses Python
Scikit Learn [11] linear SVM to learn the weights of our similarity measure and
R clustering packages cluster for k-medoids and hierarchical clustering, as well
as fpc for DBSCAN.

4.2 Results

Determining the best subset of features Table 4 shows that the qual-
ity of the discovered groups of observations heavily depends first on the subset
of features as expected, but also on the clustering algorithm used. It can be
seen that approaches like the hierarchical clustering with single link criterion
and DBSCAN algorithms that allows for elongated clusters achieve very poor
precision results (Prec = 0.11). This can be explained by the fact that these
two algorithms are sensitive to potential overlapping between clusters. In our
case, similarities between user interests cause early unwanted merging between
groups of observations. The stability in precision traduces the fact that these
two approaches constantly built a majority of mono-observation clusters and
one cluster with almost all the observations, whatever the group of features con-
sidered. At the opposite, clustering algorithms that favor compact clusters like
the hierarchical clustering with complete link or the k-medoids PAM algorithms
perform better. PAM performs significantly better than the hierarchical com-
plete link algorithm, knowing that standard deviations (not reported here for
the sake of clarity) do not exceed 10−2 and are most of the time around 10−3.
Finally, when considering only PAM, it can be seen that the subset of features
G2 outperforms all the others. Interestingly, these features are those that had
the most discriminating behaviour based on the SVM weights observed on all
our 15 features (see Section 4.1). Adding more features only slightly increases re-
call. Other strategies (not mixing features from different specific groups or using
the strategy of [6]) can dramatically harm precision. It is also important to note
that subset G2 does not include BI specific features, which indicates that enough
semantics is beared by the other features in detecting user interests. From the
previous findings, we define G2 as the set of features and we use PAM clustering
in the remaining tests, unless otherwise stated.

H. Single H. Complete PAM DBSCAN

Features Rec. Prec. ARI Rec. Prec. ARI Rec. Prec. ARI Rec. Prec. ARI

ALL 0.96 0.11 0.002 0.49 0.34 0.315 0.52 0.46 0.42 0.82 0.11 0.008
G1 0.90 0.11 0.0004 0.67 0.12 0.026 0.43 0.40 0.35 0.86 0.11 0.006
G2 0.92 0.11 -0.0001 0.68 0.11 0.006 0.51 0.50 0.44 0.73 0.11 0.017
G3 0.97 0.11 0.001 0.38 0.28 0.23 0.52 0.47 0.43 0.77 0.11 0.007
G4 0.96 0.11 -0.0005 0.67 0.14 0.06 0.47 0.29 0.26 0.85 0.11 -0.0008
G5 0.91 0.11 0.0004 0.39 0.28 0.23 0.45 0.42 0.37 0.75 0.11 0.01

Table 4. Clustering results with distinct subset of features on Complete data set.
For short, Rec, Prec and ARI denote respectively recall, precision and ARI scores.

G2 metric behaviour While our metric is learned on observations, our ex-
perimental protocol aims at grouping together observations participating in the
analysis of a business need. To understand the behaviour of our G2 metric, we
tested how it degrades when applied to analyses and then to observations. Anal-
yses are defined as sets of observations participating to answering the same need.
This is unlikely to be detected in practice, and this information was explicitly
asked to the users when they answered the different needs. Obviously, as shown
in Table 5, when applied on analyses, our metric achieves optimal to very good
performance. In the easiest case, when user interests are clearly distinct from
each others and rich information is provided to our algorithm with analyses
rather than observations, the clustering fits perfectly, with precision, recall and
ARI scores equal to 1. Interestingly when we cluster analyses based on the metric
learned on observations, the results are identical to the previous results. On the
contrary, learning metric weights on the basis of analyses (although not realis-
tic) does not conduct to good clusters of observations, with significantly lower
scores. As a conclusion, this experiment validates our choice of learning weights
on observations and our choice of the G2 features. It is left to future work to
address the problem of evaluating the metric on a mixed clustering situation
with observations or groups of observations at the same time.

Complete Reduced 1
Input Weighting Recall Precision ARI Recall Precision ARI

Observations Observations 0.51 0.50 0.44 0.70 0.64 0.54
Analyses Analyses 0.80 0.74 0.74 1.0 1.0 1.0
Analyses Observations 0.80 0.74 0.74 1.0 1.0 1.0
Observations Analyses 0.44 0.42 0.36 0.61 0.59 0.45

Table 5. Behaviour of G2 set of features with PAM clustering when learning weights
over observations or analysis. Column “Weighting” indicates whether weights are
learned over observations or analysis.

Comparative experiments Table 6 shows how our metric compares to a
reference metric from the literature [3] designed for OLAP queries. This metric
has been validated by user tests that showed its effectiveness in grouping queries
in accordance to what a human expert would have done. Table 6 reveals 2 distinct
behaviours depending on whether we consider the Complete data set or the
Reduced 1 (where clusters are well separated). With the Complete data set,
our metric with G2 features performs better than the other metrics as it only
relies on the most discriminating features. Indeed, we know from the protocol
that groups of observations heavily overlap. Thus, our metric, based on SVM,
cannot find a proper linear separation between observations related to different
user interests. In this particular context, adding more features makes the problem
even more complex to solve for SVM as it has to determine a compromise solution
over 15 dimensions rather than 5 in the case of G2 features, and with only a few

Complete Reduced 1

Features Recall Precision ARI Recall Precision ARI

ALL 0.52 0.46 0.42 0.73 0.64 0.56
G2 0.51 0.50 0.44 0.70 0.64 0.54

Metric [3] 0.39 0.20 0.14 0.41 0.33 0.10
ALL + [3] 0.40 0.40 0.32 0.78 0.65 0.63
G2 + [3] 0.45 0.43 0.38 0.69 0.62 0.52

Table 6. Comparison of our metric based on G2 features with other metrics when
paired with PAM clustering. ALL denotes the set of 15 features, [3] is the state-of-art
metric and “+” indicates a metric with added features and corresponding weights.

training instances. On the contrary, with the Reduced 1 set of observations,
groups are clearly separable, the problem is much easier for the linear SVM and
adding features may help finding a better solution by fine tuning the separation
hyper plane. Consequently, in this case, slightly better results may be achieved
with other features than G2’s. However, we expect our approach to be the most
efficient in any scenarios and the hypothesis that clusters of observations are
clearly separated is too strong for us. Thus, the metric based on G2 features
seems to be the most appropriate among those that we evaluated but also when
compared to state-of-the-art metric like [3].

Handling unseen business needs In this experiment, we study how our
method handles previously unseen business needs and how general is the metric
learned on the G2 features. To this aim, we consider both Reduced data sets
and use one to train the metric and the other to test with PAM clustering.
Recall that reduced data sets cover different business needs, with no overlap
among them. Results in Table 7 show that our metric is indeed general and can
adapt to new business needs as there is no drop in performance between each of
the generalization tests. Moreover, the results are comparable to those observed
in previous tests as reported in Table 6. Finally, it can be seen that testing on
Reduced 2 leads to better results than with Reduced 1. This is expected as
Reduced 2 contains observations related to business need Q9 that has more
relevant queries than Q10 contained in the Reduced 1 data set (see Table 3).

Discovering intra-interaction interests To illustrate one practical interest
of our metric, we conducted a test that consists of successively increasing the
number of clusters and we checked how many users of different expertise are
represented in each cluster. The aim is to show that our metric is good not only at
grouping observations that participate to the resolution of a particular business
need, but also at identifying parts of the resolution that are shared by users with
different expertises. To emphasize on the evolution of precision (which indicates
the coherence of clusters), we use the (G2 + [3]) configuration, which is a good

Training Testing Recall Precision ARI

Reduced 2 Reduced 1 0.76 0.67 0.61
Reduced 1 Reduced 2 0.73 0.71 0.62

Table 7. Generalization of our approach. Each test correspond to the training of the
metric and discovery of user interests on different subsets of business needs.

compromise in previous experiment, and test on the well separated Reduced 1
data set, starting with 10 clusters. The results reported in Table 8 show how the
mixing of users decreases while precision increases (and consequently recall and
ARI decrease) as we increase the number of clusters. It can be noted that for high
precisions, the composition of clusters in terms of users with different expertises
remains very acceptable. For instance, when precision reaches 95%, more than
63% of clusters have users with different expertise. In other words, this shows
that our metric can be used to identify shared sub-tasks (or intra-interaction
interests) where some experts’ queries could be recommended to beginner users
having to solve the same business need.

clusters Recall Precision ARI Dense UI Expertise

10 0.35 0.86 0.41 10 (100%) 0 (100 %)
15 0.24 0.90 0.31 14 (93.3%) 1 (93.33 %)
20 0.20 0.92 0.26 14 (70%) 2 (90 %)
25 0.18 0.92 0.24 13 (52%) 6 (76 %)
30 0.17 0.95 0.23 13 (43.3%) 11 (63.33 %)
35 0.16 0.95 0.22 12 (34.3%) 16 (54.29 %)
50 0.14 0.96 0.19 11 (22%) 30 (40 %)

Table 8. Increasing the number of clusters to detect intra-interaction interests. Dense
UI indicates the number of clusters with more than 5 different users. Expertise indicates
the number of clusters with both types of users (beginners and experts).

5 Related work

Analyzing web search sessions for personalizing user experience has attracted
a lot of attention, varying in models for session, similarities and clustering al-
gorithms [9]. As users information needs span multiple search sessions, state-of-
the-art approaches attach importance to both intra and inter-session similarities.
Various forms of user interests have been defined, like contextual intent, task rep-
etition or long term interests, and methods have been proposed to identify them.
Sun et al. [13] are interested in contextual intent. Contextual intent attaches

importance to context with a particular emphasis on external physical envi-
ronment, and complex context-intent relationships are modeled. Consequently,
intent tracking is done in real-time. In our work, we are not interested in model-
ing context, nor real-time tracking, but in user interest in certain data to answer
a particular business question, which is generally context-independent. Song and
Guo [12] address the problem of predicting task repetition, i.e., whether a task
represents one-time information need or exhibits recurrent patterns. A feature-
based approach is used to train a deep neural network classifier to recognize the
characteristics of task repetition patterns. The features incorporate information
on queries, clicks, and attach a particular importance on time, with the underly-
ing assumption that similar users often perform similar activities at similar time.
A similar approach is proposed by Guha et al. [6]. The goal is to discover new
intent and obtain content relevant to users’ long-term interests. They develop
a classifier to determine whether two search queries address the same informa-
tion need. This is formalized as an agglomerative clustering problem for which
a similarity measure is learned over a set of descriptive features (the stemmed
query words, top 10 web results for the queries, the stemmed words in the titles
of clicked URL, etc.). One advantage of this approach is that it allows to build
contexts that span over several user sessions or only a portion of one session.
Thus, contexts provide insights on short and long terms information needs and
user habits, to build accurate user profiles.

To the best of our knowledge, our work is the first attempt to automatically
discover BI users’ interests in a multi-user environment. Some collaborative rec-
ommendation approaches for BI exist, but they are limited to clustering OLAP
queries or sessions without treating user interest as a first class citizen (see e.g.,
[1]). A similarity measure tailored for OLAP queries is proposed in [3]. This work
also reviews query similarity measures described in the literature, and showed
through user studies that the proposed measure better respects the similarity
perceived by users over the other measures. This led us to compare our measure
to that one. Nguyen et al. [10] deal with discovering the most accessed areas of a
relational database. Their notion of user interest relies on the set of tuples that
are more frequently accessed, and is expressed as selection queries (mostly range
queries). They use DBSCAN to cluster user interests. Their similarity metric
relies on Jaccard coefficient of the accessed tables and on overlapping of predi-
cates. Being tailored for range queries, their metric is inappropriate for OLAP
queries that are mostly dimensional (i.e., point based), due to the nature of the
hierarchical dimensions used to select data. In particular, consistently with the
study of [3], the query log used for our tests feature no range queries.

6 Conclusion

We have presented an approach for identifying coherent interests of BI users with
various expertise querying datasources by means of keyword-based analytical
queries. Our approach relies on the identification of discriminative features for
characterizing BI interactions and on the learning of a similarity measure based

on these features. We have shown through user tests that our approach is effective
in practice and could benefit beginner analysts whose interests match those of
expert users. Overall, our results show that keyword-based interaction systems
provide semantically rich user traces well adapted to the detection of coherent
BI user interest.

Building upon these results, our long term goal is to go beyond keyword-based
interaction systems. We envision the implementation of an intelligent assistant
that raises alerts when the datasources are refreshed or when user information
needs and expertise change. To this end, our future works include the develop-
ment of interest and skill-based recommendation approaches and their validation
via larger user studies.

References

1. J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi. A collaborative
filtering approach for recommending OLAP sessions. DSS, 69:20–30, 2015.

2. J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Mining preferences
from OLAP query logs for proactive personalization. In ADBIS, pages 84–97, 2011.

3. J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Similarity measures
for olap sessions. KAIS, 39(2):463–489, 2014.

4. B. Desgraupes. Clustering indices. Technical report, University Paris Ouest - Lab
Modal’X, April 2013.

5. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, pages 226–231,
USA, 1996. AAAI Press.

6. R. Guha, V. Gupta, V. Raghunathan, and R. Srikant. User modeling for a personal
assistant. In WSDM, pages 275–284, Shanghai, China., 2015.

7. L. Kaufman and P. Rousseeuw. Finding groups in Data: An introduction to Cluster
Analysis. Wiley.

8. L. Kaufman and P. Rousseeuw. Clustering by means of medoids. In Statistical
Data Analysis based on the L1 Norm, pages 405–416. Elsevier, 1987.

9. B. Mobasher. Data mining for personalization. In The Adaptive Web: Methods
and Strategies of Web Personalization, volume 4321 of LNCS, pages 90–135. 2006.

10. H. V. Nguyen and al. Identifying user interests within the data space - a case study
with skyserver. In EDBT, pages 641–652, 2015.

11. F. Pedregosa and al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

12. Y. Song and Q. Guo. Query-less: Predicting task repetition for nextgen proactive
search and recommendation engines. In WWW, pages 543–553, 2016.

13. Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald, and R. Zhang. Contextual
intent tracking for personal assistants. In SIGKDD, pages 273–282, 2016.

14. A. A. Vaisman and E. Zimányi. Data Warehouse Systems - Design and Implemen-
tation. Data-Centric Systems and Applications. Springer, 2014.

15. H. Wang, Y. Song, M.-W. Chang, X. He, R. W. White, and W. Chu. Learning to
extract cross-session search tasks. In In WWW, 2013.

16. L. Yang, Q. Guo, Y. Song, S. Meng, M. Shokouhi, K. McDonald, and W. B. Croft.
Modeling user interests for zero-query ranking. In ECIR, pages 171–184, 2016.

