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Abstract: In this report, the fundamental limits of simultaneous information and energy trans-
mission in the two-user Gaussian interference channel (G-IC) with and without feedback are fully
characterized. More specifically, an achievable and converse region in terms of information and
energy transmission rates (in bits per channel use and energy-units per channel use, respectively)
are identified. In both cases, with and without feedback, an achievability scheme based on power-
splitting, common randomness, rate splitting, block-Markov superposition coding, and backward
decoding is presented. Finally, converse regions for both cases are obtained using some of the
existing outer bounds for information transmission rates, as well as a new outer bound for the
energy transmission rate.
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Résumé : Dans ce rapport, les limites fondamentales de la transmission simultanée d’information
et d’énergie dans le canal Gaussien & interférence (G-IC) avec et sans voie de retour sont déter-
minées. L’ensemble des débits atteignables de transmission d’information et d’énergie (en bits par
utilisation du canal et en unités d’énergie par utilisation du canal respectivement) est identifié.
Pour les deux cas, un schéma d’atteignabilité est basé sur power-splitting, common randomness,
rate splitting, block-Markov superposition coding, et backward decoding est présenté. Finale-
ment, la région converse pour les deux cas est obtenu en utilisant des techniques de majoration
dans la littérature pour les débits d’information et aussi un majorant pour le débit d’énergie en
utilisant la loi des grands nombres.

Mots-clés : Canal a interference, voie de retour, transmission simultanée d’information et
d’énergie
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1 Notation

Throughout this research report, sets are denoted with uppercase calligraphic letters, i.e., X.
Random variables are denoted by uppercase letters, e.g., X. The realization and the set of
events from which the random variable X takes values are respectively denoted by x and X.
The probability distribution of X over the set X' is denoted Px. Whenever a second random
variable Y is involved, Pxy and Py x denote respectively the joint probability distribution of
(X,Y) and the conditional probability distribution of ¥ given X. Let N be a fixed natural
number. An N-dimensional vector of random variables is denoted by X = (X1, Xo,..., Xn)"
and a corresponding realization is denoted by x = (z1,%2,...,2n5)" € XY . Given X =
(X1, X2,...,Xn)T and (a,b) € N?, with a < b < N, the (b—a+1)-dimensional vector of random
variables formed by the components a to b of X is denoted by X (44 = (Xa, Xay1,--- X))
The notation (-)™ denotes the positive part operator, i.e., (-)* = max(-,0) and Ex[-] denotes the
expectation with respect to the distribution of the random variable X. The logarithm function
is assumed to be base 2.

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 5

2 Gaussian Interference Channel with Energy Harvesting

Consider the Gaussian interference channel (G-IC) with a non-colocated energy harvester de-
picted in figure [T] without feedback and in figure 2] with perfect channel-output feedback. Trans-
mitter ¢, with ¢ € {1,2}, aims to execute two tasks: (a) an information transmission task and
(b) an energy transmission task.

2.1 Information Transmission Task

From the information transmission standpoint, the goal of transmitter ¢ is to convey an inde-
pendent message index W; € W; = {1,2,...,2V} to receiver i using N channel input symbols
Xi1,Xi2,...,X; n. The channel coefficient from transmitter k to receiver i, with k € {1, 2},
is denoted by h;; € Ry. At receiver ¢, during channel use n, input symbol X ,, is observed at
receiver ¢ subject to the interference produced by the symbol X; , sent by transmitter j, with
j € {1,2}\ {i}, and a real additive Gaussian noise Z; , with zero mean and variance o?. Hence,
the channel output at receiver ¢ during channel use n, denoted by Y; ,, is:

Yin =hiuXin +hij Xjn 4+ Zin. (1)

In the case without feedback, at each channel use n, the symbol X; ,, sent by transmitter ¢ depends
upon the message index W; and a randomly generated index {2 € IN. Let fi(ﬁ) Wi xIN = R be
the encoding function at channel use n, such that for all n € {1,2,..., N}, the following holds:

Xin=fn (Wi, Q). 2)

In the case with feedback, the symbol X; , sent by transmitter ¢ depends upon the indices W;
and €, but also upon all previous channel-outputs Y; 1,Y; 2,...,Y; n—q, with d € IN the feedback
delay. In the following, it is assumed that d is equal to one channel use, without any loss of
generality. The first channel input symbol X;; depends only on the message index W; and €.
More specifically, fi(flv) :W; x N — R and for all n € {2,3,...,N}, fz(ﬁ/) W, x Nx R - R
are the encoding functions such that:

Xi’lzfi(,Jl\’)(Wi,Q) and (3&)
Xin=f (Wi, 9, Y1, Yio, ..., Vi) for all n > 1. (3b)

In both cases, the random index () is assumed to be independent of both Wj; and W5 and
known by all transmitters and receivers. Moreover, channel input symbols X; 1, X;0,...,X; v
are subject to an average power constraint of the form

N
1
n=1

where P; denotes the average transmit power of transmitter ¢ in energy units per channel use.
The expectation in is taken with respect to W, and €2 in the case without feedback. In the
case with feedback, the expectation is taken over the joint distribution of the message indices
W1 and Wa, the random index €2, and the noise terms, i.e., Z; and Z;. The dependence of X ,,
on Wy, Wy, Q, and the previously observed noise realizations is due to the effect of feedback as
shown in . Note that W; and €2 are assumed to be independent and uniformly distributed
over their corresponding sets.

Let T' € IN be fixed and assume that during a given communication, T blocks of N channel uses

RR n°® 9102
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Q
T T T |
: * Zl,n :
' X1,n h : A
I Wi | Transmitter 1 > 11 fas) :'t Receiver 1| W,
l Yl,n H
i h31 :
e 1 .
\ 4 h12 h21 v | . N
W2 | Transmitter 2 ) H— 2" t Receiver 2 W
X2.n 22 *
ZZ,n
h32 Ener
— P gy E
Y3 n Harvester nerey

Figure 1: Two-user Gaussian interference channel with a non-colocated energy harvester at
channel use n.

are transmitted. The decoder of receiver i observes the channel outputs Y; 1,Y;2,...,Y; N7 and
uses a decoding function ¢;: N x RV — W' to get an estimate of the message indices:

—(1) —(2) —(T)
wy Wi W =¢; (Q,Y51,Y50,....YiNT), (5)

—(t
where Wi( ) is an estimate of the message index W sent during block ¢ € {1,2,...,T}. The

decoding error probability during block ¢ of a codebook of block-length N, denoted by Pe(t) (N),
is given by

PO(N) = max <Pr {17[/\1 “ Wf”} Pr {1’472(” ” WQ(”} ) (6)

The signal to noise ratio (SNR) at receiver ¢ is denoted by

The interference to noise ratio (INR) at receiver 4 is denoted by

2
2P,
%, with j # 4. (7b)
g,

i

INR; =

2.2 Energy Transmission Task

Let hs; € Ry be the channel coefficient from transmitter ¢ to the energy harvester (EH). The
symbols sent by the transmitters during channel use n are observed by the EH subject to an

RR n°® 9102
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Figure 2: Two-user Gaussian interference channel with channel-output feedback and a non-
collocated energy harvester during channel use n.

additive Gaussian noise Z3,, with zero mean and variance o2. More specifically, the channel

output at the EH during channel use n, denoted by Y3 ,, is:
Y50 = h31X1n + h3aXon + Z3 . (8)

From the energy transmission standpoint, the goal of both transmitters is to jointly guarantee
an average energy rate at the EH. Let b > 0 denote the minimum average energy rate that must
be guaranteed at the input of the EH. Let also BY) be the average energy rate (in energy-units
per channel use) at the end of N channel uses. That is,

N
2L §ye
B = - ;YS,L 9)
The SNR of transmitter ¢ at the EH is denoted by
il P,
SNRgy; = | ?’U'Q . (10)

3
Note that the maximum average energy rate, denoted by Bpax, iS:
Buax = 03 (1 + SNRs; + SNRs; + 21/SNR31SNRaz ) - (11)
The probability of energy outage, given an average energy rate B, is defined as follows:
P (B) £ Pr [B™ < B — ], (12)

for all B > b and some ¢ > 0.

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 8

2.3 Simultaneous Information and Energy Transmission

Given a minimum energy rate b to be satisfied at the EH, the system is said to be operating at
the information-energy rate triplet (R;, Ra, B) € Ri when both transmitter-receiver pairs use
a transmit-receive configurations such that: (i) reliable communication at information rates Ry
and Ry is ensured; and (ii) reliable energy transmission at energy rate B is ensured. A formal
definition is given below.

Definition 1 (Achievable Rates) The triplet (R, R2, B) € R? is achievable if for all i €

fi(’12\1)7 R fi(j\\f,) and a decoding function

{1, 2}, there exists a sequence of encoding functions fi()]lv),
¢; such that both the average error probability pY (N), forallt € {1,2,...,T}, and the energy-

outage probability pe (B) tend to zero as the block-length N tends to infinity. That is,

outage

limsup P (N) = 0 and (13a)
N—o00
lim sup Po(ljl\é’aeg)e =0. (13b)
N—00

Using Definition [1} the fundamental limits of simultaneous information and energy transmission
in the Gaussian interference channel can be described by the information-energy capacity region,
defined as follows.

Definition 2 (Information-Energy Capacity Region) The information-energy capacity re-
gion given a minimum energy rate b, denoted by 55 in the case with feedback and &, in the case
without feedback, corresponds to the closure of all achievable information-energy rate triplets
(Rl ) RQ; B) :

3 Main result

The main result consists of a description of the information-energy capacity regions with feedback
EF and without feedback &, for a given b > 0. Such a description is presented in the form of an
approrimation in the sense of the definition hereunder.

Definition 3 (Approximation of a Set) Let n € IN be fixed. A closed and convex region
X C RY is approximated by the sets X and X' if ¥ C & C A’ and V& = (21,...,2,) € X then
(1 —&)T, (x1 = &), (xn — &) 1) € X, for some (&1,&,...,&,) € R

3.1 Case without Channel-Output Feedback

The information-energy capacity region &, with b any positive real number, is approximated by
the regions £, (Theorem , which represents an information-energy achievable region, and &,
(Theorem , which represents an information-energy converse region.

3.1.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

RR n°® 9102
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Theorem 1 Let b be a fixed positive real. Then, the information-energy capacity region &
contains all the rate tuples (Ry, Ra, B) that satisfy:

R < %log <1 + m) , (14a)
s g )
Ry+ Ry < %log <1 (- Alf’l SJFNi; ;\I glf A2e)INRy )%1 (1 + T f’fﬁi;) (14c)
Ri+ Ry < %log <1 +(1- Azel iNAR; 1J1r\1 SQ— A1e)INR, )%1 (1 TN i”iﬁi;{l) (14d)
e (o 1 (s o)
s () 1 (1
Jr% log (1 + 1+ v INR. iﬁjﬁigl) , (14f)
305 (LT ) (150
S
b < B < 0} (14 SNRg; + SNRaz + 21/SNRs1 SNRao v/ Are dae ) (14h)
with (Nip, Nie) € [0,1]% such that Xip + Nie < 1, for all i € {1,2}.
Proof: The proof of Theorem []is presented in Appendix [A] [ |

The achievability scheme used to obtain Theorem |I]is built upon random coding arguments using
rate-splitting [1], superposition coding [2], common randomness, and power-spliting [3]. Follow-
ing a rate-splitting argument, the index W; is divided into two sub-indices W; p € {1,2..., oNRipY
and W; ¢ € {1,2...,2NBic} where R; ¢ + R; p = R;. Note that the block index (¢) in Wi(t)
and Q®) are dropped as the encoding and decoding are identical at each block. The message
index W; ¢ must be decoded at both receivers, whereas the index W; p must be decoded only at
the intended receiver. This rate-splitting is reminiscent of the Han-Kobayashi scheme in [I].
The codebook generation at transmitter ¢ follows a three-level superposition coding scheme.
The first code-layer is a sub-codebook of 2V%® codewords. Denote by v(Q2) the correspond-
ing codeword of the first code-layer. Note that both transmitters know €2, hence they are able
to choose the same codeword v(2) from the first-layer codebook. The index € as well as the
codeword v(2) are also known at the receivers, which highlights that the role of this codebook
is not information transmission but energy transmission. The second codeword used by trans-
mitter i is selected using W; ¢ from the second code-layer, which is a sub-codebook of 2V fi.c
codewords associated to v(€2). Denote by u, (2, W; ) the corresponding codeword in the second

code-layer. The third codeword used by transmitter ¢ is selected using W from the second

code-layer, which is a sub-codebook of NRi.P codewords associated to ul(Q W, ¢). Denote
by s;(Q, W;.c, W; p) the corresponding codeword in the third code-layer. Finally, for transmit-
ting the triplet (2, W; ¢, Wi p), the channel input symbol X ,, at channel use n € {1,2,..., N}
is a deterministic function of the n-th components of the codewords v(£2), u;(Q2, W; ) and

Si(Qv Wi,C) W’L,P)

RR n°® 9102
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3.1.2 A Converse Region

The following Theorem introduces an information-energy converse region.

Theorem 2 Let b be a fized positive real. Then, the information-energy capacity region &, is
contained into the set of all the rate tuples (R1, Ra, B) that satisfy:

Ry g% log(1 + B1SNRy), (15a)
Ry S% log(1 + B2SNRy), (15b)
Ry + Ry §% log(1 + B1SNR; + B2INRy) + %log (1 + %) , (15¢)
R, + Ry g% log(1 + B2SNRy + 81INRy) + %log <1 + %) , (15d)
R, + R, S% log <1 " B1SNR; + Bglﬂj_f;ll;lr\lﬁzﬂﬂNRllNRg)

+% log <1 n B2SNRo + Bllliiz&ﬁllﬁleRﬂNRz) 7 (15e)

2R, + RQS% log <1 + %) + %log(l + B1SNR4 + B2INR;,)
_’_% log (1 n B2SNRs + Blllil%ﬂza—\lf;lﬁQINRllNRg) 7 (15f)

Ry + 2R2S% log <1 + %) + %log(l + B2SNRs + 81INRo)
_’_% log (1 n B1SNR; + BiIiP/Z,llg\If{1fZINRIINR2> 7 (15g)

b<B <o} (1 + SNR31 + SNRag + 24/ SNR31SNR32\/(1 = B)(1 - /32)) ; (15h)

with (81, ) € [0, 12
Proof: The proof of Theorem [2]is presented in Appendix [

3.1.3 An Approximation to the Information-Energy Capacity Region

Using the inner region &£, and the outer region &, described respectively by Theorem 1| and
Theorem the information-energy capacity region &, can be approximated in the sense of
Definition Bl

Theorem 3 (Approximation of &) Let & C Ri and &, C ]Ri be the sets of tuples
(R1, Ra, B) described by Theorem [1| and Theorem [2| respectively. Then,

&, C& C &, (16)
— B +
and for all (Ry, R, B) € &, it follows that ((R1 —1/2)",(R2 — 1/2)7, (B — %) ) €&,

Proof: Following similar steps as in [4], it can be shown that for all (Ri, Ry,0) € &y it

follows that ((Ry —1/2)%,(Ry — 1/2)%,0) € £,. Note also that for all (Ry, R2, B) € &, and for
all (Ry, Re, B') € £, there always exists a tuple (81, 82, AMe, A2e) such that:

RR n°® 9102
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Figure 3: 3-D representation of £,, with parameters SNR; = SNRy = 20 dB, INR; = INR, =
SNR31 = SNR32 =10 dB7 0% = ]., and b = 0.

B— B  2h31hsV/Pi Py (\/(1—ﬂ1)(1—52) —\//\1e/\2e)

Binax 03 + "3, Py + W3, P + 2| hai || hs2 |V PL P2
< 24/SNR31SNR32
~— 14 SNR3; + SNR32 + 24/SNR31SNR32
< 24v/SNR31SNR39
~ 1+ 4+/SNR3:SNR3,
L
-2
which completes the proof. ]

3.1.4 Examples

Consider a Gaussian interference channel with an external EH with parameters SNR; = SNRy =
20 dB, INR; = INRy = SNR3; = SNR3, = 10 dB and o2 = 1. Figure [3| and Figure [4] show &,
and &y, respectively, with b = 0. Figure |5 shows both £, and & in the same axes.

Note that for all B € [0,1 + SNR3; + SNR3s], transmitting information with independent
codewords is enough to satisfy the energy rate constraints. This implies that 81 = B2 = 1 is
optimal in this regime. Alternatively, for all B € [1 + SNR3; + SNR32, Bmax), transmitters deal
with trade-off between the information and energy rate. Increasing B reduces the information
region and and shrinks the information-energy capacity region.

RR n°® 9102
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< 60
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Figure 4: 3-D representation of &, with parameters SNR; = SNRy = 20 dB, INR; = INR;, =
SNR31 = SNR32 =10 dB7 0% = ]., and b= 0.

o
5 60
=
<
«2 40
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Figure 5: 3-D superposition of £, and &, with parameters SNR; = SNRy = 20 dB, INR; =
INR2 = SNR31 = SNR32 =10 dB, O'g = 17 and b = 0.

3.2 Case with Perfect Channel-Output Feedback

The information-energy capacity region & , with b any positive real number, is approximated by
=F
the regions £ (Theorem [4) and &, (Theorem .

RR n°® 9102
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3.2.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

Theorem 4 Let b be a fized positive real. Then, the information-energy capacity region EbF
contains all the rate tuples (R1, Ra, B) that satisfy:

1 1+ (1—A1)SN 1 — A2e)INR; + 2py/SNR{IN
R §*10g( +( 1)S RlJr( 2) Ri+2p SNR, Rl)’ (17&)
2 1+ AgpINR,
1 1+(1—(p+>\1€))INR2) 1 (1+/\1 SNR; + A INRl)
<1 ( ~1 P P , (17b
& =398 1+ A, INR, tgios 1+ A2, INR; (17b)
1 1+(1— N 1 — A1e)INR + 2py/SNRIN
R < *10g( +( /\26)8 Ro —|—( )\1e) Ro + 2p+/SNRo Rg)’ (170)
2 1+ A,INR,
1 1+(1— (p+>\2e))INR1) 1 (1+>\2 SNR; + A1 INRl)
< -1 ( 21 P P 1
Rz =glog 1+ Aoy INR; Toe 1+ A, INR; . (17d)
1 1+ A,SNR; + Ao, INR4
Ri+Ry <=1 ( P P )
P s gl 1+ Aoy INR,
N 1 (1 + (1 — A2¢)SNRy + (1 — A\c)INRy + 2p\/SN7RQINR2> (17¢)
2 %8 1+ A1, INR, ’
1 1+ )\QPSNRl + )\1pINR1 >
<=1
Bt f s g log ( 1+ A, INR,
FEN (1 + (1 = Ae)SNRy + (1 — Age)INR; + 2ps/73NR11NR1> )
g 0% 1+ Mgy INR; ’

b<B < U% (1 + SNR31 + SNR32 + 24/SNR31SNRs2(p + v/ )\16/\25)> , (17g)

where (p, Nip, Aie) € [0,1]> and p+ Nip + Nie < 1, for all i € {1,2}.

Proof: The proof of Theorem []is presented in Appendix [C} [
The achievability scheme used to obtain Theorem[d]is built upon random coding arguments using
rate-splitting [I], block-Markov superposition coding, backward decoding [5], common random-
ness, and power-spliting [3]. Let Wi(t) €{1,2...,2N% ) and Q € {1,2...,2VEE} be the message
index and the common random index at transmitter 7 during the t-th block. Following a rate-
splitting argument, the index W is divided into two sub-indices W-(t} € {1,2...,2NRir} and

i i,

Wl(tc) € {1,2...,2NRic} where R; o + R; p = R;. At the end of block ¢, the message indices

Wi(tc)* and W,(t,l must be decoded by receiver ¢, whereas Wi(tc)v must be decoded by receiver j, and
by transmitter j via feedback. Therefore at the beginning of block ¢, each transmitter possesses
the knowledge of the indices Wl(tg Y and Wétg D In the case of the first block ¢ = 1, the indices

Wl(oc)v and W2(og correspond to two indices assumed to be known by all transmitters and receivers.
The codebook generation at transmitter ¢ follows a four-level superposition coding scheme. The
first code-layer is a sub-codebook of 2V codewords. Denote by v(£2) the corresponding code-
word of the first code-layer. Note that both transmitters know €2, hence they are able to choose
the same codeword v(2) from the first-layer codebook. The index Q2 as well as the codeword v(2)
are also known at the receivers, which highlights that the role of this codebook is not information
transmission but energy transmission. The second code-layer is a sub-codebook of 2V (fi1,c+Fz.0)

codewords. Denote by u (Q, Wl(tg 1), WQ(tg 1)) the corresponding codeword in the second code-

layer. The third codeword used by transmitter ¢ is selected using Wi(g from the third code-layer,

RR n°® 9102
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which is a sub-codebook of 2VFi.¢ codewords associated to u (Q, Wl(fc_vl), Wz(tc_l)) Denote by
u; (Q, Wl(tc_ D,WQ(S 1), Wz(g) the corresponding codeword in the third code-layer. The fourth
codeword used by transmitter ¢ is selected using Wz(tll from the fourth code-layer, which is a sub-
codebook of 2Vfi.7 codewords associated to s; (Q, Wl(tc_ 1), WQ(tCT 1), Wé’g, Wz(t]l) the correspond-

ing in the fourth code-layer. Finally, For transmitting the triplet (€2, Wl(tc_ b, WQ(tc_ D, Wl(tc), Wf?)),
the channel input-symbol X; ,, at channel use n € {1,2,..., N} is a deterministic function of the
n-th components of the codewords v(2), u (Q,Wl(fgl), WQ(fol)), u; (Q,Wl(fgl),Wg(fgl),W,(g)

and s; (W'Y wilcV wil wi).
3.2.2 A Converse Region

—F
The following theorem describes a converse region denoted by &, .

Theorem 5 Let b be a fized positive real. Then, the information-energy capacity region SE 18
contained into the set of all the rate tuples (R1, Ra, B) that satisfy:

1
R, §§ og <1 + ﬂlSNRl —+ BQINRl -+ 2p 61SNR1ﬂQINR1), (18&)
1 61 1-— )SNR1 ) 1 ( 5 >
<7 - —
= < 1+ B 1— DINR, ) T2 108 \I A= p)INR, ), (18D)
1
Ro §§ log <1 + B2SNRs + 51INRs + 2p 5QSNR2511NR2) (18C)
1 Ba(1 — )SNR2 ) < ) )
<glog|l log ( 1 1— p?)IN 1
fie ‘2°g< +1+521— SiNg, ) o1+ A - P)INR ), (189)
1 B1(1 — p?)SNR, )
o
Ry + Ry< D) og|l+ 1+ 6.1 —p2)INR2

1
—|—§ log (1 + ﬂQSNRQ + 611NR2 + 2/) ﬂQSNR251INR2>, (188)

B2(1 — p?)SNRy )
1+ B2(1 — p?)INR4

1
+§ IOg (1 + B1SNR; + B2INR; + 2p ﬂlSNRl,BQINRl), (18f)

1
Ry + R2§§ log <1 +

b<B <o? (1 + SNR3; + SNRas + 2pv/SNR31SNRs2 (py/B1 B2
(=B~ 5), (15)

with (/617B2) p) € [07 1]3
Proof: The proof of Theorem [ is presented in Appendiz[D [ ]

3.2.3 An Approximation to the Information-Energy Capacity Region

. . . . <F . .
Using the inner region QP; and the outer region &£, , described respectively by Theorem | and
Theorem the information-energy capacity region EZF can be approximated in the sense of
Definition [3

RR n°® 9102
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Figure 6: 3-D representation of §E, with parameters SNR; = SNRy = 20 dB, INR; = INR;, =
SNR31 = SNR32 =10 dB7 0% = ]., and b= 0.

Theorem 6 (Approximation of &) Let & C R3 and ?I,j C R3 be the sets of tuples
(R1, Ra, B) described by Theorem |4 and Theorem [5} respectively. Then,

& &y, (19)
—F Bmax * F
and for all (Ry, Rg, B) € &, it follows that ((R1 -, (Re—1)7, <B - T) ) e&;.

Proof: Following similar steps as in [5], it can be shown that for all (Ry, Rg,0) € ?5 it

follows that ((R, — 1)*, (R — 1)*,0) € £} . Note also that for all (Ry, Ry, B) € Ef and for all
(R1,Ry,B') € ﬁj, there always exists a tuple (1, B2, A1e, A2e, p) such that:

B-B - 2h31h32\/ Py Ps (\/(1 —B1)(1 = B2) + p\/ﬁ1ﬂ2>

Bmax - O’g + hglpl + h§2pg + 2h31h32m
24/SNR31SNR32
~ 1+ SNR3; + SNR32 + 24/SNR31SNR32
2v/SNR;5:SNR3,
~ 14 4v/SNR31SNR3z
<1
-2

which completes the proof.

3.2.4 Example

Consider a Gaussian interference channel with feedback and an external EH with parameters
SNR; = SNRs = 20 dB, INR; = INRy = SNR3; = SNR32 = 10 dB and 02 = 1. Figure |§| and
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Figure 7: 3-D representation of EbF , with parameters SNR; = SNRy; = 20 dB, INR; = INR; =
SNR31 = SNR32 =10 dB7O'§ = 1,and b=0
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Figure 8: 3-D superposition of §§ and ?5, with parameters SNR; = SNR, = 20 dB, INR; =
INR2 = SNR31 = SNR32 =10 dB and 0'92) =1.

Figure [7] show &, and &, respectively, with b = 0. Figure [§ shows both &, and &, in the same
axes. Note that for all B € [0,1 4 SNRs3; + SNR3»], transmitting information with independent
codewords is enough to satisfy the energy rate constraints. This implies that 81 = B3 = 1 is
optimal in this regime. Alternatively, for all B € [1 + SNR3; + SNR32, Bmax], transmitters deal
with a trade-off between the information and energy rate. More specifically, increasing B reduces
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Figure 9: Energy rate B of the symmetric two-user Gaussian interference channel with feedback
(dashed line) and without feedback (solid line), with co-located receiver EH, as a function of
Ry with two different values of R; and parameters SNR; = SNRy = 20 dB, INR; = INR, =
SNR3; = SNR32 = 10 dB, 02 =1, and b = 0.

the information region and shrinks the information-energy capacity region.

3.2.5 Comparison with the Case of no Feedback

In this section, the impact of the feedback in terms of information and energy transmission under
the assumption of the symmetric interference channel is quantified through an example. From
the energy transmission standpoint, figure [9] shows the enhancement of the energy transmission
due to the use of feedback when the information rate R; corresponding to transmitter-receiver
pair 1 is fixed.
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Figure 10: The Information capacity region of the symmetric two-user Gaussian interference
channel with feedback (dashed line) and without feedback (solid line), with co-located receiver
EH, with two different values of B and parameters SNR; = SNRy; = 20 dB, INR; = INRy =
SNR31 = SNR32 =10 dB7 0% = ]., and b=10

Appendices

A Proof of Theorem 1

This proof is divided into two parts. The first part consists of the proof of (14al)-(14g). The
second part consists of the proof of (14h]).

A.1 Proof of (14a)-(14g))

Lemma 1 Let B € R be fized, then for all (R1, Ry, B) € &,, the following holds:

RR n°® 9102

Ri<I(X1;Y1|Us, V),
Ro<I(X2;Y2|U1,V),
Ry + Ro<I(X1,U; Y1|V) + 1(X2; Y2|U1, Us, V),
Ri + Ro<I(Xo,U1; Yo|V) 4 I(X1; Y1|Up, Us, V),
Ry + Ro<I(X1,U2; Y1|UL, V) + I(X2, Uy; Y2|Ua, V),
2R + Ro<I(Xy1,Ug; Y1|V) + I(X1; Y1 |Uy, Us, V) + (X2Uy; Y2 |U2V), and
Ry +2Ry<I(X1,Up; Y1|V) + I(X1; Y1|UL, Ua, V) 4 (X2, Up; Y2 |Us, V),
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for all joint distributions

Pyu,v,s, 5, (v, u1,u2, 81, 52) = Py (v) Py, v (u1|v) Puy v (uz2|v) Ps, ju, v (s1|u1, v) Ps, v, v (s2]uz, v).
(21)

Proof: Codebook Generation: Fix a strictly positive joint probability distribution:
Pyu,0,8,8, (v, U, ug, 81, 82) = Py (0) Py, v (u1|v) Poy v (u2|v) Psy o, v (s1|ua, v) Ps, o, v (s52|uz, v), for
all (U,ul,UQ,Sl,SQ) EXINAXy X X X Xy x XA x Xy, Let Rg, RLc, R27c, RLP and R27p be
non negative real numbers. Generate 2V ii.d N-length codewords v(w) = (vi(w), ..., vy (w))
according to

N
Py(v(w)) = [[ Pv(vm()), (22)
m=1
with w € {1,2,...,2¥%2} For encoder 1, for each codeword v(w), generate 2VF1.c ijid. N-
length codewords w;(w,) = (u1,1(w,9), ..., u n(w,i)) according to
N
Py, v (wi(w,D)ow)) = ] Popy (wrm (@, i) om(w)), (23)
m=1
with 7 € {1,...,2VF1.0} For each pair of codewords u;(w,i) and v(w), generate 2VE1.P ii.d.
N-length codewords s1(w,%,j) = (s1,1(w,,5),...,s1,n5(w,i,7)) according to
N
Ps,ju, v (s1(w, i, ) [un (w,),v(@) = [] Psijonv (s1m(w, i, 5) | m(w, 1), om(w)), (24)
m=1

with j € {1,...,2Nf.P} For encoder 2, for each codeword v(w), with w € {1,2,...,2NEs}

generate 2V2.¢ ii.d. N-length codewords wus(w, k) = (ug1(w,k),...,uzn(w,k)) according to
N
Py, v (uz(w, k) |v(w H Py, v (uz,m(w, k) |[vm (w)), (25)
with &k € {1,...,2VF2.0} For each pair of codewords us(w, k) and v(w), generate 2V 2.7 ii.d.

N-length codewords sa(w, k,1) = (s2.1(w, k,1), ..., s2 n(w, k,1)) according to

N
Ps,u,v(s2(w, k, Duz(w, k), v(w)) = [] Peavav (s2.m(w, k&, D)tzm(w, k), vm (@), (26)

m=1
with [ € {1,...,2NR2r ),
Encoding: Denote by (W;,Q) € {1,2,...,2NWictRirl » 112 2N} the message index
and the random message index of transmitter i. Let W; be represented by the message index
Wic € {1,2,...,2NEic} and the message index W; p € {1,2,...,2V P} Transmitter i sends
the codeword r; = Qi (’U(Q), ui(Wi7c, Q), Si(Wi,07 W@p, Q)), where Qi : (Xl QXQ)N X XiN X Xl—N —

XN is a function that transforms the codewords v(2), u;(W; ¢, ), and s;(W; ¢, W, p, Q) into
the N-dimensional vector x;. L .
Decoding: Given the channel output y,, receiver 1 estimates the unique tuple (Q, Wy ¢, W1 p)
that satisfies:

('U(Q)7 UI(WI,C7 Q)a 81(/W\1,Ca /W\17P7 Q)) 'UQ(/WZC, Q)? yl) S TVU151U2Y1 (27)
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where 2 are assumed to be perfectly known by both transmitters and receivers. The set
Téf,fs)l Uy, represents the set of jointly typical sequences of the random variables V, Uy, S1, Uz,
and Y7, with € > 0. Finally, receiver 2 follows a similar decoding scheme.

Error Probability Analysis: an error might occur at receiver 1 if the indices W7 ¢ and
W1, p are not decoded correctly given that 2 is known by both transmitters and receivers. These
errors might arise for two reasons: (i) there does not exist a tuple (€2, Wl,c, Wl,P)a for at least one
Wg’c that satisfy , or (i) there exist several tuples ({2, /V[71,C, /V[71,p), for at least one Wg}c that
simultaneously satisfy . From the asymptotic equipartion property (AEP) [6], the probability
of an error due to (i) tends to zero when N grows to infinity. Consider the error due to (i¢) and
define the event E;j; that describes the case in which the codewords v(€2), u1 (4, 2), s1(4, j, ), and
us(k, ) are jointly typical with y;. Assume now that the codeword to be decoded corresponds
to the indices (i,7,k) = (1,1,1), this is without loss of generality due to the symmetry of the

code. No error is declared when codewords ('U(Q),ul(l, 2),s1(1,1, Q),’U,Q(]%, Q))7 where k # 1,

are the only jointly typical sequences with the received sequence y;. Then, the probability of
error P, due to (ii), can be bounded as follows:

oN Ry ¢

Pe:PI‘ U U Eijk:

(1.5)#(11) k=1

< Z Pr[E;ji] + Z Pr [Eij1] + Z Pr[E;ji]
i#1,5#1,k#1 i=1,j#1,k=1 i#1,5#1,k=1
+ > PriEgl+ >, PriEgl+ > PrEigl. (28)

i#1,j=1,k#1 i#1,j=1,k=1 i=1,j#1,k#1

For all i € {2,3,...,2Nf1.c} the following holds

Pr[(Eill)](i)Pr {(V7 U17 Xla UZv Yl) € T\ng))(l U2Y1:|
= > Pu,x,v(u1, 21 v) Pu,y, v (uz, y; [v) Py (v),

N,e
(v,u1,21 au2ay1)ET\£Ui))(1 UsYy
(N.e)
S ’TVU1X1U2Y1
< 2—N(H(U1,X1 IV)+H(Us2,Y1|V)+H(V)—H(V,U1,X1,Uz2,Y1)—4e)

_ 9~ NUKai|Us V) =4e) (29a)

9= N(H(U1,X:1|V)+H Uz, Y1|V)+H (V) =3e€)

where the probability operator Pr[.] in (a) applies with a probability distribution Py y, x, U,y
that factorizes as Py Py, x,|v Pu,y,|v given that all the codewords x; and wu, are independent
from the output of the channel y;.
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For all j € {2,3,...,2NF1r} the following holds:

Pr(Eljl)(;)Pr |:(V’ Ula le U27 Yl) € T\%\]f;e))(l Ua Y1

= > Px,u,v(@ilus, 0) Py, o, v,y (yius, us, ) Pu,u,v (i usv),

(v,ul,mhy1)€7’yzvff)><1uzyl

< [T 9= N(H(X1|V,U1)+H(Y1|V,U1,Uz)+H(V,U1,Uz)—3e)

— VUL XU Y1

< 9= N(H(X1|V.U)+H (Y1 |V,U1,Uz)+H(V,UiUz)— H(V,U1,X1,Uz, Y1) —4e)
—N(I(X1;Y1|U1,Uz2,V)—4e

— 9~ N{I(X1;Y1|Us,U2,V) ‘)7 (29b)

where the probability operator Pr[.] in (a) applies with a probability distribution Pyy,x,u.y,
that factorizes as Px, v, v Py, ju,u,v Pu,u,v given that the codeword x; is independent from
the output of the channel y;.

For all i € {2,3,...,2N.c} and j € {2,3,...,2NVR1F] the following holds:

Pr(E’ijl)(é)Pr {(Va U17 Xla U2’ Yl) € T\E'](\J[f))ﬁUzYl

= > Py,x,v(un,21|v) Pu,y, v (uz, v, [v) Py (v),

(N,e)
(v,ul,wl,U2,y1)€TvU1x1U2Y1

(N,e)
S ‘TVUleUgyl
< 27N(H(U1,X1 [V)+H(Us2,Y1|V)+H(V)—H(V,U1,X1,U2,Y1)—4e)

:2—N(I(X1;Y1\U27V)—4€)7 (29¢)

27N(H(U1,X1|V)+H(U2,Y1 [V)+H(V)—3e¢)

where the probability operator Pr[.] in (a) applies with a probability distribution Py, x,u,y,
that factorizes as Py Py, x,|v Pu,y,|v given that all the codewords x; and wu, are independent
from the output of the channel y;.

For all i € {2,3,...,2Nf.c} and k € {2,3,...,2NF2.c} the following holds:

Pr(E;) YPr {(V, Ui, X1,U2 Y1) € Typ %vam

= > Pu,x v, v (wi@ius|v) Py, v (y|v) Py (v),

(N,€)
(v7u17w17u27y1)ETVlel Us Yy

(N,e)
< ’TVUleUng

< 9~ N(H(UL,X1,U2|V)+H(Y1|V)+H (V)= H (V,U1,X1,U2,Y1)—4e)

9~ NU(XUaita[V)—1e) (29d)

9= N(H(U1,X1,U2|V)+H(Y1|V)+H (V)—3e)

where the probability operator Pr[.] in (a) applies with a probability distribution Py, x,u,v,
that factorizes as Py, x,u,|v Py, |v Pv given that all the codewords x1, u; and uz are indepen-
dent from the output of the channel y;.
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For all i € {2,3,...,2NF1r} and j € {2,3,...,2VE2.0} the following holds:

Pr(Eij1) 2 Pr {(V Ui, X1,Us, Y1) € TN 0y

= Z Px., v, v, v (®1U2|u1v) Py o, v (Y3 [uav) Pu, v (w1 v),
(v, m’wl,w,yl)ETxﬁleleYl

‘ TN.€) —n(H(Uy,X1,Us|V)+HY1|V)+H(V)—3¢)

VUL X1UxY,
<2 N(H(Ul X1, U2|V)+H(Y1‘V)+H(V)7H(V,U1,Xl,U27Y1)746)

9 NU(X1 Uaii|V)-4) (29)

where (a)the probability operator Pr[.] applies with a probability distribution Py v, x,u,y, that
factorizes as Py, x,u,|v Py, |v Pv given that all the codewords 1 and ugy are independent from
the output of the channel y;.

For all i € {2,3,...,2Nfc} 5 ¢ {2,3,...,2NFur) and k € {2,3,...,2N82.¢) the following
holds

Pf(Eijk)@Pf{(W Ui, X1,Uz,Yy) € T\E'If\][1(€})(1U2Y1

= > Pu,x,us v (wi@ius|v) Py, v (yy|v) Py (v),

(N
(v,u1,21,us2, yl)ETVlel Uavy

‘ TN.e) 9—n(H (U1, X1,Us|V)+H(Y1|V)+H(V)—3e)

VU XU
< 9~ N(H(U1,X1,U2|V)+HM1 [V)+H(V)—H(V,U1,X1,Uz2,Y1) —4e)

:2—N(I(X17Uz;Y1\‘/)—46)7 (29f)

where the probability operator Pr[.] in (a) applies with a probability distribution Py y, x,vu,y
1 1U2 1
that factorizes as Py, x,u,|v Py, |v Pv(v) given that all the codewords a1, u; and uy are inde-
pendent from the output of the channel y;.
Using in , the following holds:
P.< 2N(Rlc—I(X1;Y1\U2,V)+46)2N(R1p—I(X1;Y1|U1=U27V)+46)
+2N(R15+R1P71(X1;Y1 IU2,V)+4€) + 2N(R1C+R2C71(U2,X1;Y1 IV)+4E)

+2N(Rlp+R2671(U21X1;Y1 |U1,V)+4e) + 2N(R1p+Rlc+R2671(U21X1§Y1 \V)+46)' (30)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from (30), reliable decoding holds under the following conditions:

Ry, < ay, (31a)

Rip + Ry < dy, (31b)

Rip + Rae < e, (31c)

Rip + Ric + Rac < g1, (31d)
—Ry, <0, (31e)

~Ri. <0, (31f)
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Ryp < ao, (31g)
Rop + Rae < da, (31h)
Rop + Ry < eg, (31i)
Rip + Ric + Rae < go, (31j)
—Ry, <0, (31k)
—Ra. <0, (311)

where
ar=1(Y1; X1|U1,Us, V), (32a)
di=I(Y1; X1|Us, V), (32b)
e1=1(Y1; X1,Us|U1, V), (32¢)
g1=1(Y1; X1, Us|V), (32d)
az=1(Y2; Xo|Uy,Us, V), (32e)
do=1(Y2; Xo|Uy, V), (32f)
ea=1(Y2; Xo,U1|Ua, V), (32g)
go=1(Yo; X5, U1|V). (32h)

The proof continues by applying a Fourrier-Motzkin elimination process on .
Set Ri, = Ry — Ry, Rap = Ry — Ro. and eliminate Ri,, R, from the set of inequalities to
obtain

Ry — Ry < aq, (33a)
Ry < d, (33b)
Ry — Ric + Rac < ey, (33¢)
Ry + R < g1, (33d)
—Ri+ R <0, (33e)
—Ri. <0, (33f)
Ry — Ry < ag, (33g)
Ry < do, (33h)
Ry — Ro. + R < eg, (331)
Ry + Ryc < go, (33))
—Ro + R <0, (33k)
—Rs. < 0. (331)

Collect the inequalities in that do not include R;. to obtain:
Ry < dj, (34a)
R1 + Rz < g1, (34b)
Ry — Roc < ag, (34c)
Ry < ds, (34d)
—Ry+ 15 <0, (34e)
—Ry. < 0. (34f)
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Also, collect the inequalities in that include R;. with positive coefficients to obtain:

Ry — Roe + Ry < e, (353)
Ry + Ric < g2, (35b)
—Ri+ R <0. (350)

Furthermore, collect the inequalities in that include —R;. to obtain:

_Rlc§07 (36&)
Rl — Rlcgal, (36b)
Ry — Ryc + Rac.<ey. (36¢)

Next, eliminate R;. by summing each inequality in with to obtain:

Ry — Ry < eg, (37a)
Ry < go, (37b)
-R; <0, (37¢)
Ry + Ry — Ro. < ag +eg, (37d)
R1 + Ry < a1 + g9, (37e)
0 <ay, (371)
Ri + Ry < ey +eo, (37g)
Ry + Ry + Roc < €1+ go, (37h)
Ry <ey. (371)
Collect the inequalities in and that do not include Rs. to obtain:
0<ay, (38a)
Ry < dy, (38b)
Ry < do, (38¢)
Ry < g2, (38d)
—R; <0, (38¢)
Ry + Ry < ap + g9, (38f)
Ry + Ry < e +es. (38g)
Collect the inequalities in that include Ry, to obtain:
Ry < ey, (39a)
Ry + Rae < g1, (39b)
Ry + Ry + Ry < e1 + go, (39¢)
—Rs + Rs. < 0. (39d)
Collect the inequalities in that include — Ry, to obtain:
—R5.<0, (40a)
Ry — Ry.<ao, (40b)
Ry — Ry.<ea, (40¢)
Ry + Ry — Rac<a1 + e€2. (40d)
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Note that (38a)) is redundant due to the positivity of mutual information. The inequality (38d))
is redundant with respect to (38¢|), given that:
ga=1(Y2; Xo, U1|V)
=I(Yo; U1 |V) + I(Yy; Xo|Ub, V)
=dy + I(Y2; Uh|V)
>ds. (41)
The inequality (40d]) is redundant with respect to (40bf), as shown hereunder:
ea=1(Y2; X2, U1|U2, V)
=1(Ya; U1|U2, V') + 1(Yo; X2|Uz, Uy, V)
=ay + 1(Y2; U1|Us, V)
2&2. (42)

Eliminate Rs. by adding each inequality from to each inequality to obtain inequalities
not including Ra.:

0 < ey, (43a)

Ry < gy, (43b)

Ry + Ry < e + g2, (43c)
—Ry <0, (43d)

Ry < ap + ey, (43e)

Ry + Ry < az + g1, (43f)
R1 + 2R3 < az +e1 + g, (43g)
0 < ay, (43h)

Ri+ Ry <ai+ex+en, (431)
2R; + Ry < ay +ex+ 41, (43j)
2R + 2R3 < aj + ez +e1 + go, (43k)
Ry < a1 + e (431)

Note that (43a) and (43h|) are redundant due to the positivity of mutual information. The
inequality (43b)) is redundant with respect to (38b]), as shown hereunder:

g1=1(Y1; X1,U2|V)
=I(Y1;Us|V) + I(Y1; X1|Us, V)
=dy + I(Y1; Us|V)
>d,. (44)

The inequality (43c) is redundant with respect to (38f), since

e1=I1(Y1; X1,U0s|U1, V)
=1(Y1;U2|U1, V) + 1(Y1; X1|U1, Ua, V)
=ay + I(Y1;Us|U1, V)
>ai. (45)
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Note also that the inequality (431)) is redundant with respect to (38g)). Furthermore, the inequality
(43k]) is redundant with respect to (38f) and (38g)). Hence, the system of inequalities in can

be simplified as folllows:

Ry < dj, (46a)

Ry < ay + eo, (46b)

Ry < da, (46¢)

Ry < as +eq, (46d)

Ry + Ry < ay + ¢go, (46e)
Ry + Ry < as + g1, (46f)
Ri+ Ry < e +eq, (46g)
2R1 + Rz < a1 + g1 + ea, (46h)
Ry + 2Ry <as+go+e1. (461)

Finally, following the result of [2], the inequalities (46b]) and can be dropped and this
completes the proof of Lemma [ ]

The proof of Theorem [1f continues as follows. Let k € {0,1} be fixed. Consider the following
Gaussian input distribution for transmitter k:

VNN(O,l); Uk NN(O,/\kC); Sk NN(O, )\kp), (47)

where Xy, = V/PpSk + vV PeUk + VAke PV and (Akp, Mie, Ake) € [0, 1]% and Agp + Age + Ake < 1.

By symmetry, it suffices to prove (14a)), (14c), (14e]) and (14f). The choice of the Gaussian input
distribution in yields:

I(X1; Y1|Ua, V))=h(Y1|Us, V) — h(Y1]| X1, U, V)
:% log (2776\/aur[Y1\U27 V]) — %log (27reVar[Y1|X1, Us, V])

1
=5 log (2776 (07 + 31 (1 = A1) PL — h3y Aap P2) )

1
—5log (27re(a§ + hgl/\gppz))

1 (1— Ale)SNR1>
~glog (14 Lo 218
2 e\ T, IR,
I(Xl,UQ;Y1|V):h(Y1|V)—h(Y1|X1,U2,V)

(48a)

:% log <27reVar[Y1\V]) - %log (277@Var[Y1\X1, Us, V])

1
=5 log <27re(af +h2 (1= Xe) P+ h3y(1 — /\QGPQ)>

1
—5 log (Qma(of + hgl/\gpPQ))

1 <1 + (1= A)SNR;y + (1 — )\ge)INRl)

—-1
2 8 1+ Az, INR;

; (48b)
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I(X2; Y2 |Uy, Uz, V)=h(Y2|U1, U, V) — h(Y2|U1, Uz, X2, V)
1 1
=5 log (27reVar[Y2|U1, Us, V]) —5 log <27TeVaur[Y2|U17 Us, Xo, V])

1
25 log <27T€(0’g + h§2)\2pP2 + h%l)qppl))

1
~5 log <27re(ag + h%l)\lpPl))

1 A2, SNRy )
—log (14 —2w2NT2 4
2 Og< T A, INRy /) (48¢)

I(X1,U; V1|U1, V)=h(V1|U1, V) — h(Y1|U1, Uz, X1, V)
1 1
=5 log (27reVar[Y1|U1, V]) ~5 log (27reVar[Y1|U1, Us, X1, V})

1
=3 log (271'6(0% + h%l)\lpPl + h%Q(l — /\Qe)Pg))

1
~3 log (27re(a% + h%z)\gpPg)>

1 14 A,SNRy + (1 — )\ze)INRl)
=21 ( P , 48d
g %8 1+ Mgy INR; (48d)
I(X2,U1; Y2 |Us, V)=h(Y2|Us, V) — h(Y2|Us, U1, X5, V)
1 1
=3 log (27reVar[Y2|U2, V]) ~3 log (27reVar[Y2|U2, Uy, Xo, V})
1
=5 log (27re(o—f + h3x Ao Po + B3 (1 — Ale)P1)>
1
—; log (27re(a§ + h%l)\lpPl))
1 1+ ApSNRy + (1 — Ale)INRg)
==1 ( P 4
g %8 1+ A\, INR; ’ (48¢)

which proves (14a)), (14c) and (14€). Finally, using (48c|), (48d) and (48e]), the proof of (14

follows immediately .

A.2 Proof of (14h)

The choice of the channel input in guarantee that the random variables Y3 1,...,Y3 , are
independently and identically distributed (1_1d) For all n € {1,2,...,N}, Y3, follows a zero-
mean Gaussian distribution with variance B given by

B=E[Y3,]
=E[(h31X1.n + h3aXom + Z3.,)%
=h3,E[X7 ] + h3,E[X3 ] + 2hs1haa B[ X1 n Xo 0] + 03
=h3 Py + h3o P + 2h31h3o E[X1 0 Xo 0] + 03
<h2, Py + h2, Py 4 2h31h3o\/A1e Pi Ao Po + 02

By the weak law of large numbers, it holds that Ve > 0,

: N) _ p _
ngnooPr(|B B|>e)=0. (49)
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Consequently,
lim Pr(B™ >B+¢)=0 and (50a)
N—o0
lim Pr(B™ < B-¢)=0. (50b)
N—oo

From (B0B)), it holds that for any energy rate B which satisfies 0 < B < B, it holds that

~ N p_¢) =
ngnooPr(B <B-¢)=0. (51)

This proves (14h]) and completes the proof of Theorem

B Proof of Theorem 2

Fix an information-energy rate triplet (R, Ro, B) achievable with a given coding scheme (Defi-
nition . Denote by X; and X5 the channel inputs resulting from transmitting the independent
message W7 and W5 using such coding scheme. Denote by Y'; and Y5 the corresponding channel
outputs. The bounds and on R; and Ry are trivial and can be obtained by removing
the interference from the other user and calculating the point-to-point capacity:

N

NRléZ h(Y1n|X2n) — NM(Z1) +o(N) and (52)
n=1
N

NRy<Y  h(Yan|X1n) — Nh(Z2) + o(N). (53)
n=1

Define the following random variables:

Ty = ho1 X1 + Zy, (54)
Ty = h12Xo + 71, (55)
Uy = ho1 X1 + Z,, and (56)
Uy = h12 Xy + Z,, (57)

where, Zi and Z; are real Gaussian random variables with zero mean and variances o7 and o3,
respectively, independent of each other and of (X1, X, Z1, Z3). The outer bound is established
by using a genie aided argument. For all j € {1,2}, by Fano’s inequality, it follows that

NR;=H (M)
<I(M};¥;) +o(N)
<I(X;;Y;)+o(N), (58)

where # tends to zero as N tends to infinity. Using the definition of mutual information,

yields:

N
SZ h(Y1,n) — h(T?2). (59a)
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Consider the genie-aided channel in which a genie provides U; and X to receiver 1, then
I(X1;Y) can be upper bounded as follows:

I(X1;Y1)<I(X1;Y1,Uq,X>5)
=1(X1,U )+ 1(X1,X2|U1) + I(X1;Y1|U4, X )
=h(T1) — h(U1|X1) + h(Y1]U1, X2) — h(Y1|X1,U1, X5)
=h(Ty) — h(U1|X1) + h(Y1|U1, X3) — h(T2| X 2)
(@) , N
<h(T1) — WZ,) + Z h(Y1,n|Ut n, Xom) — W(Z2)
n=1
N
:h(Tl) - Nh(ZQ) + Z h(Yl,n‘Ul,anQ,n) - Nh(Z2)7 (59b)
n=1

where (a) follows from the fact that conditioning reduces the entropy. Consider the genie-aided
channel in which a genie provides U to receiver 1, then I(X1;Y 1) can be upper bounded as
follows:

I(Xl;Yl)SI(Xl;YhUl)
:I(X17U1)+I(X1,Y1|U1>
=h(U,) — h(U1|X1) + h(Y1|U1) — h(Y1]X1,U1)
=h(Ty) — h(U1|X1) + h(Y1|U1) — h(T)
a , N
(S)h(Tl) - h(T2) - h(Zz) + Z h(Yl,n‘Ul,n)
=1N
=h(T1) = h(T2) = N(Zy) + 3 h(Yi,n[U1n). (59¢)

Consider the genie-aided channel in which a genie provides Xo to receiver 1, then I(X1;Y 1)
can be upper bounded as follows:

(@&
< Z h(Y1 | Xon) — h(Z4)
n=1
N
=3 h(Yinl|Xan) = Nh(Z1). (59d)
n=1
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By symmetry, similar bounds can be established for I(Xs;Y2), namely,

[(X2;Yz) gi h(Yam) = B(T1), (59)

I(Xq;Ys) <h(T3) — Nh(Z;) + ZN: h(Yan|Uzny X1.0) — Nh(Z1), (59¢)
=t

I(X2;Y2)<h(T5) — h(T1) — Nh(Z)) + ZN: h( n)s (59g)

I(X3;Y5)< i h(Y2n|Xan) — Nh(Z7). (59h)

The key idea of the proof is to consider a linear combination of the inequalities in , where

all the terms on h(T'1) and h(T5) are removed. Adding (59f) and (59a) and plugging into
yields the first bound on sum rate:

N(R; + Ry) < Z h(Yi.,) Z h(Yon|Usm, X1m) — Nh(Zs) — NW(Z,) + o(N).  (60a)

n=1

Adding (59b)) and (59¢|) and plugging into yields the second bound on sum rate:

N(Ry + Ry) < Zh Ya.n) Z h(Y1n|Utn, X2.0) — NW(Z1) — Nh(Zy) +o(N).  (60b)

n=1

Adding (59¢) and (59g) and plugging into yields the third bound on sum rate:

N(R; + Ry) < Z h(Y1.|U1 ) Z (You|Uzn) — NB(Z,) — Nh(Zy) + o(N). (60c)

n=1

Adding (59a)), (59b)) and (59¢g) and plugging into yields the first bound for the weighted sum
rate:

] =

N(2R; + Ry)< h(Y2,n|U2,n)

hE

1
—N (h(Z,) +

n n

N
h(Yin)+ > h(Yin|Uin, Xom) +
n=1 1
h(Z2) + M Zy) + h(Zs)) + o(N). (60d)

Adding (59¢), (594) and (59¢) and plugging into yields the second bound for the weighted
sum rate :

N N N
N(Ry +2Ry) ZhYQn > h(Yon|Usin, X1.0) + Z (Yi,n|U1,n)
=1 n=1 n=1
(P(21) + h(Za) + 1(Z)) + W(Z,)) + o(N). (60e)
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Hence, the information rates can be upper bounded as follows:

N
NRi < h(VialXan) = Nh(Z) +o(N), (61a)

3
Il
=

M=

NRQ g h(Y27n|X1,n) — Nh(ZQ) + O(]V)7 (61b)

3
Il
_

] =

N
N(R +Ry) <5 h(Yi,) Z h(Yo,u|Usn, X1,0) — Nh(Za) — Nh(Zy) +o(N),  (61c)

3
I
—

Yl,n|U1,n7 XQ,'IL) - Nh(Zl) - Nh(Z;) + O(N)a (61d)

Mz
Mz

N(Ry + Rs) < h(Ya) +

n=1

3

3
Il
—-

Mz

N
N(Ry + Rs) < h(Y1,n|U1,n) Z (Yo nlUap) — Nh(Zi)—Nh(Z;)—i—o(N), (61e)

N N
NQ2Ry + Ry) <Y h(Yin) + > h(Yin|Urn, Xa.0)
N h(Zy) + h(Z ;. 2) + h(Z)) + h(ZQ)) c:(N) (61f)
N
N(Ry +2Ry) < )

3
Il

N N
(Yon) + Y h(Yon|Uszin, X1.0) Z (Y1,0|U1,n)
n=1 n=1
h(Z

h
— N (h(Zy) +

— =

2) + h(Zy) + h(Z3)) + o(N). (61g)

Using assumption (13b)), for a given ey > 0, for any n > 0 there exist Ny(n) such that for any
N > Ny(n) it holds that

Pr [BUV) <B- eN} <. (62)

Equivalently,
Pr[BM >B-ey| >1-n (63)

From Markov’s inequality [7], the following holds:
(B—en)Pr [BM > B —ey| < B[B™). (64)
Combining and yields
(B —en)(1—n) < EBM], (65)

which can be written as
(B —dx) < E[BM), (66)

for some oy > ey (for sufficiently large N).
In the following, for all n € IN, the bounds in and are evaluated assuming that the
channel inputs X , and X5 ,, are arbitrary independent with

AN
Hin = E[Xz,n]v (67)
’)/E,n é Var[Xi,n]a (68)
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forn € {1,...,N} and for i € {1,2}. The input sequence must satisfy the input power constraint
in (4), which can be written, for i € {1,2}, as

1 N 1 N 1 N
2 2 2
— E E[X* — g : + | — E 7 < P
n [ z,n] (N 2 'Yz,n) ( N s ,Uzz,n> X I (69)

n=1

Using these assumptions the following holds:

h(Yin) < = log (ZWeVar[Yi,n])

N~ N~ N [\D\H N
—
o
.5}
/N

/—\

2me(o? + h”% nt h”'y] n)) (70a)

h(ifi,n|Ui,n7Xj,n) < 27T6Va1‘ zn|Uz an] n])

1
< = log (QﬂeVar hiiXin + Zin, Ui n]) ~5 log (QweVar[Uim])
1 (0 V2h2, +01~yl2h?l+0120?)
T2 V212, + o7
“m ' .
= log + 3 10g(27reoi20?), (70b)
1
h(Yin|Uin) < 3 log 2meVar|Y; ,|U;, n])
1 1
< 3 log (27reVar Yin, Uinl] ) — = log <27reVar[Ui’n])
1 log o3vihi 4+ oy b3 + h2 h]ﬂ, WVon + 0202>
9 272
2 Vi b+ 0’
LL’Y’L n hu’é].n + 71.7173277,};%}6; 1
<= log % ) %% + - log(2mecia?),  (70c)
1+ 5 Lo gt 2
Finally, plugging in , it yields:
N 2
1 h
NRy <Z§log (1—1—71 11) +o(N), (71a)
n=1 1
NRy < i Liog (14 2ol |y (71b)
2 ~N —~ 2 g 0_2 ’
h2 72
N 2 .2 2 .2 N P32,
hi17vi. P2, 1 o2
N(Ry + Ry) < ) _log (1 + 2 + 2 +> glog [ 1+ 1’17” + o(N), (71c)
n=1 n=1 + o2
1
h2 ,72
N 2 9 2 o N 1171,n
h3oYam | D217 m 1 o2
N(Ry + Ry) < ) log (1 =t = | > slog | 1+ — | + (N), (71d)
n=1 2 2 n=1 1+ 0’%
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2 2 2 2 2 2 12 ;2
P11, hi272.n M.nV2,nhi2h2:

N 1 P + o + = )
N(Ry + Ry) <Y glog {1+ —= N (71e)
— 14 Jnl2
N h§2’yg,n + h2171‘n + ’Yl,n’Y%,nh?zhgl
+> Liog [ 14 —2 o3 717 +0(N)
B g 2 ,
= 14 Lomliz hi,
N iy h2,~2 h2,72
NQ@2Ry+Ry) <y Slog | 1+ "77 + Z log (1 by 2 j’") (71f)
ot 1+ a1V i = o5 oh
N 1 h2272,n + hgl’YlQ,n + '712,7172 wh12h§1
p) p) 5 3
+ Z 5 IOg 1 + ’2 & ~2 K2 17 + O(N)a
n=1 1+ 72‘;2 12
1

Y ) Mk
N(Ry +2R) <Y slog | 1+ ——2—— | + ) log (1+ = LA 2 ") (71g)

2 h2273
n=1 1 120722 n=1 2 2
1
N hivim | Pi2Yim | Vi Yanhizhd,
1 2 + 2 + 252
+ g §log 14+ 2 i o 7% + o(N).
ne—1 1+ 1n 21

The expectation of the average received energy rate is given by
N
N > Y,
n=1
LN N
=03 +hi (NZ Vem + 11 ) + iy ( Z Von + Mo )
1 n=1

N
+2h31hss— Z B1nfb2 (72)

E[BM] =E

Using Cauchy-Schwarz inequality, the energy rate in can be upper-bounded as follows:

N

1
E[B(N)]<U§+h:2z1<N ('71n+M1n)>+h32<N272n+H2n)>

n=1

N 1/2 X 1/2
+2h31h32 ( Z ) (N Z M§n> . (73)
n=1

Combining and yields the following upper-bound on the energy rate B:

N N
1 1
R (5 VE RV R FEENCS wENVER)
n=1

n=1

L 1/2 L 1/2
+2hs31h3s (N Z U%,n) (N Z M%,n) +ON- (74)

n=1 n=1
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In order to obtain a single-letterization of the upper-bound given by constraints (71 and (74),
define also

N
| .
p’f = N Z,uz?,u (&S {1a2}7 (75)
n=1
Al o
2 &2 2 .
Yi = N;%’,m (S {172}7 (76)

Using these notations, the input power constraint in (125) can be rewritten as
V2442 < P, with i€ {1,2}. (77)

By the concavity of the mutual information, applying Jensen’s inequality to the bounds in
yields in the asymptotic blocklength regime:

1 2h
R < - log (1 + 11) , (78a)
2 01
1 2h
Ry < - log (1 22 22) , (78b)
2 02
h2 Y3
h2 K242\ 1 o2
R1+R2<10g<1+ 11%4— 12272)+710g 1+ —=2— |, (78c¢)
0'1 09 2 14 h122'Y2
I
h? Y1
12 ~2 B2 ~2 1 ;12
R1+R2<10g(1+ 202 4 2131)+710g 14— : (784)
o5 g5 2 14+ 212'71
2
h?l;lz + hm’Yz + ’Yl’Yzhuéhm
Ri+Ry<=log| 14 -= o 710 (78¢)
14+ 71h21
1 h§22’)'§ + h21’Yl + ’Y1'Y22h%2h§1
Z1 1 93 a3 oioj
+ 9 og + - ’Yz nh12 )
h?l’\ff
o7 h3 hiyv3
2Ry + Ry < Slog [ 1+ —2— | +1og (1 pun 1”1 + L}“‘) (78f)
1+ L’Yl 0’1 o1
hzz"/z + h21’Y1 + "/172h12h21
+1 log 1 + 0'2 0'2 0'10'3
2 14+ "/2}1212 ’
hgf/é
1 o2 h2 h2,~v?
Ri+2Ry < slog [ 14+ —2— | +1log (1 n 2272 n 21271) (78g)
2 14+ 1272 0'2 05
i
h11’71 + 12’72 + 7172h%2h31
+110g 14 of of oio3
2 14 710221 ’
2
and the upper-bound on the energy rate yields
B <03+ 03, (V) + p7) + (03 + 113) + 2haihaz| ] |pel. (78h)
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To sum up, it has been shown so far that, in the limit when IV tends to infinity, any information-
energy rate triplet

(R1,R2,B) € Eg\IFB can be bounded by the constraints in for some 71, v2, p1, po satisfy-
ing . Let Rp(v1, V2, 141, 42) denote the set of information-energy rate triplets satisfying
for some 71, v2, p1, 2 such that is true. Thus, it holds that

& C U R (71,725 o1, pi2)- (79)
0K+,
0<Ys +1u2< Py

In this union, it suffices to consider uy > 0, po > 0, and 1, 72, g1, and ps that saturate the
input power counstraint (i.e., holds with equality). Thus,

° 2 2 2 2

gb U Rb(71772?/1‘17/'62)g U Rb(717’727/”'17/’02)' (80)
0T +p <Py o =P
0<V3+15<Ps Vi+us=P2

Let B; € [0,1] be defined as follows:

2 2
A P, — .

= L= C 1,2}. 1
Bs P B i€ {1,2} (81)

With these notations, any region Ry(72,73, i1, f42) in the union over all (u1, po,y1,72) that
satisfy v# + p? = Py and v5 + p3 = P, can be rewritten as follows:

1 B1 P h?
Ry < 5 log (1 + o 012 11) ) (82a)
1
1 Pyh3
Ry < 5 log (1 + %) ) (82b)
2
h3,B2P>
h%161P1 h%2,82P2 1 o2
R+ Ry Slog(l—i— = + o2 >+§log 1+W ) (82c)
h3 1Py
h2,BsPs  hZ, B P 1 =
Ry + Ry <1og(1+ 2255 2 21% 1)+710g L+ — (82d)
o3 o5 2 1+ 21021 1
2
1 11511131 + 12;312P2 + /31/32P;%P;2h12h21
R+ Ry < B log | 1+ . B1P1h21 (82e)
2
1 22522132 + 210521})1 + 5152P;5§2}112h21
tglos| 1+ | B ’
man ’ WP B2yPaP:
2Ry + Ry < = log 1+# +log (14 MOy | hipfaly (82f)
,BIPI o2 o2
1 + 21 1 1
2
2252192 + 3131131 + 3132P1P2h12h21
- ‘72 ‘72 ‘71‘72
+2 log | 1+ 1+ szzh ’

1
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h§262P2

1 o2 h3,B2Ps  h3,51 P,
Ri+2Ry < Jlog | 14+ ——F5— —|—log<1+ 22%2 2 4 21% 1) (82g)
2 1+ 1252 2 o3 03
1
1 1105111)1 + ?20512132 + 5152P01%13;§luh§1
+§10g 1+ 1+ ,Blplhzl )
2

B < 034+ h3 P+ b3, Py + 2h31h32\/(1 —B1)Pi(1 — B2)Ps, (82h)
B 20 (82i)

for some (1, 82) € [0,1]2. Hence, such a region contains all information-energy rate triplets
(R1, Ra, B) satistying the constraints of Theorem 2 and this completes the proof of Theorem 2.

C Proof of Theorem 3

This proof is divided into two parts. The first part consists of the proof of (17a)-(174). The
second part consists of the proof of (17g]).

C.1 Proof of (17a])-(17f)

Lemma 2 For all (Ry, Ra, B) € &,, the following holds:

R <I(U,X1,UsYi|V), (83)
Ry <I(Uy;Ys|U, X5, V) + I(X1; Y1|U1, U2, U, V), (84)
Ry <I(U, X5,U1; Y2|V), (85)
Ry <I(UpN1|U, X1, V) 4+ I(X2; Y2 |Uy, Uz, U, V), (86)
Ry + Ro<I(X1; Y1|U1, U, U, V) + I(V, Uy, X1; Y1), (87)
Ry + Ry<I(X3;Y5|U1, U, U, V) + I(V,Us, X1; Y1), (88)

over all joint distribution: Pyyu,u,s,s,(V, U, u1, Uz, S1,S2) =
PV(U)PU|V(U|U)PU1|UV(U1|U7U)PU2|UV(U2|U7U)Psl\UlUv(31|U1,U7U)Psz\UzUv(32|U2,U7U)~

Proof: Codebook Generation: Fix a strictly positive joint probability distribution:
Pyuu,u,s, s, (v, u,u1, U2, 81, 52) = Py (v) Pyjv (ulv) Py, oy (u1|u, v) P, o,y (uz|u, v)
Ps, v, v (21|u, u1,v) Ps,juu, v (S2]u, uz, v), for all (v, u, uy, uz, v1, 22) € X1N&Xy X (X1 NAL) x Ay x
Xo x Xy x Xs. Let Rg, Ri ¢, Ro,c, R1,p and Ry p be non-negative real numbers. For transmitter
1, generate 222 ii.d N-length codewords v(w) = (vi(w), ..., vy (w)) according to

=

Py(v(w)) = | ] Pv(vm(w)), (89)
m=1
with w € {1,2,...,2V%=} For each codeword v(w), generate 2NV(Fr.c+F2.c) jjid. N-length
codewords u(w, s 7‘) (u1 (w, s,7),...,un(w,s,r)) according to
N
Pyv (u(s,r,w)|v(w H Pyy (um (s, 7,w)vm(w)), (90)
m=1
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with s € {1,...,2NF1c}and r € {1,...,2VF2.0}. For transmitter 1, for each codeword u(w, s,7),
generate 2Vf.c iid. N-length codewords ui(w,s,r, k) = (u11(w,s,rk),..., uin(w,s,7k))
according to

Py (w1, k)5, ), 0(w)) = ﬁPU1|UV(u1,m<s,nk,w>um<s,r,w>,vm<w>), o)

with k € {1,...,2NF1.c}. For each tuple of codewords (v(w), u(w, s,r),u1(w, s,,k)), generate
2NELP iid. N-length codewords s1(w, s, 7, k,1) = (s11(w,s,7,k,1),...,s1 n(w,s,7 k1)) accord-
ing to

P51|U1UV (sl(w, S, T, kv l)|u1(w7 S, T, k)vu(s’ T)v”(‘”)) =
N
H P51|U1UV (sl,m(wy s, T, ka l)‘ul,m(wa s, T, k)u um(w, 37r),Um(W)), (92)

m=1

with [ € {1,...,2NFur},
For encoder 2, for each codeword u(w, s, 7), generate 2V f2.¢ i.i.d. N-length codewords uz(w, 5,7, )
= (ug,1(w, s,7,q),...,u21(w,s,r,¢q)) according to

N

PU2|UV(u2(87T7qa )|U(S ’I" H PU2|UV(U2,’m(w757r7 q)|um(w7svr)avm(w)>7 (93)
with ¢ € {1,...,2¥%2.¢} For each tuple of codewords (v(w),u(w,s,r), usz(w,s,r,q)), gener-
ate 2NVR2.7 iid. N-length codewords s2(w,s,r,q,2) = (s21(w,s,7,¢,2),...,5 N (w,s,7,q,2))

according to

PSQ\UQUV(SZ(Wa s, 1,49, Z)|’LL2(OJ, s, T, q)7 ’LL(UJ, S, T)a ’U(UJ))
N

= H PS2|U2UV(32,T,1(o.),8,7”,q,z)|uQm(o.),s,r7 q),um(w7s7r),vm(w)>, (94)
m=1
with z € {1,...,2NF2r},
Encoding: Let W(t) be represented by the message index W(t € {1,2,...,2Nc}l and the

message index W 2 € {1,2,...,2NRir} The message index W( ) must be reliably decoded at
receiver i and the message mdex Q® is known by both transmltters and receivers. The index
Wl(tc D must be reliably decoded by transmitter j (via feedback) but not necessarily by receiver
i.

Consider Markov encoding over T blocks. At encoding step ¢, with ¢ € {1,2,..., T}, transmitter

1 sends the codeword w =0 ((v(t (Q),u (Wl(fgl)7 Wz(fgl), Q) , Uy (VVl(’tc_l)7 Wéfgl), Wl(%, Q),

N (W1( c ), WQ(tC R Wl(%, Wl(tl)g, Q) ), where 6 : XV x (X1 UX2)N x X xXlN — XlN is a function
that transforms the codewords v*) (Q), u (Wl(fc_l), WQ(fc_l), Q) , U (Wl(fc_l), Wéfgl), Wl(%, Q), and

(W(f 2 W(t b Wl(f()j, Wl(’tl)p, Q) into the N-dimensional vector wgt). The indices Wl(oc), =
WI(TC) = s* and Wz(og = Wz(%) = r*, and the pair (s*,7*) € {1,2,...,2Nfo} x {1,2 ... 2NR20}

are pre-defined and known by both receivers and transmitters. Transmitter 2 follows a similar
encoding scheme.
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Decoding: Both receivers decode their message indices at the end of block T in a backward
decoding fashion. At each decoding step ¢, with ¢ € {1,2,...,T}, receiver 1 obtains the indices

(Wl(’T(;t), Wz(’T(;t), Wl(?;;(tfl)) from the channel output y;.

The tuple (W\l(fg_t),I//V\Q(%_t),Wl(;_(t_l)) is the unique tuple that satisfy:

((0(62), 20 (00, WL, L) g (00, T, WA, w0y
(T —t) T37(T—t T—(t—1 T—(t—1 T (T—t) 77 (T—t T—(t—1
s (Q(t)’ Wl(,c )7 WQ(,C )7 Wl(,c ( ))’ Wl(,P ( ))) s <Q(t)’ Wl(,c )’ WQ(,C )’ WQ(,C ( ))) ,
T—(t—1 N,e
yi ))) € T\E'UUi.SHUzYN (95)

where Wl(,ch(t*l)) and WQ(,TC*(F”) are assumed to be perfectly decoded in the previous decoding
step t — 1. The set 7-\51;12 s,U,y, represent the set of jointly typical sequences of the random
variables V,U, Uy, S1,Us, and Y7, with € > 0. Finally, receiver 2 follows a similar decoding
scheme.

Probability of Error Analysis: An error might occur during encoding step ¢ at transmitter

1 if the index Wétg Y is not correctly decoded. Define the event Ej that describes the case

in which there exist another message index k that satisfy: (v(Q(t)),u (Q(t), Wff52)7W2(fc_2)),
t—2 t—2 t—1 t—2 t—2 t—1 t—1

Uy (Q(t)vwf,c )7W2(,C )7W1(,C )79)’ 51 (Q(t)’Wl(’C )awz(,c )7W1(,c )’Wl(’P )>’

Us (Q(t), Wl(fEQ), Wz(fc_m, k))e T‘Sggsl%yﬁ with ¢t € {2,3,...,T} and WQ(fCTQ) is assumed to be

perfectly decoded in the previous block ¢ — 1. Then, the probability of event E} can be bounded
as follows:

Pr(Ey) YPr [(V, U, U1, X1,Us, Y1) € T woums

= E Py (v)Pyu, x, v, v(W w1, T1,Ys|v) Puy v (uslv),
(N, €)
(v:uaulamlvyl)ETVUélxluzyl
< |7 o= N(H(U,U1,X1,Y1|V)+H (U2 |V)+H(V)~4e)
— VUU; X1U2Y1

< 9= NHUUL, X1, Y1 |[V)+H (U2 |V)+H(V)=H(U,U1,Uz, X1,Y1) —4e)
< 9= N(HUUL,X1,Y1|V)+H(Us|V)~H(U,U1,U2,X1,Y1|V)—4e)
— 9~ NUI(U,U1,X1,Y1;U2|V)~4e)

:2_N(1(Y1§U2‘X17V)_46)’ (96)

where the probability operator Pr[.] in (a) applies with a probability distribution Pyyu,x,u,v,
that factorizes as Py Py u, x,,v, Pu, v given that all the codewords us are independent from
the output of the channel y,. The error probability becomes arbitrarily small (as N goes to
infinity) if

RQC SI(U27;Y1|X1aU7V)' (97)
An error might occur during the (backward) decoding step ¢ if the indices Wl(’T(;t),WQ(’T(;t) or
Wl(?;g_(t_l) are not decoded correctly given that the indices Wl(’:g_(t_l)) and Wé?;v_(t_l)) were cor-
rectly decoded in the previous decoding step ¢ — 1. These errors might arise for two reasons: ()

there does not exist a tuple (W\fz_t), W\éfg—t), Wl(?;;(t_l)) that satisfies (95), or (ii) there exist
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several tuples (sz_t),Wéz_t)7Wf?_(t_1)) that simultaneously satisfy . From the asymp-

totic equipartition property [6], the probability of error due to (i) tends to zero when N grows to
infinity. Consider the error due to (i7) and define the event E,.; that describes the case in which
the codewords v(Q®), u (Q(t), $,7) U1 (Q(t), 8,7, Wl(z_(t_l))) , 81 <Q(t), 8,7, Wl(z_(t_l)), l), and
Ug (Q(t)7 s, 7, Wz(’TC_(t_l))) are jointly typical with ygT_(t_l)) during decoding step ¢t. Assume now
that the codeword to be decoded at decoding step t corresponds to the indices (s,7,1) = (1,1,1).
This is without loss of generality due to the symmetry of the code. Then, the probability of error
due to (i7) during decoding step ¢, can be bounded as follows:

Pr U Eol

(s, 0)#(1,1,1)

< Y PrlEal+ Y PrlBal+ Y PrlBy)

s#1,r#1,l1#1 s#1,r#1,l=1 s#1,r=1,l#1

+ Z Pr [Esrl] + Z Pr [Esrl] + Z Pr [Esrl]
s#1,r=1,l=1 s=1,r#1,l#1 s=1,r#1,l=1

+ ) PrlEal, (98)
s=1,r=1,l#1

For all s € {2,3,...,2NF1.c} the following holds
P (a) (N,e)
1[Es1] =Pr|(V,U, U1, X1,U2,Y1) € Tyur, x,vm,

- Y. Pv(®)Puu, x, vs v (u,ur, @1, uzlv) Py v (ys|v),
(v,u,ul,w17u27y1)€7—\§lz\,7r’1,€7)1xl Us Yy

(N:C)
< ’TVUUle UaY,

< 9= N(H(UU1,Us, X1|V)+H(Y1|V)+H(V)—H(U,U1,Uz,X1,Y1) —4e)

2—N(H(U,U1,U2,X1\V)+H(Y1|V)+H(V)—4e) (993,)

— 9~ NI(U,U1,U2,X1;Y1|V)—4e)
— 9~ NI (U Uz, X1;Y1|V)—4e)
— )

where the probability operator Pr[.] in (a) applies with a probability distribution Pyuyu, x,u.y,
that factorizes as Py Py u, x,u,,|vPy;|v given that all the codewords w,u;,x1, and uy are
independent from the output of the channel y, . For all r € {2,3,...,2VF2.c} the following
holds

Pf[Elrﬂ@Pf{(Van Ui, X1,U2, Y1) € Type xomn
= > Py(v)Puu, x,Us v (W a1, @1, u2|v) Py v (1 |v),

(N,€)
(v,u,ur,z1 auZayl)ET\/Ulel Us Yy

9= N(HU,Ur,Us, X1 |V)+HY1|V)+H(V)—4e) (ggb)

(N,e)
< ‘TVUU1X1U2Y1
< 9= N(H(UU1,U2, X1 |V)+H(YV1|V)+H(V)—H(U,U1,Uz,X1,Y1) —4e)
— 9= NI (UU1,U2,X1;Y1|V) ~4e)
— 9~ NI (U,U2,X1;¥1|V)~4e)

where the probability operator Pr[.] in (a) applies with a probability distribution Pyyu,x,u,v,
that factorizes as Pv Py u, x, u.,|vPy;|v given that all the codewords w,u;,®1, and ug are
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independent from the output of the channel y,. For all s € {2,3,...,2Vf1.c} and
re{2,3,...,2NR2c} the following holds

Pr{Ey ] 2Pr {(V, U, U, X1, U, Y1) €T xuv,

= Z PV(U)PU,UI,XI,UQ,\V(U,ula $17U2|’U)PY1|V(?J1|”),

(N, €)
(vvuaulamlvu%yl)ET\/UUl X1UyY]

(IV,€)
= ’TVUUleUng

< 27N(H(U,U1,U2,X1|V)+H(Y1|V)+H(V)7H(U7U17U2,X1,Y1)746)

2—N(H(U,U1,U2,X1\V)+H(Y1\V)+H(V)—4e) (990)

— 9~ NI (U,U1,U2,X1;Y1|V)—4e)
— 9= NU(UU2,X1;Y1|V)—4e)
= b

where the probability operator Pr[.] applies in (a) with a probability distribution Pyyu,x,u,y,
that factorizes as Py Py u, x, u.,|vPy;|v given that all the codewords w,u;, 1, and ug are
independent from the output of the channel y;. For all s € {2,3,...,2Vf1.c} and
1€{2,3,...,2N8Lr) the following holds

Pr[ESU](é)Pr {(V7 Uv Ulv X17 U27 Yl) € T\S']l\][’(;iX1U2Y1

= > Pyv(v)Puu, x, 0. v (W t1, @1, us|v) Pyy v (3, 0),

(N, €)
('U7u7u1,mlvu%yl)ET\/UUle Us Yy

(IV,€)
< ”TVUleley1

< 27N(H(U,U1,U2,X1|V)+H(Y1 I[V)+H(V)—H(U,U1,Uz,X1,Y1)—4e)

2—N(H(U,U17U2,X1|V)+H(Y1|V)+H(V)—4e) (99d)

— 9~ NI (U, U1,U2,X1;Y1|V)—4e)
— 9~ NI(U,U2,X1;Y1|V)~4e)
= b

where the probability operator Pr[.] in (a) applies with a probability distribution Pyuyu,x,u.y,
that factorizes as Py Py u, x, u.,|vPy;|v given that all the codewords w,u;, 1, and ug are
independent from the output of the channel y,.

For all » € {2,3,...,2NF2c} and | € {2,3,...,2VNF1.r} the following holds

Pr[Elrl](i)Pr |:(V7 Uv Ulv le U27 Yl) € T\E'](\JhljinUzYl

= > Pv(v)Puu, x,vs v (W1, @1, us|v) Py, v (3, |v),

(N,€)
('U;uv'ufl7m1;u2;y1)€TVUU1X1 Us Yy

(Nse)
= ‘TVUUleUng

< 9~ NHU,UL,U2,X:1|V)+HY1|V)+H(V)—H(U,U1,U2,X1,Y1) —4€)

9= N(H(U,U1,U2, X1 |V)+H(Y1|V)+H(V)—4e) (99€)

— 9~ NUI(U,U1,U2,X1;Y1|V)—4e)
— 9~ NUI(UUz2,X1;Y1|V)~4e)
= )

where the probability operator Pr[.] in (a) applies with a probability distribution Pyyu,x,u,y,
that factorizes as Py Py u, x, u.,|vPy;|v given that all the codewords w,u;, 1, and uy are
independent from the output of the channel y;.

For all s € {2,3,...,2Nfe} e {23 ... 2NF2¢) and | € {2,3,...,2VF1r) ] the following

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 41

holds
(a) (N,e)
PI‘[ESN]—PI' (V,U,Ul,Xl,Ug,Yl) S TVUU1X1U2Y1

= Z Py (v)Pyu, x, U, |v(w w1, 1, uz|v) Py, v (y,|v),

(N, €)
(v,u,uq aw17u27y1)ETVUU1X1U2y1

(IV,€)
< ’TVUUleUzYl

< 9~ N(H(U,U1,U2,X1|V)+HY1|V)+H(V)~H(U,U1,U2,X1,Y1)~4e)

9= N(H(U,ULUz, X1 [V)+H(Yi[V)+H (V) —4e) (99f)

— 9~ NI (U,U1,U2,X1;Y1|V)—4e)
— 9~ NI (U Uz, X1;Y1|V)—4e)
= )

where the probability operator Pr[.] in (a) applies with a probability distribution Pyyu,x,u.y,
that factorizes as Py Py u, x, u.,|vPy;|v given that all the codewords w,u;, 1, and ug are
independent from the output of the channel y,.

For all [ € {2,3,...,2NVF1.P) the following holds

PrE] WP (V.U UL X0, U, Y0) € T o,

= Z Py (v)Pyu, u, v, v(w u,u, Y, |v) Px, v (x1|v),
('U;'U'uul »L1 ,u2:y1)€T\§][\55)1 X1UgYy

(NV,€)
S )TVUU1X1U2Y1

< 27N(H(U,U1,U2,Y1 |[V)+H(X1|V)+H(V)—H(U,U1,U2,X1,Y1)—4e€)

9= N(H(U,U1,U2,Y1|V)+H(X1|V)+H(V)~de) (99g)

— 9~ NI (X1;UU1,Uz,Y1|V)—4e)
— 9= NI(X1;Y1|U,U1,Us,V) —4e)
= b

where the probability operator Pr[.] in (a) applies with a probability distribution Pyyu, x,u.y,
that factorizes as Pv Py u, vu,,y,|v Px,|v given that the codewords x; is independent from the
output of the channel y,. Plugging into yields:
P, < 9N (Ric+R2c+Rop—I(U,X1,Uz;Y1|V)+4e) + N (Ric+Rec—1(U,X1,Uz;Y1|V)+4€)
1 9N (Ric+Rip—I(U.X1,U2Y1V)+4€) | oN(Ric—I(UX1,U2:V1|V)+4e)
4 9N (Rac+Rip—1(U.X1,U2:Y1|V)+4e) 4 oN(Rac—I(UX1,U2:Y1|V)+4e)

+ 2N(R1P—I(X1;Y1\U,U1,U27V)+45). (100)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from and (|100)), reliable decoding holds under the following conditions:

Rac < I(Uz; Y1|X1,U, V), (101a)
Rip < I(X;1|ULL Us, UL V), (101b)
Ric + Roc + Rip < I(U, X1, U Y1|V), (101c)
Ric < I(U1;Y2|X2,U, V), (1014d)
Ryp < I(X2; Yo Uy, Us, U, V), (101e)
Ric + Rac + Rop < I(U, X2, Up; Ya|V). (101f)
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The proof continues by applying a Fourrier-Motzkin elimination process on (101)). Set Rip =
101)

Ri — Ric, Rop = Ry — Roc. Eliminate Ryp, Rop from the inequalities in ( to obtain:
Roc < a, (102a)
Ry — Ric < as, (102b)
Ry + Roe < as, (102c¢)
Ric < by, (102d)
Ry — Roc < ba, (102e)
Ry + Ry < bs, (102f)
—Ric <0, (102g)
—Ry + Ric <0, (102h)
—Ryc <0, (102i)
—Ry 4 Ryo < 0. (102j)

Collect the inequalities in (102]) that do not include B¢ among the above inequalities to obtain:

RQC S ay, (103&)
Rl + RQC < as, (103b)
Ry — Roc < b, (103c)
—Rye <0, (103d)
—Rs 4+ Ry <0. (1036)
Collect the inequalities in (102)) that include Ry with positive coeflicients to obtain:
Ric < by, (104a)
Ry + Ric < bs, (104b)
—Ri+ Ric <0. (1040)
Collect the inequalities in (102)) that include Ri¢c with negative coefficients to obtain:
R1 — RlC’ S as, (105&)
—Ric <0. (105b)

Eliminate Ry¢ by adding each inequality from (104)) and each inequality from (105]) to obtain:

Ry < b1 + as, (106a)

Ry < b3, (106b)

Ry + Ry < by + as, (106¢)
Ry <0, (106d)

Roc < ay, (106e)

Ri+ R sc < as, (106f)
—Rs+ Ry <0, (106g)
Ry — Roo < by, (106h)
—Rac < 0. (106i)
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Collect the inequalities in (106]) that do not include Rs¢ to obtain:

R1 < by + as, (107&)
Ry < b3, (107Db)
RQ + R1 S bg + as, (1070)
—R; <0. (107d)
Collect the inequalities in (106) that include Ry with positive coefficients to obtain:
Roc < an, (108a)
—Rs + Rac <0, (108Db)
Ri+ R oc <as. (1080)
Collect the inequalities in (106]) that include Ry with negative coefficients to obtain:
Ry — Roc < b, (109a)
—Rye <0. (109b)

Eliminate Roc by adding each inequality in (108) with each inequality in (109)) to obtain:

Ry < as, (110a)

Ry < b1 + as, (110b)

Ry < b, (110c)

Ry < ay + bo, (110d)

Ri 4+ Ry < b3, (110e)

Ri+ Ry < ag + bs. (110f)

This completes the proof of Lemma [ ]

The proof of Theorem [4| continues as follows, let k € {0,1} be fixed and consider the following
Gaussian input distribution for transmitter k:

V ~ N(0,1); U~ N(0,p); U ~N(0,\e); and S ~ N (0, Agp), (111)

where X = VP.U + \/Pkap + VPLUi + VAre PV and (p, )\kp7>\km>\ke) S [0, 1]4 and p+
Aip + Ake + Age < 1. By symmetry, it suffices to prove (L7a)), (17b]) and (17¢|). The choice of the
Gaussian input distribution in Lemma [2] yields:

I(U,X1,Us; V1|V) = h(Y1|V) — h(V1|U, X1, Us, V)
1 1
3 log (27reVar[Y1|V]> ~3 log (27reVar[Y1|U, X1, Us, V])

1
5 log (2m(a§ + (1 = Ae)PLh2, + (1 — Aze)chfz))

1
~5 log <2ﬂ'e(o’f + Aszgth))

(1 + (1= A1e)SNRy + (1 — Ao ) INR; +2p SNRlINRl) (112a)
1+ A, INR; ’

1
2
5%
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which proves (17a). With the same power setting in (L11]), the following holds
I<U17 YVQIUa XZ, V) = h(}/2|U7 X2a V) - h(Yv2|U7 X27 U17 V)
1 1
=3 log (27reVar[Y2|U7 Xo, V}) —5 log (27?6\73,r[Y2|U7 X5, Uy, V])

1
=3 log (27re (U% +(1—=(p+ )\16))P1h§1) )

DO =

- —log (27re(a§ + Alpplhgl))

1, (1+(1- (p+>\1€))INR2>
= —log ( T+ A1, INR, ,and (112b)
I(XlaY1|U7 U17 U27V) = h(Y1|U7 Ulv U27 V) - h(Y1|U7 U17 U27X17 V)

[NV}

—_

1
= —log (27reVar[Y1|U, Uy, UQ,V]) ~3 log (27reVar[Y1|U, U1,U2,X1,V]),

[\V]

log (27re(a’f’ + MpPh?, + AgpP2h§2))

log (27re(a§ + A2pP1h§1)>

. (1 + A1pSNR; + AQPINRl)
1+ A\ INR; '

N~ N~ N

(112¢)

This proves (17b)). Finally, using (112b]) and (112d|), yields the proof of ([17€].
C.2 Proof of

The choice of the channel input in (111) guarantee that the random variables Y3.,...,Y3,
are independently and identically distributed (i.i.d.). For all n € {1,2,..., N}, Y3, follows a
zero-mean Gaussian distribution with variance B given by

= E[(h31X1.n + h32 X2 + Z3.0)?]

= h31 B[X7 ] + h3, B[X3 )] + 2hs1hso B[ X1 Xo 0] + 03

= h3, P + h3y Py + 2hg1 hgo B[ X1 3 Xo,] + 03

< B3, P14 B35 Py + 2hsihsa/ PLPa(p + / Mieae) + 03, (113)

By the weak law of large numbers, it holds that Ve > 0

lim Pr[B™M < B—¢] =0 (114)

n—oo

From (114)), it holds that for any energy B which satisfies 0 < B < B, it holds that
lim Pr[BY) < B—¢| =0 (115)

n—r oo

This proves (17g) and completes the proof of Theorem 3.
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D Proof of Theorem 4

Fix an information-energy rate triplet (R, Ro, B) achievable with a given coding scheme (Defi-
nition . Denote by X and X5 the channel inputs resulting from transmitting the independent
messages (W1, Q) and (Wa, ) using such coding scheme. Denote by Y'; and Y5 the correspond-
ing channel outputs. Define the following random variables:

Sl = h21X1 —+ Z2 and (116)

Sy = hioXs + Z1, (117)
where, Z; and Z; are real Gaussian random variables independent of each other with zero
means and variances o7 and o3, respectively. Using assumption (13a) and Fano’s inequality and

following similar steps as in [5], it can be shown that the information rates Ry and Rs must
satisfy the following inequalities

N

NRy < [h(Yin) = h(Z10)] +o(N), (118a)
N

NRy <Y [h(Yan)|Xan) = M(Zan) + h(Yin|Xan, S1.0) = h(Z10)] + o(N),  (118b)
N

NRy <3 [h(Yon) — h(Zaw)] + o(N), (118¢)

N
NRy <) [h(Y10)[X1n) = W(Z1m) + h(Yon|X1m, S2.n) — h(Z2n)] +0(N),  (118d)

N(Ri + Rg) < Y (WY1l 81,05 X200) = B(Z10) + h(Ya) = h(Z2,0)] + 0(N), (118e)
n=1
N
N(Rl + RQ) S Z[h(}/&ﬂslvu Xl,n) - h(ZQ,n) + h(Yl,n) - h(Zl,n)] + O(N) (118f)

Using assumptions (I3D)), for a given ¢(V) > 0, for any n > 0 there exists Ny(n) such that for
any n > Ny(n) it holds that

Pr(B™M < B— ™M) <y, (119)
Equivalently,
Pr(BM >B— ™M) >1-y. (120)
Using Markov’s inequality, the probability in (118)) can be upper-bounded as follows:
(B—eM)Pr(BM > B — ™M) <EBW. (121)
Combining (118)) and (119) yields:
(B - dM)(1 - ) < E[BWV, (122)
which can be written as
(B —6™) < E[BWY], (123)

for some 6(V) > ¢(N) (for sufficiently large N). The bounds in (T16) and (12I)) are evaluated
assuming that the channel inputs X , and X, ,, are arbitrary correlated random variables with

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 46

,U/i,n é E[Xi,n]a <124)
%‘2,n 2 Var[X; ], (125)
An £ Cov[Xy,Xa), (126)
forn € {1,...,N} and for i € {1,2}. The input sequence must satisfy the input power constraint

which can be written, for i € {1,2}, as follows:

1 & 1 1
~ 2 EXG =52 =Y nia | <P 12
Using these asumptions, the following holds:
h(Y1,) < = log (ZWeVar[YLn])
2me(hiyv; nT h3vs ot 2ha1hio A, + 01)) (128a)

h(Y2 | X2n) < = log | 2meVar[Ys | Xo, ,L])

= N N N = N l\D\H NN
5}
0F]

h2 1 1
(2 (72 n + 7(71 n72 n )\EL)) ) - 5 log (271—6722,11) + 5 10g(27rea§)

log (1 + L h3y ) (2mec? (128b)
g ’Yln 71 72 O'% +2 og 7760-2)7

og (2reVar[Y1 »| X2 n, S1.5])

[a—

h(Y17n|X2,n7 Sl,n) g

(71 n72 n /\721) %

—
Q
o

1 2

; O + 5 log(2meoy)
,72,n + (’71 n/y2 n n) o'

2 ?1

Tin ( '71 n'Yz n) o1

1 1
=—log| 1+ + = log(2meati). (128¢)
2 14 (1 EY ) 3y 2
Min 3. o
Given (X3, S1,n), the variance of Y7 ,, is upper-bounded by
Va’r[Y17”|X27n7 Slyn] g KYl,n - KYl,n(X2,nysl,n)K(_)(lzn751’n)K;17n(Xg‘n,slm,)’ (129)

where

Ky, , = U%,nh% + Jg,nh%2 + 2\ h11haz + 03,
KYl,?L(X2,7L7SI,7L) = [)\"hll + th’y%,n? h21h11’7in + )\nh21h12], and

K _ [ Anhia
(omS10) = {Nohoy AR h3y + 100
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Finally, the bounds in (116) can be rewritten as follows:
N 2 .2 2 .2
1 hivim | M2van | 2hirthia),
NR; <) 210g< “0_2 "y 10_2 : ! 021 +1)40(N),  (130a)
el 1 1 1
N
1 A2 h3
NR;, <Y Zlog|1++%,(1—- —-"—)2L
; 2 ( REETET M
A2 n3
1 ﬁ”(l*v? zé)f%f‘l
+> Slog | 1+ n2ns ) 4 o(N), (130b)
— 2 1 + 2 (1 _ A% ) @
=t RRE T N
N 2 .2
1 h39v2m | ho17in | 2haohoi )\,
NR, <) b ( 2 B0 P 1) oy (10
el 2 2 2

NPT
2
" VNnVon) OF

7%,71, (1 -

2 2
. /\n2 ) h222
Y,nV2n/ 92

A2 h?
1 2 (1 _ n ) M2
+ 72’" ’Yf,n’yg,n U%

1 h3273
N(R1+R2)<Z2log< 2,n

1+

2 .2
ho1Vim  2hashar A,
+ ) 5 +1
03 03 03
2 2
2 1— >‘n h
Tn ( ww> ot

2 A2 hgl
L+, (1‘ vfﬁs) =

N 2 2 .2
1 hi17i . P23, 2hithio),
R R E -1 : 1
(R1+ Ry — 2 o8 ( ol ol + o2 +
N 2 1 — Ai ) h3s
1 ,}/27"1 ( o2
+ E 3 log | 1+ i "Wi: 2h2 +o(N)
—_ 12
n=1 1+72n<1 ln’Y2n) o7

The expectation of the average received energy rate is given by

E [B(N)] -E

1 N

:U§+h§1<

ZH

n=1

1
+2h31hs3o (N Z(/\n + [, lt2.n)

N
Z’Yln"’.uln

1 n
> + hf252 <N Z (722@ + :ug,n)

) |

n=N

(131)

Using Cauchy-Schwarz inequality, the expected value on the energy rate in (129) can be upper-
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bounded as follows:

N
E[B(N)} < o3+ h3, ( Z Vin + 15 ) + h3 (NZ 72n+M2n)>
- N 1/2 N 1/2
1 1
n=1

1
+2hs1h3o ’N Z An

Combining (121)) and (130]) yields the following upper-bound on the energy rate B:
1N 1N
n=1

n=1
1 N
+2hs31 h3o N;An

L 1/2 L 1/2
n=1 n=1

In order to obtain a single-letterization of the upper-bound given by constraints (128)) and -,
define also

= % fjuim i€ {1,2}, (134)

n=1

2 yAN 1 N 2 .

N2 2 N;%’”’ ie{1,2}, (135)

N

(11] ZATL)

A n=

P ST (136)

With these notations, the input power constraint in (125 can be rewritten as

'71‘2 +M12 <P, ie{l,2}. (137)
Lemma 3
X he 2
N 1 '71'2771(1_72 ;2 ) 2 1 %_2(1_p2)%
Zi bt 2 Flog | 1+ . (138)
B Lot (1= 5k a2 (1)
L’Vl 3

Proof: Using the fact that H, g(z) = log (1 + ) is a concave function on x with

1+ﬁ
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positive a and S, it follows that

NZ log [ 1+

1N A\ K
N Zn:l PY’L’n (1 ’y’?,h’y‘?,” 0'3
1 N A2 h?,
1+ 5 Y17 (1 — 7 ) =
i Yin /) 5
N .
1 ZN 2 <1 (%> Mn)? ) hZ;
=1 '7
(a)l N " L NZ”l 'LnNznljn

VAN
I
2
—
+

< -log| 1+
2 1+ LN 2 (1 (& D0y An)? his
N Zn:l Yin L Z;V:l an% 271:7:1 .szm a;‘.’
2 2\ h;
1 v (1= p?) 4
= glog | 1+ — | (139)
L7 (1=p%) 55
)\2
where (a) follows from the fact that G(72,,, fyf-n, An) =07, | 1 — = | is a concave function
' ' ' ’yi,n/yj,n
on 'yzm 772n and A,; and K, g(z) = is an increasing function on x. |

By the concavity of the mutual information, applying Jensen’s inequality and Lemma 3 in the
bounds (128) yields, in the limit when N — oo,

1 h2 2 h2 2 h2 h2 2,2
R < =log <H31+1232+2p le’y? , (140a)
2 o1 o1 o1
2 2 h?l
1 h2 1 i (1= p?)H
R, < =log (1 + 27 (1- p2)) +=log | 1+ — |, (140Db)
2 o5 2 1+42(1—p2?) 0231
1 h2 2 h2 2 hooh 2.2
R < 10g< h | Mol [hehening ) (1400)
2 o5 o5 0y
2 2 h§2
1 h? 72 (1 -p ) s
Ry < glog <1 + 2245 (1- p2)) +5log | 1+ = (140d)
1 1+ '7% (1 _ P2) 01%2
2 2y bl
1 h2.~2 h2, 2 h2. h2 1 71(1_/7)?
Ri+ Ry < = log (22;/2—1—21;1—|—2p M - log [ 1+ L), (140¢)
2 o5 g5 02 2 1+’}/%(1*/J2)%§1
2 2 h§2
1 h2 h2 h2,h2,7242\ 1 2 (1=p°) 2
Ri+ Ry < 21og< 11§1+ 1295 19, 111247”2>+2 log | 1+ : ), (udof)
ot o1 L+93(1 = p?)3#

and the upper-bound on the energy rate :

B <03+ h3 (0 4 pd) + h32(73 + 13) + 2harhaz (o] [nllvel + |l pe2])- (140g)

To sum up, it has been shown so far that, in the limit when IV tends to infinity, any information-
energy rate triplet (R, Re, B) € EFB can be bounded by the constraints in (138)) for some ~%,
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V2, p1, pe satisfying (135]) and for some p € [—1,1]. Let REB(y1,79, 11, pt2, p) denote the set of
information-energy rate triplets satisfying (138)), for some 71, a2, 1, p2 such that (135)) is true
and for some p € [—1,1]. Thus, it holds that

g®c U REPOLAS s pap)- (141)
0 +ui<hPy

0KV H+p3<Pe
—1<p<1

In this union, it suffices to consider 0 < p < 1 because for any —1 < p < 1, RbFB (V%,’Yg, /L% M%> »)
g RZIJ:‘B(’Y]?7 ’YS, /’[’%7 /’(‘%7 ‘PD Thus,

g®c U RPPOE .0 € | REP(EA5 s 2, p).

0<y2+u2<Py Vi +uy=P
0<Y5+u5 <P V3 +ps=Ps
—1<p<1 0<p<l

Let 8; € [0,1] be defined as follows:

L= L ) 1,2}, 142
UMK ey (142)

1>

Bi

Using (140), any region Ry(71, 72, i1, 2, p) in the union over all (w1, u2,v1,72) that satisfy
V3 4+ p2 =Py, v3+ pd = Py and 0 < p < 1, can be rewritten as follows:

R < 2log< “ﬂ; LS 1252? 2 +2p\/uw5{f212>’ (1430)
o1 g1 o]
h2
1 h2 1 ﬁlpl(l _pQ)ﬁ
Rl S 5 log (1 * %Blpl (1 - pg)) + 5 log L+ 1h2 ) (143b)
2 1+51P1(1—p2)0%§1
Ry < 3lo < bt | Mhhb +gp\/222155f212> 7 (1430)
03 05
1 1 BaPy (1—p?) 2
oS3l ( 1252132 ! _p2)) Talog| 1+ i |, (143d)
1+52P2(1—p2)(%%2
Ri+Re< g (hw% J MBS HPWW>
02 05

h2
BuPr(1—p?) TH
—I—flog 1+ = (143e)
2 L+ 8Py (1—p?) 2

L, (PhBPr h2yBaP h2h PP
R1+R2<10g( 110621 Ly b 2+2p\/1112515212>

2 1 01 ‘71
2
| Ba2P2 (1 - p?)
+-log| 1+ ek (143f)
2 L+ B2Py (1 - p?) 2
B < o3hd Prvh,Ps + 2hgihaa(Ipl/BiPiBaPat /(1 — B1)(1 — B2)PiPy),  (143g)
B >0, (143h)
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for some (f1, B2) € [0,1]? and p € [0,1]. Hence, using the definitions in (7)) and (L0), the region
(141) contains all information-energy rate triplets (R, Ro, B) satisfying constraints , which
completes the proof of Theorem 4.
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