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Résumé : Dans ce rapport, les limites fondamentales de la transmission simultanée d’information
et d’énergie dans le canal Gaussien à interférence (G-IC) avec et sans voie de retour sont déter-
minées. L’ensemble des débits atteignables de transmission d’information et d’énergie (en bits par
utilisation du canal et en unités d’énergie par utilisation du canal respectivement) est identifié.
Pour les deux cas, un schéma d’atteignabilité est basé sur power-splitting, common randomness,
rate splitting, block-Markov superposition coding, et backward decoding est présenté. Finale-
ment, la région converse pour les deux cas est obtenu en utilisant des techniques de majoration
dans la littérature pour les débits d’information et aussi un majorant pour le débit d’énergie en
utilisant la loi des grands nombres.

Mots-clés : Canal à interference, voie de retour, transmission simultanée d’information et
d’énergie
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1 Notation
Throughout this research report, sets are denoted with uppercase calligraphic letters, i.e., X .
Random variables are denoted by uppercase letters, e.g., X. The realization and the set of
events from which the random variable X takes values are respectively denoted by x and X .
The probability distribution of X over the set X is denoted PX . Whenever a second random
variable Y is involved, PXY and PY |X denote respectively the joint probability distribution of
(X,Y ) and the conditional probability distribution of Y given X. Let N be a fixed natural
number. An N -dimensional vector of random variables is denoted by X = (X1, X2, . . . , XN )T

and a corresponding realization is denoted by x = (x1, x2, . . . , xN )T ∈ XN . Given X =
(X1, X2, . . . , XN )T and (a, b) ∈ N2, with a < b ≤ N , the (b−a+1)-dimensional vector of random
variables formed by the components a to b of X is denoted by X(a,b) = (Xa, Xa+1, . . . , Xb)

T.
The notation (·)+ denotes the positive part operator, i.e., (·)+ = max(·, 0) and EX [·] denotes the
expectation with respect to the distribution of the random variable X. The logarithm function
is assumed to be base 2.

RR n° 9102



Simultaneous Information and Energy Transmission in the Interference Channel 5

2 Gaussian Interference Channel with Energy Harvesting
Consider the Gaussian interference channel (G-IC) with a non-colocated energy harvester de-
picted in figure 1 without feedback and in figure 2 with perfect channel-output feedback. Trans-
mitter i, with i ∈ {1, 2}, aims to execute two tasks: (a) an information transmission task and
(b) an energy transmission task.

2.1 Information Transmission Task
From the information transmission standpoint, the goal of transmitter i is to convey an inde-
pendent message index Wi ∈ Wi = {1, 2, . . . , 2NRi} to receiver i using N channel input symbols
Xi,1, Xi,2, . . . , Xi,N . The channel coefficient from transmitter k to receiver i, with k ∈ {1, 2},
is denoted by hik ∈ R+. At receiver i, during channel use n, input symbol Xi,n is observed at
receiver i subject to the interference produced by the symbol Xj,n sent by transmitter j, with
j ∈ {1, 2} \ {i}, and a real additive Gaussian noise Zi,n with zero mean and variance σ2

i . Hence,
the channel output at receiver i during channel use n, denoted by Yi,n, is:

Yi,n = hiiXi,n + hijXj,n + Zi,n. (1)

In the case without feedback, at each channel use n, the symbolXi,n sent by transmitter i depends
upon the message index Wi and a randomly generated index Ω ∈ N. Let f (N)

i,n :Wi ×N→ R be
the encoding function at channel use n, such that for all n ∈ {1, 2, . . . , N}, the following holds:

Xi,n=f
(N)
i,n (Wi,Ω). (2)

In the case with feedback, the symbol Xi,n sent by transmitter i depends upon the indices Wi

and Ω, but also upon all previous channel-outputs Yi,1, Yi,2, . . . , Yi,n−d, with d ∈ N the feedback
delay. In the following, it is assumed that d is equal to one channel use, without any loss of
generality. The first channel input symbol Xi,1 depends only on the message index Wi and Ω.
More specifically, f (N)

i,1 :Wi ×N→ R and for all n ∈ {2, 3, . . . , N}, f (N)
i,n :Wi ×N×Rn−1 → R

are the encoding functions such that:

Xi,1=f
(N)
i,1 (Wi,Ω) and (3a)

Xi,n=f
(N)
i,n (Wi,Ω, Yi,1, Yi,2, . . . , Yi,n−1) for all n > 1. (3b)

In both cases, the random index Ω is assumed to be independent of both W1 and W2 and
known by all transmitters and receivers. Moreover, channel input symbols Xi,1, Xi,2, . . . , Xi,N

are subject to an average power constraint of the form

1

N

N∑
n=1

E[X2
i,n] ≤ Pi, (4)

where Pi denotes the average transmit power of transmitter i in energy units per channel use.
The expectation in (4) is taken with respect to Wi and Ω in the case without feedback. In the
case with feedback, the expectation is taken over the joint distribution of the message indices
W1 and W2, the random index Ω, and the noise terms, i.e., Z1 and Z2. The dependence of Xi,n

on W1, W2, Ω, and the previously observed noise realizations is due to the effect of feedback as
shown in (3). Note that Wi and Ω are assumed to be independent and uniformly distributed
over their corresponding sets.
Let T ∈ N be fixed and assume that during a given communication, T blocks of N channel uses

RR n° 9102
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Energy Transmission
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6 / 22

Figure 1: Two-user Gaussian interference channel with a non-colocated energy harvester at
channel use n.

are transmitted. The decoder of receiver i observes the channel outputs Yi,1, Yi,2, . . . , Yi,NT and
uses a decoding function φi : N×RNT →WT

i , to get an estimate of the message indices:Å”Wi

(1)
,”Wi

(2)
, . . . ,”Wi

(T )
ã

= φi (Ω, Yi,1, Yi,2, . . . , Yi,NT ) , (5)

where ”Wi

(t)
is an estimate of the message index W (t)

i sent during block t ∈ {1, 2, . . . , T}. The
decoding error probability during block t of a codebook of block-length N , denoted by P (t)

e (N),
is given by

P (t)
e (N) = max

Å
Pr

ï”W1

(t) 6= W
(t)
1

ò
,Pr

ï”W2

(t) 6= W
(t)
2

òã
. (6)

The signal to noise ratio (SNR) at receiver i is denoted by

SNRi =
|hii|2Pi
σ2
i

. (7a)

The interference to noise ratio (INR) at receiver i is denoted by

INRi =
|hij |2Pj
σ2
i

, with j 6= i. (7b)

2.2 Energy Transmission Task
Let h3i ∈ R+ be the channel coefficient from transmitter i to the energy harvester (EH). The
symbols sent by the transmitters during channel use n are observed by the EH subject to an

RR n° 9102
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Interference Channel with Feedback (G-IC-FB)
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Figure 2: Two-user Gaussian interference channel with channel-output feedback and a non-
collocated energy harvester during channel use n.

additive Gaussian noise Z3,n with zero mean and variance σ2
3 . More specifically, the channel

output at the EH during channel use n, denoted by Y3,n, is:

Y3,n = h31X1,n + h32X2,n + Z3,n. (8)

From the energy transmission standpoint, the goal of both transmitters is to jointly guarantee
an average energy rate at the EH. Let b > 0 denote the minimum average energy rate that must
be guaranteed at the input of the EH. Let also B(N) be the average energy rate (in energy-units
per channel use) at the end of N channel uses. That is,

B(N) 4=
1

N

N∑
n=1

Y 2
3,n. (9)

The SNR of transmitter i at the EH is denoted by

SNR3i =
|h3i|2Pi
σ2
3

. (10)

Note that the maximum average energy rate, denoted by Bmax, is:

Bmax = σ2
3

Ä
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

ä
. (11)

The probability of energy outage, given an average energy rate B, is defined as follows:

P
(N,ε)
outage(B)

4
= Pr

î
B(N) < B − ε

ó
, (12)

for all B > b and some ε > 0.

RR n° 9102
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2.3 Simultaneous Information and Energy Transmission
Given a minimum energy rate b to be satisfied at the EH, the system is said to be operating at
the information-energy rate triplet (R1, R2, B) ∈ R3

+ when both transmitter-receiver pairs use
a transmit-receive configurations such that: (i) reliable communication at information rates R1

and R2 is ensured; and (ii) reliable energy transmission at energy rate B is ensured. A formal
definition is given below.

Definition 1 (Achievable Rates) The triplet (R1, R2, B) ∈ R3
+ is achievable if for all i ∈

{1, 2}, there exists a sequence of encoding functions f (N)
i,1 , f

(N)
i,2 , . . . , f

(N)
i,N and a decoding function

φi such that both the average error probability P (t)
e (N), for all t ∈ {1, 2, . . . , T}, and the energy-

outage probability P
(N,ε)
outage(B) tend to zero as the block-length N tends to infinity. That is,

lim sup
N→∞

P (t)
e (N) = 0 and (13a)

lim sup
N→∞

P
(N,ε)
outage = 0. (13b)

Using Definition 1, the fundamental limits of simultaneous information and energy transmission
in the Gaussian interference channel can be described by the information-energy capacity region,
defined as follows.

Definition 2 (Information-Energy Capacity Region) The information-energy capacity re-
gion given a minimum energy rate b, denoted by EFb in the case with feedback and Eb in the case
without feedback, corresponds to the closure of all achievable information-energy rate triplets
(R1, R2, B).

3 Main result
The main result consists of a description of the information-energy capacity regions with feedback
EFb and without feedback Eb, for a given b > 0. Such a description is presented in the form of an
approximation in the sense of the definition hereunder.

Definition 3 (Approximation of a Set) Let n ∈ N be fixed. A closed and convex region
X ⊂ Rn+ is approximated by the sets X and X if X ⊆ X ⊆ X and ∀x = (x1, . . . , xn) ∈ X then
((x1 − ξ1)+, (x1 − ξ2)+, . . . , (xn − ξn)+) ∈ X , for some (ξ1, ξ2, . . . , ξn) ∈ Rn+.

3.1 Case without Channel-Output Feedback
The information-energy capacity region Eb, with b any positive real number, is approximated by
the regions Eb (Theorem 1), which represents an information-energy achievable region, and Eb
(Theorem 2), which represents an information-energy converse region.

3.1.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

RR n° 9102



Simultaneous Information and Energy Transmission in the Interference Channel 9

Theorem 1 Let b be a fixed positive real. Then, the information-energy capacity region Eb
contains all the rate tuples (R1, R2, B) that satisfy:

R1 ≤
1

2
log

Å
1 +

(1− λ1e)SNR1

1 + λ2pINR1

ã
, (14a)

R2 ≤
1

2
log

Å
1 +

(1− λ2e)SNR2

1 + λ1pINR2

ã
, (14b)

R1 +R2 ≤
1

2
log

Å
1 + (1− λ1e)SNR1 + (1− λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 +

λ2pSNR2

1 + λ1pINR2

ã
, (14c)

R1 +R2 ≤
1

2
log

Å
1 + (1− λ2e)SNR2 + (1− λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 +

λ1pSNR1

1 + λ2pINR1

ã
, (14d)

R1 +R2 ≤
1

2
log

Å
1 + λ1pSNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
,(14e)

2R1 +R2 ≤
1

2
log

Å
1 + (1−λ1e)SNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 +

λ1pSNR1

1 + λ2pINR1

ã
, (14f)

R1 + 2R2 ≤
1

2
log

Å
1 + (1−λ2e)SNR2 + (1−λ1e)INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 + λ1pSNR1 + (1−λ2e)INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 +

λ2pSNR2

1 + λ1pINR2

ã
, (14g)

b ≤ B ≤ σ2
3

Ä
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

√
λ1eλ2e

ä
, (14h)

with (λip, λie) ∈ [0, 1]2 such that λip + λie ≤ 1, for all i ∈ {1, 2}.

Proof: The proof of Theorem 1 is presented in Appendix A.
The achievability scheme used to obtain Theorem 1 is built upon random coding arguments using
rate-splitting [1], superposition coding [2], common randomness, and power-spliting [3]. Follow-
ing a rate-splitting argument, the indexWi is divided into two sub-indicesWi,P ∈ {1, 2 . . . , 2NRi,P }
and Wi,C ∈ {1, 2 . . . , 2NRi,C}, where Ri,C + Ri,P = Ri. Note that the block index (t) in W

(t)
i

and Ω(t) are dropped as the encoding and decoding are identical at each block. The message
index Wi,C must be decoded at both receivers, whereas the index Wi,P must be decoded only at
the intended receiver. This rate-splitting is reminiscent of the Han-Kobayashi scheme in [1].

The codebook generation at transmitter i follows a three-level superposition coding scheme.
The first code-layer is a sub-codebook of 2NRE codewords. Denote by v(Ω) the correspond-
ing codeword of the first code-layer. Note that both transmitters know Ω, hence they are able
to choose the same codeword v(Ω) from the first-layer codebook. The index Ω as well as the
codeword v(Ω) are also known at the receivers, which highlights that the role of this codebook
is not information transmission but energy transmission. The second codeword used by trans-
mitter i is selected using Wi,C from the second code-layer, which is a sub-codebook of 2NRi,C

codewords associated to v(Ω). Denote by ui(Ω,Wi,C) the corresponding codeword in the second
code-layer. The third codeword used by transmitter i is selected using W (t)

i,P from the second
code-layer, which is a sub-codebook of 2NRi,P codewords associated to ui(Ω,Wi,C). Denote
by si(Ω,Wi,C ,Wi,P ) the corresponding codeword in the third code-layer. Finally, for transmit-
ting the triplet (Ω,Wi,C ,Wi,P ), the channel input symbol Xi,n at channel use n ∈ {1, 2, . . . , N}
is a deterministic function of the n-th components of the codewords v(Ω), ui(Ω,Wi,C) and
si(Ω,Wi,C ,Wi,P ).

RR n° 9102
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3.1.2 A Converse Region

The following Theorem introduces an information-energy converse region.

Theorem 2 Let b be a fixed positive real. Then, the information-energy capacity region Eb is
contained into the set of all the rate tuples (R1, R2, B) that satisfy:

R1 ≤1

2
log(1 + β1SNR1), (15a)

R2 ≤1

2
log(1 + β2SNR2), (15b)

R1 +R2 ≤
1

2
log(1 + β1SNR1 + β2INR1) +

1

2
log

Å
1 +

β2SNR2

1 + β2INR1

ã
, (15c)

R1 +R2 ≤
1

2
log(1 + β2SNR2 + β1INR2) +

1

2
log

Å
1 +

β1SNR1

1 + β1INR2

ã
, (15d)

R1 +R2 ≤
1

2
log

Å
1 +

β1SNR1 + β2INR1 + β1β2INR1INR2

1 + β1INR2

ã
+

1

2
log

Å
1 +

β2SNR2 + β1INR2 + β1β2INR1INR2

1 + β2INR1

ã
, (15e)

2R1 +R2≤
1

2
log

Å
1 +

β1SNR1

1 + β1INR2

ã
+

1

2
log(1 + β1SNR1 + β2INR1)

+
1

2
log

Å
1 +

β2SNR2 + β1INR2 + β1β2INR1INR2

1 + β2INR1

ã
, (15f)

R1 + 2R2≤
1

2
log

Å
1 +

β2SNR2

1 + β2INR1

ã
+

1

2
log(1 + β2SNR2 + β1INR2)

+
1

2
log

Å
1 +

β1SNR1 + β2INR1 + β1β2INR1INR2

1 + β1INR2

ã
, (15g)

b ≤ B ≤σ2
3

(
1 + SNR31 + SNR32 + 2

√
SNR31SNR32

»
(1− β1)(1− β2)

)
, (15h)

with (β1, β2) ∈ [0, 1]2.

Proof: The proof of Theorem 2 is presented in Appendix B.

3.1.3 An Approximation to the Information-Energy Capacity Region

Using the inner region Eb and the outer region Eb, described respectively by Theorem 1 and
Theorem 2, the information-energy capacity region Eb can be approximated in the sense of
Definition 3.

Theorem 3 (Approximation of Eb) Let Eb ⊂ R3
+ and Eb ⊂ R3

+ be the sets of tuples
(R1, R2, B) described by Theorem 1 and Theorem 2, respectively. Then,

Eb ⊂ Eb ⊂ Eb, (16)

and for all (R1, R2, B) ∈ Eb it follows that
Å

(R1 − 1/2)+, (R2 − 1/2)+,

Å
B − Bmax

2

ã+ã
∈ Eb.

Proof: Following similar steps as in [4], it can be shown that for all (R1, R2, 0) ∈ Eb it
follows that ((R1 − 1/2)+, (R2 − 1/2)+, 0) ∈ Eb. Note also that for all (R1, R2, B) ∈ Eb and for
all (R1, R2, B

′) ∈ Eb, there always exists a tuple (β1, β2, λ1e, λ2e) such that:

RR n° 9102
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Figure 3: 3-D representation of Eb, with parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0.

B −B′
Bmax

=
2h31h32

√
P1P2

Ä√
(1− β1)(1− β2)−

√
λ1eλ2e

ä
σ2
3 + h231P1 + h232P2 + 2|h31||h32|

√
P1P2

≤ 2
√

SNR31SNR32

1 + SNR31 + SNR32 + 2
√

SNR31SNR32

≤ 2
√

SNR31SNR32

1 + 4
√

SNR31SNR32

≤ 1

2
,

which completes the proof.

3.1.4 Examples

Consider a Gaussian interference channel with an external EH with parameters SNR1 = SNR2 =
20 dB, INR1 = INR2 = SNR31 = SNR32 = 10 dB and σ2

3 = 1. Figure 3 and Figure 4 show Eb
and Eb, respectively, with b = 0. Figure 5 shows both Eb and Eb in the same axes.

Note that for all B ∈ [0, 1 + SNR31 + SNR32], transmitting information with independent
codewords is enough to satisfy the energy rate constraints. This implies that β1 = β2 = 1 is
optimal in this regime. Alternatively, for all B ∈ [1 + SNR31 + SNR32, Bmax], transmitters deal
with trade-off between the information and energy rate. Increasing B reduces the information
region and and shrinks the information-energy capacity region.
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Figure 4: 3-D representation of Eb, with parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0.
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Figure 5: 3-D superposition of Eb and Eb, with parameters SNR1 = SNR2 = 20 dB, INR1 =
INR2 = SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0.

3.2 Case with Perfect Channel-Output Feedback
The information-energy capacity region EFb , with b any positive real number, is approximated by
the regions EFb (Theorem 4) and EFb (Theorem 5).
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3.2.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

Theorem 4 Let b be a fixed positive real. Then, the information-energy capacity region EFb
contains all the rate tuples (R1, R2, B) that satisfy:

R1 ≤ 1

2
log

Å
1 + (1− λ1e)SNR1 + (1− λ2e)INR1 + 2ρ

√
SNR1INR1

1 + λ2pINR1

ã
, (17a)

R1 ≤ 1

2
log

Å
1 + (1− (ρ+ λ1e))INR2

1 + λ1pINR2

ã
+

1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
, (17b)

R2 ≤ 1

2
log

Å
1 + (1− λ2e)SNR2 + (1− λ1e)INR2 + 2ρ

√
SNR2INR2

1 + λ1pINR2

ã
, (17c)

R2 ≤ 1

2
log

Å
1 + (1− (ρ+ λ2e))INR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + λ2pSNR1 + λ1pINR1

1 + λ1pINR1

ã
, (17d)

R1 +R2 ≤
1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
+

1

2
log

Å
1 + (1− λ2e)SNR2 + (1− λ1e)INR2 + 2ρ

√
SNR2INR2

1 + λ1pINR2

ã
, (17e)

R1 +R2 ≤
1

2
log

Å
1 + λ2pSNR1 + λ1pINR1

1 + λ1pINR1

ã
+

1

2
log

Å
1 + (1− λ1e)SNR1 + (1− λ2e)INR1 + 2ρ

√
SNR1INR1

1 + λ2pINR1

ã
, (17f)

b ≤ B ≤ σ2
3

Ä
1 + SNR31 + SNR32 + 2

√
SNR31SNR32(ρ+

√
λ1eλ2e)

ä
, (17g)

where (ρ, λip, λie) ∈ [0, 1]3 and ρ+ λip + λie ≤ 1, for all i ∈ {1, 2}.

Proof: The proof of Theorem 4 is presented in Appendix C.
The achievability scheme used to obtain Theorem 4 is built upon random coding arguments using
rate-splitting [1], block-Markov superposition coding, backward decoding [5], common random-
ness, and power-spliting [3]. Let W (t)

i ∈ {1, 2 . . . , 2NRi} and Ω ∈ {1, 2 . . . , 2NRE} be the message
index and the common random index at transmitter i during the t-th block. Following a rate-
splitting argument, the index W (t)

i is divided into two sub-indices W (t)
i,P ∈ {1, 2 . . . , 2NRi,P } and

W
(t)
i,C ∈ {1, 2 . . . , 2NRi,C}, where Ri,C + Ri,P = Ri. At the end of block t, the message indices

W
(t)
i,C and W (t)

i,P must be decoded by receiver i, whereas W (t)
i,C must be decoded by receiver j, and

by transmitter j via feedback. Therefore at the beginning of block t, each transmitter possesses
the knowledge of the indices W (t−1)

1,C and W (t−1)
2,C . In the case of the first block t = 1, the indices

W
(0)
1,C andW (0)

2,C correspond to two indices assumed to be known by all transmitters and receivers.
The codebook generation at transmitter i follows a four-level superposition coding scheme. The
first code-layer is a sub-codebook of 2NRE codewords. Denote by v(Ω) the corresponding code-
word of the first code-layer. Note that both transmitters know Ω, hence they are able to choose
the same codeword v(Ω) from the first-layer codebook. The index Ω as well as the codeword v(Ω)
are also known at the receivers, which highlights that the role of this codebook is not information
transmission but energy transmission. The second code-layer is a sub-codebook of 2N(R1,C+R2,C)

codewords. Denote by u
Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C

ä
the corresponding codeword in the second code-

layer. The third codeword used by transmitter i is selected using W (t)
i,C from the third code-layer,
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which is a sub-codebook of 2NRi,C codewords associated to u
Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C

ä
. Denote by

ui
Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
i,C

ä
the corresponding codeword in the third code-layer. The fourth

codeword used by transmitter i is selected using W (t)
i,P from the fourth code-layer, which is a sub-

codebook of 2NRi,P codewords associated to si
Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
i,C ,W

(t)
i,P

ä
the correspond-

ing in the fourth code-layer. Finally, For transmitting the triplet (Ω,W
(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
i,C ,W

(t)
i,P ),

the channel input-symbol Xi,n at channel use n ∈ {1, 2, . . . , N} is a deterministic function of the
n-th components of the codewords v(Ω), u

Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C

ä
, ui
Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
i,C

ä
and si

Ä
Ω,W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
i,C ,W

(t)
i,P

ä
.

3.2.2 A Converse Region

The following theorem describes a converse region denoted by EFb .

Theorem 5 Let b be a fixed positive real. Then, the information-energy capacity region EFb is
contained into the set of all the rate tuples (R1, R2, B) that satisfy:

R1 ≤1

2
log

Å
1 + β1SNR1 + β2INR1 + 2ρ

√
β1SNR1β2INR1

ã
, (18a)

R1 ≤1

2
log

Å
1 +

β1(1− ρ2)SNR1

1 + β1(1− ρ2)INR2

ã
+

1

2
log

Å
1 + β1(1− ρ2)INR2

ã
, (18b)

R2 ≤1

2
log

Å
1 + β2SNR2 + β1INR2 + 2ρ

√
β2SNR2β1INR2

ã
, (18c)

R2 ≤1

2
log

Å
1 +

β2(1− ρ2)SNR2

1 + β2(1− ρ2)INR1

ã
+

1

2
log

Å
1 + β2(1− ρ2)INR1

ã
, (18d)

R1 +R2≤
1

2
log

Å
1 +

β1(1− ρ2)SNR1

1 + β1(1− ρ2)INR2

ã
+

1

2
log

Å
1 + β2SNR2 + β1INR2 + 2ρ

√
β2SNR2β1INR2

ã
, (18e)

R1 +R2≤
1

2
log

Å
1 +

β2(1− ρ2)SNR2

1 + β2(1− ρ2)INR1

ã
+

1

2
log

Å
1 + β1SNR1 + β2INR1 + 2ρ

√
β1SNR1β2INR1

ã
, (18f)

b ≤ B ≤σ2
3

Å
1 + SNR31 + SNR32 + 2ρ

√
SNR31SNR32(ρ

√
β1β2

+2
»

(1− β1)(1− β2))

ã
, (18g)

with (β1, β2, ρ) ∈ [0, 1]3.
Proof: The proof of Theorem 5 is presented in Appendix D.

3.2.3 An Approximation to the Information-Energy Capacity Region

Using the inner region EFb and the outer region EFb , described respectively by Theorem 4 and
Theorem 5, the information-energy capacity region EFb can be approximated in the sense of
Definition 3.
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Figure 6: 3-D representation of EFb , with parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0.

Theorem 6 (Approximation of EFb ) Let EFb ⊂ R3
+ and EFb ⊂ R3

+ be the sets of tuples
(R1, R2, B) described by Theorem 4 and Theorem 5, respectively. Then,

EFb ⊂ EFb ⊂ E
F

b , (19)

and for all (R1, R2, B) ∈ EFb it follows that
Å

(R1 − 1)+, (R2 − 1)+,

Å
B − Bmax

2

ã+ ã
∈ EFb .

Proof: Following similar steps as in [5], it can be shown that for all (R1, R2, 0) ∈ EFb it
follows that ((R1 − 1)+, (R2 − 1)+, 0) ∈ EFb . Note also that for all (R1, R2, B) ∈ EFb and for all
(R1, R2, B

′) ∈ EFb , there always exists a tuple (β1, β2, λ1e, λ2e, ρ) such that:

B −B′
Bmax

≤
2h31h32

√
P1P2

Ä√
(1− β1)(1− β2) + ρ

√
β1β2

ä
σ2
3 + h231P1 + h232P2 + 2h31h32

√
P1P2

≤ 2
√

SNR31SNR32

1 + SNR31 + SNR32 + 2
√

SNR31SNR32

≤ 2
√

SNR31SNR32

1 + 4
√

SNR31SNR32

≤ 1

2
,

which completes the proof.

3.2.4 Example

Consider a Gaussian interference channel with feedback and an external EH with parameters
SNR1 = SNR2 = 20 dB, INR1 = INR2 = SNR31 = SNR32 = 10 dB and σ2

3 = 1. Figure 6 and
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Figure 7: 3-D representation of EFb , with parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB,σ2

3 = 1,and b = 0
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Figure 8: 3-D superposition of EFb and EFb , with parameters SNR1 = SNR2 = 20 dB, INR1 =
INR2 = SNR31 = SNR32 = 10 dB and σ2

3 = 1.

Figure 7 show Eb and Eb, respectively, with b = 0. Figure 8 shows both Eb and Eb in the same
axes. Note that for all B ∈ [0, 1 + SNR31 + SNR32], transmitting information with independent
codewords is enough to satisfy the energy rate constraints. This implies that β1 = β2 = 1 is
optimal in this regime. Alternatively, for all B ∈ [1 + SNR31 + SNR32, Bmax], transmitters deal
with a trade-off between the information and energy rate. More specifically, increasing B reduces
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Figure 9: Energy rate B of the symmetric two-user Gaussian interference channel with feedback
(dashed line) and without feedback (solid line), with co-located receiver EH, as a function of
R2 with two different values of R1 and parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0.

the information region and shrinks the information-energy capacity region.

3.2.5 Comparison with the Case of no Feedback

In this section, the impact of the feedback in terms of information and energy transmission under
the assumption of the symmetric interference channel is quantified through an example. From
the energy transmission standpoint, figure 9 shows the enhancement of the energy transmission
due to the use of feedback when the information rate R1 corresponding to transmitter-receiver
pair 1 is fixed.
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Figure 10: The Information capacity region of the symmetric two-user Gaussian interference
channel with feedback (dashed line) and without feedback (solid line), with co-located receiver
EH, with two different values of B and parameters SNR1 = SNR2 = 20 dB, INR1 = INR2 =
SNR31 = SNR32 = 10 dB, σ2

3 = 1, and b = 0

Appendices
A Proof of Theorem 1
This proof is divided into two parts. The first part consists of the proof of (14a)-(14g). The
second part consists of the proof of (14h).

A.1 Proof of (14a)-(14g)
Lemma 1 Let B ∈ R+ be fixed, then for all (R1, R2, B) ∈ Eb, the following holds:

R1≤I(X1;Y1|U2, V ), (20a)
R2≤I(X2;Y2|U1, V ), (20b)

R1 +R2≤I(X1, U2;Y1|V ) + I(X2;Y2|U1, U2, V ), (20c)
R1 +R2≤I(X2, U1;Y2|V ) + I(X1;Y1|U1, U2, V ), (20d)
R1 +R2≤I(X1, U2;Y1|U1, V ) + I(X2, U1;Y2|U2, V ), (20e)

2R1 +R2≤I(X1, U2;Y1|V ) + I(X1;Y1|U1, U2, V ) + (X2U1;Y2|U2V ), and (20f)
R1 + 2R2≤I(X1, U2;Y1|V ) + I(X1;Y1|U1, U2, V ) + I(X2, U1;Y2|U2, V ), (20g)
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for all joint distributions

PV U1U2S1S2
(v, u1, u2, s1, s2) = PV (v)PU1|V (u1|v)PU2|V (u2|v)PS1|U1V (s1|u1, v)PS2|U2V (s2|u2, v).

(21)

Proof: Codebook Generation: Fix a strictly positive joint probability distribution:
PV U1U2S1S2(v, u1, u2, s1, s2) = PV (v)PU1|V (u1|v)PU2|V (u2|v)PS1|U1V (s1|u1, v)PS2|U2V (s2|u2, v), for
all (v, u1, u2, s1, s2) ∈ X1 ∩ X2 × X1 × X2 × X1 × X2. Let RE , R1,C , R2,C , R1,P and R2,P be
non negative real numbers. Generate 2NRE i.i.d N-length codewords v(ω) = (v1(ω), . . . , vN (ω))
according to

PV (v(ω)) =
N∏
m=1

PV (vm(ω)), (22)

with ω ∈ {1, 2, . . . , 2NRE}. For encoder 1, for each codeword v(ω), generate 2NR1,C i.i.d. N-
length codewords u1(ω, i) = (u1,1(ω, i), . . . , u1,N (ω, i)) according to

PU1|V (u1(ω, i)|v(ω)) =
N∏
m=1

PU1|V (u1,m(ω, i)|vm(ω)), (23)

with i ∈ {1, . . . , 2NR1,C}. For each pair of codewords u1(ω, i) and v(ω), generate 2NR1,P i.i.d.
N-length codewords s1(ω, i, j) = (s1,1(ω, i, j), . . . , s1,N (ω, i, j)) according to

PS1|U1V (s1(ω, i, j)|u1(ω, i),v(ω)) =
N∏
m=1

PS1|U1V (s1,m(ω, i, j)|u1,m(ω, i), vm(ω)), (24)

with j ∈ {1, . . . , 2NR1,P }. For encoder 2, for each codeword v(ω), with ω ∈ {1, 2, . . . , 2NRE}
generate 2NR2,C i.i.d. N-length codewords u2(ω, k) = (u2,1(ω, k), . . . , u2,N (ω, k)) according to

PU2|V (u2(ω, k)|v(ω)) =
N∏
m=1

PU2|V (u2,m(ω, k)|vm(ω)), (25)

with k ∈ {1, . . . , 2NR2,C}. For each pair of codewords u2(ω, k) and v(ω), generate 2NR2,P i.i.d.
N-length codewords s2(ω, k, l) = (s2,1(ω, k, l), . . . , s2,N (ω, k, l)) according to

PS2|U2V (s2(ω, k, l)|u2(ω, k),v(ω)) =
N∏
m=1

PS2|U2V (s2,m(ω, k, l)|u2,m(ω, k), vm(ω)), (26)

with l ∈ {1, . . . , 2NR2,P }.
Encoding: Denote by (Wi,Ω) ∈ {1, 2, . . . , 2N(Ri,C+Ri,P } × {1, 2, . . . , 2NRE} the message index
and the random message index of transmitter i. Let Wi be represented by the message index
Wi,C ∈ {1, 2, . . . , 2NRi,C} and the message index Wi,P ∈ {1, 2, . . . , 2NRi,P }. Transmitter i sends

the codeword xi = θi

Å
v(Ω),ui(Wi,C ,Ω), si(Wi,C ,Wi,P ,Ω)

ã
, where θi : (X1∩X2)N×XNi ×XNi →

XNi is a function that transforms the codewords v(Ω),ui(Wi,C ,Ω), and si(Wi,C ,Wi,P ,Ω) into
the N -dimensional vector xi.
Decoding: Given the channel output y1, receiver 1 estimates the unique tuple (Ω, Ŵ1,C , Ŵ1,P )
that satisfies:Å

v(Ω),u1(Ŵ1,C ,Ω), s1(Ŵ1,C , Ŵ1,P ,Ω),u2(Ŵ2,C ,Ω),y1

ã
∈ T (N,ε)

V U1S1U2Y1
, (27)

RR n° 9102



Simultaneous Information and Energy Transmission in the Interference Channel 20

where Ω are assumed to be perfectly known by both transmitters and receivers. The set
T (N,ε)
V U1S1U2Y1

represents the set of jointly typical sequences of the random variables V,U1, S1, U2,
and Y1, with ε > 0. Finally, receiver 2 follows a similar decoding scheme.

Error Probability Analysis: an error might occur at receiver 1 if the indices W1,C and
W1,P are not decoded correctly given that Ω is known by both transmitters and receivers. These
errors might arise for two reasons: (i) there does not exist a tuple (Ω, Ŵ1,C , Ŵ1,P ), for at least one
Ŵ2,C that satisfy (27), or (ii) there exist several tuples (Ω, Ŵ1,C , Ŵ1,P ), for at least one Ŵ2,C that
simultaneously satisfy (27). From the asymptotic equipartion property (AEP) [6], the probability
of an error due to (i) tends to zero when N grows to infinity. Consider the error due to (ii) and
define the event Eijk that describes the case in which the codewords v(Ω),u1(i,Ω), s1(i, j,Ω), and
u2(k,Ω) are jointly typical with y1. Assume now that the codeword to be decoded corresponds
to the indices (i, j, k) = (1, 1, 1), this is without loss of generality due to the symmetry of the

code. No error is declared when codewords
Å
v(Ω),u1(1,Ω), s1(1, 1,Ω),u2(k̂,Ω)

ã
, where k̂ 6= 1,

are the only jointly typical sequences with the received sequence y1. Then, the probability of
error Pe due to (ii), can be bounded as follows:

Pe=Pr

 ⋃
(i,j)6=(1,1)

2NR2,C⋃
k=1

Eijk


≤

∑
i6=1,j 6=1,k 6=1

Pr [Eijk] +
∑

i=1,j 6=1,k=1

Pr [Eijk] +
∑

i 6=1,j 6=1,k=1

Pr [Eijk]

+
∑

i 6=1,j=1,k 6=1

Pr [Eijk] +
∑

i6=1,j=1,k=1

Pr [Eijk] +
∑

i=1,j 6=1,k 6=1

Pr [Eijk] . (28)

For all i ∈ {2, 3, . . . , 2NR1,C}, the following holds

Pr[(Ei11)]
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,u2,y1)∈T

(N,ε)

V U1X1U2Y1

PU1X1|V (u1,x1|v)PU2Y 1|V (u2,y1|v)PV (v),

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−N(H(U1,X1|V )+H(U2,Y1|V )+H(V )−3ε)

≤2−N(H(U1,X1|V )+H(U2,Y1|V )+H(V )−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1;Y1|U2,V )−4ε), (29a)

where the probability operator Pr[.] in (a) applies with a probability distribution PV U1X1U2Y 1

that factorizes as PV PU1X1|V PU2Y 1|V given that all the codewords x1 and u1 are independent
from the output of the channel y1.
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For all j ∈ {2, 3, . . . , 2NR1,P }, the following holds:

Pr(E1j1)
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,y1)∈T

(N,ε)

V U1X1U2Y1

PX1|U1V (x1|u1,v)PY 1|U1U2V (y1|u1,u2,v)PU1U2V (u1u2v),

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−N(H(X1|V,U1)+H(Y1|V,U1,U2)+H(V,U1,U2)−3ε)

≤2−N(H(X1|V,U1)+H(Y1|V,U1,U2)+H(V,U1U2)−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1;Y1|U1,U2,V )−4ε), (29b)

where the probability operator Pr[.] in (a) applies with a probability distribution PV U1X1U2Y 1

that factorizes as PX1|U1V PY 1|U1U2V PU1U2V given that the codeword x1 is independent from
the output of the channel y1.
For all i ∈ {2, 3, . . . , 2NR1,C} and j ∈ {2, 3, . . . , 2NR1,P } the following holds:

Pr(Eij1)
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,u2,y1)∈T

(N,ε)

V U1X1U2Y1

PU1X1|V (u1,x1|v)PU2Y 1|V (u2,y1|v)PV (v),

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−N(H(U1,X1|V )+H(U2,Y1|V )+H(V )−3ε)

≤2−N(H(U1,X1|V )+H(U2,Y1|V )+H(V )−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1;Y1|U2,V )−4ε), (29c)

where the probability operator Pr[.] in (a) applies with a probability distribution PV U1X1U2Y 1

that factorizes as PV PU1X1|V PU2Y 1|V given that all the codewords x1 and u1 are independent
from the output of the channel y1.
For all i ∈ {2, 3, . . . , 2NR1,C} and k ∈ {2, 3, . . . , 2NR2,C} the following holds:

Pr(Ei1k)
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,u2,y1)∈T

(N,ε)

V U1X1U2Y1

PU1X1U2|V (u1x1u2|v)PY 1|V (y1|v)PV (v),

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−N(H(U1,X1,U2|V )+H(Y1|V )+H(V )−3ε)

≤2−N(H(U1,X1,U2|V )+H(Y1|V )+H(V )−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1,U2;Y1|V )−4ε), (29d)

where the probability operator Pr[.] in (a) applies with a probability distribution PV U1X1U2Y 1

that factorizes as PU1X1U2|V PY 1|V PV given that all the codewords x1, u1 and u2 are indepen-
dent from the output of the channel y1.
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For all i ∈ {2, 3, . . . , 2NR1,P } and j ∈ {2, 3, . . . , 2NR2,C} the following holds:

Pr(Eij1)
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,u2,y1)∈T

(N,ε)

V U1X1U2Y1

PX1U2|U1V (x1u2|u1v)PY 1|U1V (y1|u1v)PU1V (u1v),

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−n(H(U1,X1,U2|V )+H(Y1|V )+H(V )−3ε)

≤2−N(H(U1,X1,U2|V )+H(Y1|V )+H(V )−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1,U2;Y1|V )−4ε), (29e)

where (a)the probability operator Pr[.] applies with a probability distribution PV U1X1U2Y 1 that
factorizes as PU1X1U2|V PY 1|V PV given that all the codewords x1 and u2 are independent from
the output of the channel y1.
For all i ∈ {2, 3, . . . , 2NR1,C}, j ∈ {2, 3, . . . , 2NR1,P } and k ∈ {2, 3, . . . , 2NR2,C} the following
holds

Pr(Eijk)
(a)
= Pr

ï
(V ,U1,X1,U2,Y 1) ∈ T (N,ε)

V U1X1U2Y1

ò
=

∑
(v,u1,x1,u2,y1)∈T

(N,ε)

V U1X1U2Y1

PU1X1U2|V (u1x1u2|v)PY 1|V (y1|v)PV (v),

(b)

≤
∣∣∣T (N,ε)
V U1X1U2Y1

∣∣∣ 2−n(H(U1,X1,U2|V )+H(Y1|V )+H(V )−3ε)

≤2−N(H(U1,X1,U2|V )+H(Y1|V )+H(V )−H(V,U1,X1,U2,Y1)−4ε)

= 2−N(I(X1,U2;Y1|V )−4ε), (29f)

where the probability operator Pr[.] in (a) applies with a probability distribution PV U1X1U2Y 1

that factorizes as PU1X1U2|V PY 1|V PV (v) given that all the codewords x1, u1 and u2 are inde-
pendent from the output of the channel y1.
Using (29) in (28), the following holds:

Pe ≤ 2N(R1c−I(X1;Y1|U2,V )+4ε)2N(R1p−I(X1;Y1|U1,U2,V )+4ε)

+2N(R1c+R1p−I(X1;Y1|U2,V )+4ε) + 2N(R1c+R2c−I(U2,X1;Y1|V )+4ε)

+2N(R1p+R2c−I(U2,X1;Y1|U1,V )+4ε) + 2N(R1p+R1c+R2c−I(U2,X1;Y1|V )+4ε). (30)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from (30), reliable decoding holds under the following conditions:

R1p ≤ a1, (31a)
R1p +R1c ≤ d1, (31b)
R1p +R2c ≤ e1, (31c)

R1p +R1c +R2c ≤ g1, (31d)
−R1p ≤ 0, (31e)
−R1c ≤ 0, (31f)
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R2p ≤ a2, (31g)
R2p +R2c ≤ d2, (31h)
R2p +R1c ≤ e2, (31i)

R1p +R1c +R2c ≤ g2, (31j)
−R2p ≤ 0, (31k)
−R2c ≤ 0, (31l)

where

a1=I(Y1;X1|U1, U2, V ), (32a)
d1=I(Y1;X1|U2, V ), (32b)
e1=I(Y1;X1, U2|U1, V ), (32c)
g1=I(Y1;X1, U2|V ), (32d)
a2=I(Y2;X2|U1, U2, V ), (32e)
d2=I(Y2;X2|U1, V ), (32f)
e2=I(Y2;X2, U1|U2, V ), (32g)
g2=I(Y2;X2, U1|V ). (32h)

The proof continues by applying a Fourrier-Motzkin elimination process on (31).
Set R1p = R1 −R1c, R2p = R2 −R2c and eliminate R1p, R2p from the set of inequalities (31) to
obtain

R1 −R1c ≤ a1, (33a)
R1 ≤ d1, (33b)

R1 −R1c +R2c ≤ e1, (33c)
R1 +R2c ≤ g1, (33d)
−R1 +R1c ≤ 0, (33e)

−R1c ≤ 0, (33f)
R2 −R2c ≤ a2, (33g)

R2 ≤ d2, (33h)
R2 −R2c +R1c ≤ e2, (33i)

R2 +R1c ≤ g2, (33j)
−R2 +R2c ≤ 0, (33k)

−R2c ≤ 0. (33l)

Collect the inequalities in (33) that do not include R1c to obtain:

R1 ≤ d1, (34a)
R1 +R2c ≤ g1, (34b)
R2 −R2c ≤ a2, (34c)

R2 ≤ d2, (34d)
−R2 + T2 ≤ 0, (34e)
−R2c ≤ 0. (34f)
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Also, collect the inequalities in (33) that include R1c with positive coefficients to obtain:

R2 −R2c +R1c ≤ e2, (35a)
R2 +R1c ≤ g2, (35b)
−R1 +R1c ≤ 0. (35c)

Furthermore, collect the inequalities in (33) that include −R1c to obtain:

−R1c≤0, (36a)
R1 −R1c≤a1, (36b)

R1 −R1c +R2c≤e1. (36c)

Next, eliminate R1c by summing each inequality in (35) with (36) to obtain:

R2 −R2c ≤ e2, (37a)
R2 ≤ g2, (37b)
−R1 ≤ 0, (37c)

R1 +R2 −R2c ≤ a1 + e2, (37d)
R1 +R2 ≤ a1 + g2, (37e)

0 ≤ a1, (37f)
R1 +R2 ≤ e1 + e2, (37g)

R1 +R2 +R2c ≤ e1 + g2, (37h)
R2c ≤ e1. (37i)

Collect the inequalities in (33) and (37) that do not include R2c to obtain:

0 ≤ a1, (38a)
R1 ≤ d1, (38b)
R2 ≤ d2, (38c)
R2 ≤ g2, (38d)
−R1 ≤ 0, (38e)

R1 +R2 ≤ a1 + g2, (38f)
R1 +R2 ≤ e1 + e2. (38g)

Collect the inequalities in (38) that include R2c to obtain:

R2c ≤ e1, (39a)
R1 +R2c ≤ g1, (39b)

R1 +R2 +R2c ≤ e1 + g2, (39c)
−R2 +R2c ≤ 0. (39d)

Collect the inequalities in (38) that include −R2c to obtain:

−R2c≤0, (40a)
R2 −R2c≤a2, (40b)
R2 −R2c≤e2, (40c)

R1 +R2 −R2c≤a1 + e2. (40d)
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Note that (38a) is redundant due to the positivity of mutual information. The inequality (38d)
is redundant with respect to (38c), given that:

g2=I(Y2;X2, U1|V )

=I(Y2;U1|V ) + I(Y2;X2|U1, V )

=d2 + I(Y2;U1|V )

≥d2. (41)

The inequality (40c) is redundant with respect to (40b), as shown hereunder:

e2=I(Y2;X2, U1|U2, V )

=I(Y2;U1|U2, V ) + I(Y2;X2|U2, U1, V )

=a2 + I(Y2;U1|U2, V )

≥a2. (42)

Eliminate R2c by adding each inequality from (39) to each inequality (40) to obtain inequalities
not including R2c:

0 ≤ e1, (43a)
R1 ≤ g1, (43b)

R1 +R2 ≤ e1 + g2, (43c)
−R2 ≤ 0, (43d)
R2 ≤ a2 + e1, (43e)

R1 +R2 ≤ a2 + g1, (43f)
R1 + 2R2 ≤ a2 + e1 + g2, (43g)

0 ≤ a2, (43h)
R1 +R2 ≤ a1 + e2 + e1, (43i)

2R1 +R2 ≤ a1 + e2 + g1, (43j)
2R1 + 2R2 ≤ a1 + e2 + e1 + g2, (43k)

R1 ≤ a1 + e2. (43l)

Note that (43a) and (43h) are redundant due to the positivity of mutual information. The
inequality (43b) is redundant with respect to (38b), as shown hereunder:

g1=I(Y1;X1, U2|V )

=I(Y1;U2|V ) + I(Y1;X1|U2, V )

=d1 + I(Y1;U2|V )

≥d1. (44)

The inequality (43c) is redundant with respect to (38f), since

e1=I(Y1;X1, U2|U1, V )

=I(Y1;U2|U1, V ) + I(Y1;X1|U1, U2, V )

=a1 + I(Y1;U2|U1, V )

≥a1. (45)
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Note also that the inequality (43i) is redundant with respect to (38g). Furthermore, the inequality
(43k) is redundant with respect to (38f) and (38g). Hence, the system of inequalities in (31) can
be simplified as folllows:

R1 ≤ d1, (46a)
R1 ≤ a1 + e2, (46b)
R2 ≤ d2, (46c)
R2 ≤ a2 + e1, (46d)

R1 +R2 ≤ a1 + g2, (46e)
R1 +R2 ≤ a2 + g1, (46f)
R1 +R2 ≤ e1 + e2, (46g)

2R1 +R2 ≤ a1 + g1 + e2, (46h)
R1 + 2R2 ≤ a2 + g2 + e1. (46i)

Finally, following the result of [2], the inequalities (46b) and (46d) can be dropped and this
completes the proof of Lemma 1.

The proof of Theorem 1 continues as follows. Let k ∈ {0, 1} be fixed. Consider the following
Gaussian input distribution for transmitter k:

V ∼ N (0, 1); Uk ∼ N (0, λkc); Sk ∼ N (0, λkp), (47)

where Xk =
√
PkSk +

√
PkUk +

√
λkePkV ; and (λkp, λkc, λke) ∈ [0, 1]3 and λkp + λkc + λke ≤ 1.

By symmetry, it suffices to prove (14a), (14c), (14e) and (14f). The choice of the Gaussian input
distribution in (47) yields:

I(X1;Y1|U2, V )=h(Y1|U2, V )− h(Y1|X1, U2, V )

=
1

2
log

Å
2πeVar[Y1|U2, V ]

ã
− 1

2
log

Å
2πeVar[Y1|X1, U2, V ]

ã
=

1

2
log

Å
2πe

(
σ2
1 + h211(1− λ1e)P1 − h221λ2pP2

)ã
−1

2
log

Å
2πe(σ2

1 + h221λ2pP2)

ã
=

1

2
log

Å
1 +

(1− λ1e)SNR1

1 + λ2pINR1

ã
, (48a)

I(X1, U2;Y1|V )=h(Y1|V )− h(Y1|X1, U2, V )

=
1

2
log

Å
2πeVar[Y1|V ]

ã
− 1

2
log

Å
2πeVar[Y1|X1, U2, V ]

ã
=

1

2
log

Å
2πe(σ2

1 + h211(1− λ1e)P1 + h222(1− λ2eP2)

ã
−1

2
log

Å
2πe(σ2

1 + h221λ2pP2)

ã
=

1

2
log

Å
1 + (1− λ1e)SNR1 + (1− λ2e)INR1

1 + λ2pINR1

ã
, (48b)
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I(X2;Y2|U1, U2, V )=h(Y2|U1, U2, V )− h(Y2|U1, U2, X2, V )

=
1

2
log

Å
2πeVar[Y2|U1, U2, V ]

ã
− 1

2
log

Å
2πeVar[Y2|U1, U2, X2, V ]

ã
=

1

2
log

Å
2πe(σ2

2 + h222λ2pP2 + h221λ1pP1)

ã
−1

2
log

Å
2πe(σ2

2 + h221λ1pP1)

ã
=

1

2
log

Å
1 +

λ2pSNR2

1 + λ1pINR2

ã
, (48c)

I(X1, U2;Y1|U1, V )=h(Y1|U1, V )− h(Y1|U1, U2, X1, V )

=
1

2
log

Å
2πeVar[Y1|U1, V ]

ã
− 1

2
log

Å
2πeVar[Y1|U1, U2, X1, V ]

ã
=

1

2
log

Å
2πe(σ2

1 + h211λ1pP1 + h212(1− λ2e)P2)

ã
−1

2
log

Å
2πe(σ2

1 + h212λ2pP2)

ã
=

1

2
log

Å
1 + λ1pSNR1 + (1− λ2e)INR1

1 + λ2pINR1

ã
, (48d)

I(X2, U1;Y2|U2, V )=h(Y2|U2, V )− h(Y2|U2, U1, X2, V )

=
1

2
log

Å
2πeVar[Y2|U2, V ]

ã
− 1

2
log

Å
2πeVar[Y2|U2, U1, X2, V ]

ã
=

1

2
log

Å
2πe(σ2

1 + h222λ2pP2 + h221(1− λ1e)P1)

ã
−1

2
log

Å
2πe(σ2

2 + h221λ1pP1)

ã
=

1

2
log

Å
1 + λ2pSNR2 + (1− λ1e)INR2

1 + λ1pINR1

ã
, (48e)

which proves (14a), (14c) and (14e). Finally, using (48c), (48d) and (48e), the proof of (14f)
follows immediately .

A.2 Proof of (14h)
The choice of the channel input in (47) guarantee that the random variables Y3,1, . . . , Y3,n are
independently and identically distributed (i.i.d.). For all n ∈ {1, 2, . . . , N}, Y3,n follows a zero-
mean Gaussian distribution with variance B̄ given by

B̄=E[Y 2
3,n]

=E[(h31X1,n + h32X2,n + Z3,n)2]

=h231E[X2
1,n] + h232E[X2

2,n] + 2h31h32E[X1,nX2,n] + σ2
3

=h231P1 + h232P2 + 2h31h32E[X1,nX2,n] + σ2
3

≤h231P1 + h232P2 + 2h31h32
√
λ1eP1λ2eP2 + σ2

3 .

By the weak law of large numbers, it holds that ∀ε > 0,

lim
N→∞

Pr
Ä
|B(N) − B̄| > ε

ä
= 0. (49)
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Consequently,

lim
N→∞

Pr
Ä
B(N) > B̄ + ε

ä
= 0 and (50a)

lim
N→∞

Pr
Ä
B(N) < B̄ − ε

ä
= 0. (50b)

From (50b), it holds that for any energy rate B which satisfies 0 < B 6 B̄, it holds that

lim
N→∞

Pr
Ä
B(N) < B − ε

ä
= 0. (51)

This proves (14h) and completes the proof of Theorem 1.

B Proof of Theorem 2
Fix an information-energy rate triplet (R1, R2, B) achievable with a given coding scheme (Defi-
nition 1). Denote by X1 and X2 the channel inputs resulting from transmitting the independent
messageW1 andW2 using such coding scheme. Denote by Y 1 and Y 2 the corresponding channel
outputs. The bounds (15a) and (15b) on R1 and R2 are trivial and can be obtained by removing
the interference from the other user and calculating the point-to-point capacity:

NR16
N∑
n=1

h(Y1,n|X2,n)−Nh(Z1) + o(N) and (52)

NR26
N∑
n=1

h(Y2,n|X1,n)−Nh(Z2) + o(N). (53)

Define the following random variables:

T1 = h21X1 + Z2, (54)
T2 = h12X2 + Z1, (55)
U1 = h21X1 + Z

′

2, and (56)
U2 = h12X2 + Z

′

1, (57)

where, Z
′

1 and Z
′

2 are real Gaussian random variables with zero mean and variances σ2
1 and σ2

2 ,
respectively, independent of each other and of (X1, X2, Z1, Z2). The outer bound is established
by using a genie aided argument. For all j ∈ {1, 2}, by Fano’s inequality, it follows that

NRj=H(Mj)

≤I(Mj ;Yj) + o(N)

≤I(Xj ;Y j) + o(N), (58)

where o(N)
N tends to zero as N tends to infinity. Using the definition of mutual information,

yields:

I(X1;Y 1)=h(Y 1)− h(Y 1|X1)

=h(Y 1)− h(T2|X1)

=h(Y 1)− h(T 2)

≤
N∑
n=1

h(Y1,n)− h(T 2). (59a)
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Consider the genie-aided channel in which a genie provides U1 and X2 to receiver 1, then
I(X1;Y 1) can be upper bounded as follows:

I(X1;Y 1)≤ I(X1;Y 1,U1,X2)

= I(X1,U1) + I(X1,X2|U1) + I(X1;Y 1|U1,X2)

=h(T 1)− h(U1|X1) + h(Y 1|U1,X2)− h(Y 1|X1,U1,X2)

=h(T 1)− h(U1|X1) + h(Y 1|U1,X2)− h(T 2|X2)

(a)

≤h(T 1)− h(Z
′

2) +
N∑
n=1

h(Y1,n|U1,n, X2,n)− h(Z2)

=h(T 1)−Nh(Z
′

2) +
N∑
n=1

h(Y1,n|U1,n, X2,n)−Nh(Z2), (59b)

where (a) follows from the fact that conditioning reduces the entropy. Consider the genie-aided
channel in which a genie provides U1 to receiver 1, then I(X1;Y 1) can be upper bounded as
follows:

I(X1;Y 1)≤ I(X1;Y 1,U1)

= I(X1;U1) + I(X1;Y 1|U1)

=h(U1)− h(U1|X1) + h(Y 1|U1)− h(Y 1|X1,U1)

=h(T 1)− h(U1|X1) + h(Y 1|U1)− h(T 2)

(a)

≤h(T 1)− h(T 2)− h(Z
′

2) +
N∑
i=1

h(Y1,n|U1,n)

=h(T 1)− h(T 2)−Nh(Z
′

2) +
N∑
n=1

h(Y1,n|U1,n). (59c)

Consider the genie-aided channel in which a genie provides X2 to receiver 1, then I(X1;Y 1)
can be upper bounded as follows:

I(X1;Y 1)≤ I(X1;Y 1,X2)

= I(X1;X2) + I(X1;Y 1|X2)

=h(Y 1|X2)− h(Y 1|X1,X2)

=h(Y 1|X2)− h(T 2|X2)

(a)

≤
N∑
n=1

h(Y1,n|X2,n)− h(Z1)

=
N∑
n=1

h(Y1,n|X2,n)−Nh(Z1). (59d)
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By symmetry, similar bounds can be established for I(X2;Y 2), namely,

I(X2;Y2)≤
N∑
n=1

h(Y2,n)− h(T 1), (59e)

I(X2;Y2)≤h(T 2)−Nh(Z
′

1) +
N∑
n=1

h(Y2,n|U2,n, X1,n)−Nh(Z1), (59f)

I(X2;Y 2)≤h(T 2)− h(T 1)−Nh(Z
′

1) +
N∑
n=1

h(Y2,n|U2,n), (59g)

I(X2;Y 2)≤
N∑
n=1

h(Y2,n|X2,n)−Nh(Z1). (59h)

The key idea of the proof is to consider a linear combination of the inequalities in (59), where
all the terms on h(T 1) and h(T 2) are removed. Adding (59f) and (59a) and plugging into (58)
yields the first bound on sum rate:

N(R1 +R2) 6
N∑
n=1

h(Y1,n) +
N∑
n=1

h(Y2,n|U2,n, X1,n)−Nh(Z2)−Nh(Z
′

1) + o(N). (60a)

Adding (59b) and (59e) and plugging into (58) yields the second bound on sum rate:

N(R1 +R2) 6
N∑
n=1

h(Y2,n) +
N∑
n=1

h(Y1,n|U1,n, X2,n)−Nh(Z1)−Nh(Z
′

2) + o(N). (60b)

Adding (59c) and (59g) and plugging into (58) yields the third bound on sum rate:

N(R1 +R2) 6
N∑
n=1

h(Y1,n|U1,n) +
N∑
n=1

h(Y2,n|U2,n)−Nh(Z
′

1)−Nh(Z
′

2) + o(N). (60c)

Adding (59a), (59b) and (59g) and plugging into (58) yields the first bound for the weighted sum
rate:

N(2R1 +R2)6
N∑
n=1

h(Y1,n) +
N∑
n=1

h(Y1,n|U1,n, X2,n) +
N∑
n=1

h(Y2,n|U2,n)

−N
Ä
h(Z1) + h(Z2) + h(Z

′

1) + h(Z
′

2)
ä

+ o(N). (60d)

Adding (59e), (59f) and (59c) and plugging into (58) yields the second bound for the weighted
sum rate :

N(R1 + 2R2)6
N∑
n=1

h(Y2,n) +
N∑
n=1

h(Y2,n|U2,n, X1,n) +
N∑
n=1

h(Y1,n|U1,n)

−N
Ä
h(Z1) + h(Z2) + h(Z

′

1) + h(Z
′

2)
ä

+ o(N). (60e)
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Hence, the information rates can be upper bounded as follows:

NR1 6
N∑
n=1

h(Y1,n|X2,n)−Nh(Z1) + o(N), (61a)

NR2 6
N∑
n=1

h(Y2,n|X1,n)−Nh(Z2) + o(N), (61b)

N(R1 +R2) 6
N∑
n=1

h(Y1,n) +
N∑
n=1

h(Y2,n|U2,n, X1,n)−Nh(Z2)−Nh(Z
′

1) + o(N), (61c)

N(R1 +R2) 6
N∑
n=1

h(Y2,n) +
N∑
n=1

h(Y1,n|U1,n, X2,n)−Nh(Z1)−Nh(Z
′

2) + o(N), (61d)

N(R1 +R2) 6
N∑
n=1

h(Y1,n|U1,n) +
N∑
n=1

h(Y2,n|U2,n)−Nh(Z
′

1)−Nh(Z
′

2) + o(N), (61e)

N(2R1 +R2) 6
N∑
n=1

h(Y1,n) +
N∑
n=1

h(Y1,n|U1,n, X2,n) +
N∑
n=1

h(Y2,n|U2,n)

− N
Ä
h(Z1) + h(Z2) + h(Z

′

1) + h(Z
′

2)
ä

+ o(N), (61f)

N(R1 + 2R2) 6
N∑
n=1

h(Y2,n) +
N∑
n=1

h(Y2,n|U2,n, X1,n) +
N∑
n=1

h(Y1,n|U1,n)

− N
Ä
h(Z1) + h(Z2) + h(Z

′

1) + h(Z
′

2)
ä

+ o(N). (61g)

Using assumption (13b), for a given εN > 0, for any η > 0 there exist N0(η) such that for any
N ≥ N0(η) it holds that

Pr
î
B(N) < B − εN

ó
< η. (62)

Equivalently,
Pr
î
B(N) ≥ B − εN

ó
≥ 1− η. (63)

From Markov’s inequality [7], the following holds:

(B − εN )Pr
î
B(N) ≥ B − εN

ó
≤ E[B(N)]. (64)

Combining (63) and (64) yields

(B − εN )(1− η) ≤ E[B(N)], (65)

which can be written as
(B − δN ) ≤ E[B(N)], (66)

for some δN > εN (for sufficiently large N).
In the following, for all n ∈ N, the bounds in (71) and (66) are evaluated assuming that the
channel inputs X1,n and X2,n are arbitrary independent with

µi,n
4
= E[Xi,n], (67)

γ2i,n
4
= Var[Xi,n], (68)
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for n ∈ {1, . . . , N} and for i ∈ {1, 2}. The input sequence must satisfy the input power constraint
in (4), which can be written, for i ∈ {1, 2}, as

1

n

N∑
n=1

E[X2
i,n] =

(
1

N

N∑
n=1

γ2i,n

)
+

(
1

N

N∑
n=1

µ2
i,n

)
6 Pi. (69)

Using these assumptions the following holds:

h(Yi,n) 6 1

2
log

Å
2πeVar[Yi,n]

ã
=

1

2
log

Å
2πe(σ2 + h2iiγ

2
i,n + h2ijγ

2
j,n)

ã
, (70a)

h(Yi,n|Ui,n, Xj,n) 6 1

2
log

Å
2πeVar[Yi,n|Ui,n, Xj,n]

ã
6 1

2
log

Å
2πeVar[hiiXi,n + Zi,n, Ui,n]

ã
− 1

2
log

Å
2πeVar[Ui,n]

ã
=

1

2
log

Å
σ2
jγ

2
i h

2
ii + σ2

1γ
2
i h

2
ji + σ2

i σ
2
j

γ2i h
2
ji + σ2

j

ã
=

1

2
log

Ö
1 +

h2
iiγ

2
i,n

σ2
i

1 +
h2
ji
γ2
i,n

σ2
j

è
+

1

2
log(2πeσ2

i σ
2
j ), (70b)

h(Yi,n|Ui,n) 6 1

2
log

Å
2πeVar[Yi,n|Ui,n]

ã
6 1

2
log

Å
2πeVar [Yi,n, Ui,n]]

ã
− 1

2
log

Å
2πeVar[Ui,n]

ã
=

1

2
log

Å
σ2
jγ

2
i h

2
ii + σ2

i γ
2
i,nh

2
ji + h2ijh

2
jiγ

2
i,nγ

2
j,n + σ2

i σ
2
j

γ2i h
2
ji + σ2

j

ã
6 1

2
log

Ö
1 +

h2
iiγ

2
i,n

σ2
i

+
h2
ijγ

2
j,n

σ2
i

+
γ2
i,nγ

2
j,nh

2
ijh

2
ji

σ2
i
σ2
j

1 +
γ2
i,n
h2
ji

σ2
j

è
+

1

2
log(2πeσ2

i σ
2
j ), (70c)

Finally, plugging (70) in (61), it yields:

NR1 6
N∑
n=1

1

2
log

Ç
1 +

γ21,nh
2
11

σ2
1

å
+ o(N), (71a)

NR2 6
N∑
n=1

1

2
log

Ç
1 +

γ22,nh
2
22

σ2
2

å
+ o(N), (71b)

N(R1 +R2) 6
N∑
n=1

log

Ç
1 +

h211γ
2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

å
+

N∑
n=1

1

2
log

Ñ
1 +

h2
22γ

2
2,n

σ2
2

1 +
h2
12γ

2
2,n

σ2
1

é
+ o(N), (71c)

N(R1 +R2) 6
N∑
n=1

log

Ç
1 +

h222γ
2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

å
+

N∑
n=1

1

2
log

Ñ
1 +

h2
11γ

2
1,n

σ2
1

1 +
h2
21γ

2
1,n

σ2
2

é
+ o(N), (71d)
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N(R1 +R2) 6
N∑
n=1

1

2
log

Ñ
1 +

h2
11γ

2
1,n

σ2
1

+
h2
12γ

2
2,n

σ2
1

+
γ2
1,nγ

2
2,nh

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
1,nh

2
21

σ2
2

é
(71e)

+
N∑
n=1

1

2
log

Ñ
1 +

h2
22γ

2
2,n

σ2
2

+
h2
21γ

2
1,n

σ2
2

+
γ2
1,nγ

2
2,nh

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
2,nh

2
12

σ2
1

é
+ o(N),

N(2R1 +R2) 6
N∑
n=1

1

2
log

Ñ
1 +

h2
11γ

2
1,n

σ2
1

1 +
h2
21γ

2
1,n

σ2
2

é
+

N∑
n=1

log

Ç
1 +

h211γ
2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

å
(71f)

+
N∑
n=1

1

2
log

Ñ
1 +

h2
22γ

2
2,n

σ2
2

+
h2
21γ

2
1,n

σ2
2

+
γ2
1,nγ

2
2,nh

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
2,nh

2
12

σ2
1

é
+ o(N),

N(R1 + 2R2) 6
N∑
n=1

1

2
log

Ñ
1 +

h2
22γ

2
2,n

σ2
2

1 +
h2
12γ

2
2,n

σ2
1

é
+

N∑
n=1

log

Ç
1 +

h222γ
2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

å
(71g)

+
N∑
n=1

1

2
log

Ñ
1 +

h2
11γ

2
1,n

σ2
1

+
h2
12γ

2
2,n

σ2
1

+
γ2
1,nγ

2
2,nh

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
1,nh

2
21

σ2
2

é
+ o(N).

The expectation of the average received energy rate is given by

E
î
B(N)

ó
= E

[
1

N

N∑
n=1

Y 2
3,n

]

= σ2
3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32
1

N

N∑
n=1

µ1,nµ2,n. (72)

Using Cauchy-Schwarz inequality, the energy rate in (72) can be upper-bounded as follows:

E
î
B(N)

ó
6 σ2

3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2

. (73)

Combining (66) and (73) yields the following upper-bound on the energy rate B:

B6σ2
3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2

+ δN . (74)
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In order to obtain a single-letterization of the upper-bound given by constraints (71) and (74),
define also

µ2
i
4
=

1

N

N∑
n=1

µ2
i,t, i ∈ {1, 2}, (75)

γ2i
4
=

1

N

N∑
n=1

γ2i,n, i ∈ {1, 2}, (76)

Using these notations, the input power constraint in (125) can be rewritten as

γ2i + µ2
i 6 Pi, with i ∈ {1, 2}. (77)

By the concavity of the mutual information, applying Jensen’s inequality to the bounds in (71)
yields in the asymptotic blocklength regime:

R1 6 1

2
log

Å
1 +

γ21h
2
11

σ2
1

ã
, (78a)

R2 6 1

2
log

Å
1 +

γ22h
2
22

σ2
2

ã
, (78b)

R1 +R2 6 log

Å
1 +

h211γ
2
1

σ2
1

+
h212γ

2
2

σ2
1

ã
+

1

2
log

Ñ
1 +

h2
22γ

2
2

σ2
2

1 +
h2
12γ

2
2

σ2
1

é
, (78c)

R1 +R2 6 log

Å
1 +

h222γ
2
2

σ2
2

+
h221γ

2
1

σ2
2

ã
+

1

2
log

Ñ
1 +

h2
11γ

2
1

σ2
1

1 +
h2
21γ

2
1

σ2
2

é
, (78d)

R1 +R2 6 1

2
log

Ñ
1 +

h2
11γ

2
1

σ2
1

+
h2
12γ

2
2

σ2
1

+
γ2
1γ

2
2h

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
1h

2
21

σ2
2

é
(78e)

+
1

2
log

Ñ
1 +

h2
22γ

2
2

σ2
2

+
h2
21γ

2
1

σ2
2

+
γ2
1γ

2
2h

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
2,nh

2
12

σ2
1

é
,

2R1 +R2 6 1

2
log

Ñ
1 +

h2
11γ

2
1

σ2
1

1 +
h2
21γ

2
1

σ2
2

é
+ log

Å
1 +

h211γ
2
1

σ2
1

+
h212γ

2
2

σ2
1

ã
(78f)

+
1

2
log

Ñ
1 +

h2
22γ

2
2

σ2
2

+
h2
21γ

2
1

σ2
2

+
γ2
1γ

2
2h

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
2h

2
12

σ2
1

é
,

R1 + 2R2 6 1

2
log

Ñ
1 +

h2
22γ

2
2

σ2
2

1 +
h2
12γ

2
2

σ2
1

é
+ log

Å
1 +

h222γ
2
2

σ2
2

+
h221γ

2
1

σ2
2

ã
(78g)

+
1

2
log

Ñ
1 +

h2
11γ

2
1

σ2
1

+
h2
12γ

2
2

σ2
1

+
γ2
1γ

2
2h

2
12h

2
21

σ2
1σ

2
2

1 +
γ2
1h

2
21

σ2
2

é
,

and the upper-bound on the energy rate (74) yields

B 6 σ2
3 + h231(γ21 + µ2

1) + h232(γ22 + µ2
2) + 2h31h32|µ1||µ2|. (78h)
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To sum up, it has been shown so far that, in the limit when N tends to infinity, any information-
energy rate triplet
(R1, R2, B) ∈ ENFB

b can be bounded by the constraints in (78) for some γ1, γ2, µ1, µ2 satisfy-
ing (77). Let Rb(γ1, γ2, µ1, µ2) denote the set of information-energy rate triplets satisfying (78)
for some γ1, γ2, µ1, µ2 such that (77) is true. Thus, it holds that

Eb ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

Rb(γ1, γ2, µ1, µ2). (79)

In this union, it suffices to consider µ1 > 0, µ2 > 0, and γ1, γ2, µ1, and µ2 that saturate the
input power constraint (i.e., (77) holds with equality). Thus,

Eb ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

Rb(γ21 , γ22 , µ1, µ2) ⊆
⋃

σ2
1+µ

2
1=P1

γ2
2+µ

2
2=P2

Rb(γ21 , γ22 , µ1, µ2). (80)

Let βi ∈ [0, 1] be defined as follows:

βi
4
=
γ2i
Pi

=
Pi − µ2

i

Pi
, i ∈ {1, 2}. (81)

With these notations, any region Rb(γ21 , γ22 , µ1, µ2) in the union over all (µ1, µ2, γ1, γ2) that
satisfy γ21 + µ2

1 = P1 and γ22 + µ2
2 = P2, can be rewritten as follows:

R1 6 1

2
log

Å
1 +

β1P1h
2
11

σ2
1

ã
, (82a)

R2 6 1

2
log

Å
1 +

β2P2h
2
22

σ2
2

ã
, (82b)

R1 +R2 6 log

Å
1 +

h211β1P1

σ2
1

+
h212β2P2

σ2
1

ã
+

1

2
log

Ñ
1 +

h2
22β2P2

σ2
2

1 +
h2
12β2P2

σ2
1

é
, (82c)

R1 +R2 6 log

Å
1 +

h222β2P2

σ2
2

+
h221β1P1

σ2
2

ã
+

1

2
log

Ñ
1 +

h2
11β1P1

σ2
1

1 +
h2
21β1P1

σ2
2

é
, (82d)

R1 +R2 6 1

2
log

Ñ
1 +

h2
11β1P1

σ2
1

+
h2
12β2P2

σ2
1

+
β1β2P1P2h

2
12h

2
21

σ2
1σ

2
2

1 +
β1P1h2

21

σ2
2

é
(82e)

+
1

2
log

Ñ
1 +

h2
22β2P2

σ2
2

+
h2
21β1P1

σ2
2

+
β1β2P1P2h

2
12h

2
21

σ2
1σ

2
2

1 +
β2P2h2

12

σ2
1

é
,

2R1 +R2 6 1

2
log

Ñ
1 +

h2
11β1P1

σ2
1

1 +
h2
21β1P1

σ2
2

é
+ log

Å
1 +

h211β1P1

σ2
1

+
h212β2P2

σ2
1

ã
(82f)

+
1

2
log

Ñ
1 +

h2
22β2P2

σ2
2

+
h2
21β1P1

σ2
2

+
β1β2P1P2h

2
12h

2
21

σ2
1σ

2
2

1 +
β2P2h2

12

σ2
1

é
,
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R1 + 2R2 6 1

2
log

Ñ
1 +

h2
22β2P2

σ2
2

1 +
h2
12β2P2

σ2
1

é
+ log

Å
1 +

h222β2P2

σ2
2

+
h221β1P1

σ2
2

ã
(82g)

+
1

2
log

Ñ
1 +

h2
11β1P1

σ2
1

+
h2
12β2P2

σ2
1

+
β1β2P1P2h

2
12h

2
21

σ2
1σ

2
2

1 +
β1P1h2

21

σ2
2

é
,

B 6 σ2
3 + h231P1 + h232P2 + 2h31h32

»
(1− β1)P1(1− β2)P2, (82h)

B > b, (82i)

for some (β1, β2) ∈ [0, 1]2. Hence, such a region contains all information-energy rate triplets
(R1, R2, B) satisfying the constraints of Theorem 2 and this completes the proof of Theorem 2.

C Proof of Theorem 3
This proof is divided into two parts. The first part consists of the proof of (17a)-(17f). The
second part consists of the proof of (17g).

C.1 Proof of (17a)-(17f)
Lemma 2 For all (R1, R2, B) ∈ Eb, the following holds:

R1 ≤I(U,X1, U2;Y1|V ), (83)
R1 ≤I(U1;Y2|U,X2, V ) + I(X1;Y1|U1, U2, U, V ), (84)
R2 ≤I(U,X2, U1;Y2|V ), (85)
R2 ≤I(U2;Y1|U,X1, V ) + I(X2;Y2|U1, U2, U, V ), (86)
R1 +R2≤I(X1;Y1|U1, U2, U, V ) + I(V,U2, X1;Y1), (87)
R1 +R2≤I(X2;Y2|U1, U2, U, V ) + I(V,U2, X1;Y1), (88)

over all joint distribution: PV UU1U2S1S2
(v, u, u1, u2, s1, s2) =

PV (v)PU |V (u|v)PU1|UV (u1|u, v)PU2|UV (u2|u, v)PS1|U1UV (s1|u1, u, v)PS2|U2UV (s2|u2, u, v).

Proof: Codebook Generation: Fix a strictly positive joint probability distribution:
PV UU1U2S1S2

(v, u, u1, u2, s1, s2) = PV (v)PU |V (u|v)PU1|UV (u1|u, v)PU2|U,V (u2|u, v)
PS1|UU1V (x1|u, u1, v)PS2|UU2V (s2|u, u2, v), for all (v, u, u1, u2, x1, x2) ∈ X1∩X2×(X1∩X2)×X1×
X2×X1×X2. Let RE , R1,C , R2,C , R1,P and R2,P be non-negative real numbers. For transmitter
1, generate 2NRE i.i.d N-length codewords v(ω) = (v1(ω), . . . , vN (ω)) according to

PV (v(ω)) =
N∏
m=1

PV (vm(ω)), (89)

with ω ∈ {1, 2, . . . , 2NRE}. For each codeword v(ω), generate 2N(R1,C+R2,C) i.i.d. N-length
codewords u(ω, s, r) = (u1(ω, s, r), . . . , uN (ω, s, r)) according to

PU |V (u(s, r, ω)|v(ω)) =
N∏
m=1

PU |V (um(s, r, ω)|vm(ω)), (90)
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with s ∈ {1, . . . , 2NR1,C} and r ∈ {1, . . . , 2NR2,C}. For transmitter 1, for each codeword u(ω, s, r),
generate 2NR1,C i.i.d. N-length codewords u1(ω, s, r, k) = (u1,1(ω, s, r, k), . . . , u1,N (ω, s, r, k))
according to

PU1|UV

Å
u1(s, r, k, ω)|u(s, r),v(ω)

ã
=

N∏
m=1

PU1|UV

Å
u1,m(s, r, k, ω)|um(s, r, ω), vm(ω)

ã
, (91)

with k ∈ {1, . . . , 2NR1,C}. For each tuple of codewords (v(ω),u(ω, s, r),u1(ω, s, r, k)), generate
2NR1,P i.i.d. N-length codewords s1(ω, s, r, k, l) = (s1,1(ω, s, r, k, l), . . . , s1,N (ω, s, r, k, l)) accord-
ing to

PS1|U1UV

Å
s1(ω, s, r, k, l)|u1(ω, s, r, k),u(s, r),v(ω)

ã
=

N∏
m=1

PS1|U1UV

Å
s1,m(ω, s, r, k, l)|u1,m(ω, s, r, k), um(ω, s, r), vm(ω)

ã
, (92)

with l ∈ {1, . . . , 2NR1,P }.
For encoder 2, for each codeword u(ω, s, r), generate 2NR2,C i.i.d. N-length codewords u2(ω, s, r, q)
= (u2,1(ω, s, r, q), . . . , u2,1(ω, s, r, q)) according to

PU2|UV (u2(s, r, q, ω)|u(s, r),v(ω)) =
N∏
m=1

PU2|UV

Å
u2,m(ω, s, r, q)|um(ω, s, r), vm(ω)

ã
, (93)

with q ∈ {1, . . . , 2NR2,C}. For each tuple of codewords (v(ω),u(ω, s, r),u2(ω, s, r, q)), gener-
ate 2NR2,P i.i.d. N-length codewords s2(ω, s, r, q, z) = (s2,1(ω, s, r, q, z), . . . , s2,N (ω, s, r, q, z))
according to

PS2|U2UV (s2(ω, s, r, q, z)|u2(ω, s, r, q),u(ω, s, r),v(ω))

=
N∏
m=1

PS2|U2UV (s2,m

Å
ω, s, r, q, z)|u2,m(ω, s, r, q), um(ω, s, r), vm(ω)

ã
, (94)

with z ∈ {1, . . . , 2NR2,P }.
Encoding: Let W (t)

i be represented by the message index W
(t)
i,C ∈ {1, 2, . . . , 2NRi,C} and the

message index W (t)
i,P ∈ {1, 2, . . . , 2NRi,P }. The message index W (t)

i,P must be reliably decoded at
receiver i and the message index Ω(t) is known by both transmitters and receivers. The index
W

(t−1)
i,C must be reliably decoded by transmitter j (via feedback) but not necessarily by receiver

i.
Consider Markov encoding over T blocks. At encoding step t, with t ∈ {1, 2, . . . , T}, transmitter

1 sends the codeword x
(t)
1 = θ1

Å
(v(t)(Ω),u

Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,Ω

ä
,u1

Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C ,Ω

ä
,

s1
Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C ,W

(t)
1,P ,Ω

äã
, where θ1 : XN×(X1∪X2)N×X1×XN1 → XN1 is a function

that transforms the codewords v(t)(Ω),u
Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,Ω

ä
,u1

Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C ,Ω

ä
, and

s1
Ä
W

(t−1)
1,C ,W

(t−1)
2,C ,W

(t)
1,C ,W

(t)
1,P ,Ω

ä
into the N -dimensional vector x

(t)
1 . The indices W (0)

1,C =

W
(T )
1,C = s∗ and W (0)

2,C = W
(T )
2,C = r∗, and the pair (s∗, r∗) ∈ {1, 2, . . . , 2NR1,C}×{1, 2, . . . , 2NR2,C}

are pre-defined and known by both receivers and transmitters. Transmitter 2 follows a similar
encoding scheme.
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Decoding: Both receivers decode their message indices at the end of block T in a backward
decoding fashion. At each decoding step t, with t ∈ {1, 2, . . . , T}, receiver 1 obtains the indicesÅ
Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1)
1,P

ã
from the channel output y1.

The tuple
Å
Ŵ

(T−t)
1,C ,Ŵ (T−t)

2,C ,W (T−(t−1)
1,P

ã
is the unique tuple that satisfy:Å

(v(Ω(t)),u
Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C

ä
,u1

Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
1,C

ä
,

s1
Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
1,C ,W

(T−(t−1))
1,P

ä
,u2

Ä
Ω(t), Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1))
2,C

ä
,

y
(T−(t−1))
1

ã
∈ T (N,ε)

V UU1S1U2Y1
, (95)

where W (T−(t−1))
1,C and W (T−(t−1))

2,C are assumed to be perfectly decoded in the previous decoding
step t − 1. The set T (N,ε)

V UU1S1U2Y1
represent the set of jointly typical sequences of the random

variables V,U, U1, S1, U2, and Y1, with ε > 0. Finally, receiver 2 follows a similar decoding
scheme.
Probability of Error Analysis: An error might occur during encoding step t at transmitter
1 if the index Ŵ

(t−1)
2,C is not correctly decoded. Define the event Ek that describes the case

in which there exist another message index k that satisfy:
Å
v(Ω(t)),u

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C

ä
,

u1

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C ,W

(t−1)
1,C ,Ω

ä
, s1
Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C ,W

(t−1)
1,C ,W

(t−1)
1,P

ä
,

u2

Ä
Ω(t),W

(t−2)
1,C ,W

(t−2)
2,C , k

äã
∈ T (N,ε)

V UU1S1U2Y1
, with t ∈ {2, 3, . . . , T} and W (t−2)

2,C is assumed to be

perfectly decoded in the previous block t− 1. Then, the probability of event Ek can be bounded
as follows:

Pr(Ek)
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,Y 1|V (u,u1,x1,y2|v)PU2|V (u2|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,X1,Y1|V )+H(U2|V )+H(V )−4ε)

≤2−N(H(U,U1,X1,Y1|V )+H(U2|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

≤2−N(H(U,U1,X1,Y1|V )+H(U2|V )−H(U,U1,U2,X1,Y1|V )−4ε)

= 2−N(I(U,U1,X1,Y1;U2|V )−4ε)

= 2−N(I(Y1;U2|X1,V )−4ε), (96)

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,Y 1PU2|V given that all the codewords u2 are independent from
the output of the channel y1. The error probability becomes arbitrarily small (as N goes to
infinity) if

R2c ≤ I(U2, ;Y1|X1, U, V ). (97)

An error might occur during the (backward) decoding step t if the indices Ŵ (T−t)
1,C ,Ŵ (T−t)

2,C or
Ŵ

(T−(t−1)
1,P are not decoded correctly given that the indicesW (T−(t−1))

1,C andW (T−(t−1))
2,C were cor-

rectly decoded in the previous decoding step t− 1. These errors might arise for two reasons: (i)

there does not exist a tuple
Å
Ŵ

(T−t)
1,C , Ŵ

(T−t)
2,C ,W

(T−(t−1)
1,P

ã
that satisfies (95), or (ii) there exist
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several tuples
Å
Ŵ

(T−t)
1,C ,Ŵ (T−t)

2,C ,W (T−(t−1)
1,P

ã
that simultaneously satisfy (95). From the asymp-

totic equipartition property [6], the probability of error due to (i) tends to zero when N grows to
infinity. Consider the error due to (ii) and define the event Esrl that describes the case in which
the codewords v(Ω(t)),u

(
Ω(t), s, r

)
,u1

Ä
Ω(t), s, r,W

(T−(t−1))
1,C

ä
, s1
Ä
Ω(t), s, r,W

(T−(t−1))
1,C , l

ä
, and

u2

Ä
Ω(t), s, r,W

(T−(t−1))
2,C

ä
are jointly typical with y

(T−(t−1))
1 during decoding step t. Assume now

that the codeword to be decoded at decoding step t corresponds to the indices (s, r, l) = (1, 1, 1).
This is without loss of generality due to the symmetry of the code. Then, the probability of error
due to (ii) during decoding step t, can be bounded as follows:

Pr

 ⋃
(s,r,l) 6=(1,1,1)

Esrl


≤

∑
s6=1,r 6=1,l 6=1

Pr [Esrl] +
∑

s6=1,r 6=1,l=1

Pr [Esrl] +
∑

s6=1,r=1,l 6=1

Pr [Esrl]

+
∑

s6=1,r=1,l=1

Pr [Esrl] +
∑

s=1,r 6=1,l 6=1

Pr [Esrl] +
∑

s=1,r 6=1,l=1

Pr [Esrl]

+
∑

s=1,r=1,l 6=1

Pr [Esrl] , (98)

For all s ∈ {2, 3, . . . , 2NR1,C}, the following holds

Pr[Es11]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99a)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε),

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
independent from the output of the channel y1 . For all r ∈ {2, 3, . . . , 2NR2,C}, the following
holds

Pr[E1r1]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99b)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε).

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
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independent from the output of the channel y1. For all s ∈ {2, 3, . . . , 2NR1,C} and
r ∈ {2, 3, . . . , 2NR2,C}, the following holds

Pr[Esr1]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99c)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε),

where the probability operator Pr[.] applies in (a) with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
independent from the output of the channel y1. For all s ∈ {2, 3, . . . , 2NR1,C} and
l ∈ {2, 3, . . . , 2NR1,P }, the following holds

Pr[Es1l]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99d)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε),

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
independent from the output of the channel y1.
For all r ∈ {2, 3, . . . , 2NR2,C} and l ∈ {2, 3, . . . , 2NR1,P }, the following holds

Pr[E1rl]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99e)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε),

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
independent from the output of the channel y1.
For all s ∈ {2, 3, . . . , 2NR1,C}, r ∈ {2, 3, . . . , 2NR2,C} and l ∈ {2, 3, . . . , 2NR1,P }, the following
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holds

Pr[Esrl]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,X1,U2,|V (u,u1,x1,u2|v)PY1|V (y1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−4ε) (99f)

≤2−N(H(U,U1,U2,X1|V )+H(Y1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(U,U1,U2,X1;Y1|V )−4ε)

= 2−N(I(U,U2,X1;Y1|V )−4ε),

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,X1,U2,|V PY1|V given that all the codewords u,u1,x1, and u2 are
independent from the output of the channel y1.
For all l ∈ {2, 3, . . . , 2NR1,P }, the following holds

Pr[E11l]
(a)
= Pr

ï
(V ,U ,U1,X1,U2,Y 1) ∈ T (N,ε)

V UU1X1U2Y1

ò
=

∑
(v,u,u1,x1,u2,y1)∈T

(N,ε)

V UU1X1U2Y1

PV (v)PU ,U1,U2,Y 1|V (u,u1,u2,y1|v)PX1|V (x1|v),

≤
∣∣∣T (N,ε)
V UU1X1U2Y1

∣∣∣ 2−N(H(U,U1,U2,Y1|V )+H(X1|V )+H(V )−4ε) (99g)

≤2−N(H(U,U1,U2,Y1|V )+H(X1|V )+H(V )−H(U,U1,U2,X1,Y1)−4ε)

= 2−N(I(X1;U,U1,U2,Y1|V )−4ε)

= 2−N(I(X1;Y1|U,U1,U2,V )−4ε),

where the probability operator Pr[.] in (a) applies with a probability distribution PV UU1X1U2Y 1

that factorizes as PV PU ,U1,U2,Y 1|V PX1|V given that the codewords x1 is independent from the
output of the channel y1. Plugging (99) into (98) yields:

Pe ≤ 2N(R1C+R2C+R2P−I(U,X1,U2;Y1|V )+4ε) + 2N(R1C+R2C−I(U,X1,U2;Y1|V )+4ε)

+ 2N(R1C+R1P−I(U,X1,U2;Y1V )+4ε) + 2N(R1C−I(U,X1,U2;Y1|V )+4ε)

+ 2N(R2C+R1P−I(U,X1,U2;Y1|V )+4ε) + 2N(R2C−I(U,X1,U2;Y1|V )+4ε)

+ 2N(R1P−I(X1;Y1|U,U1,U2,V )+4ε). (100)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from (97) and (100), reliable decoding holds under the following conditions:

R2C ≤ I(U2;Y1|X1, U, V ), (101a)
R1P ≤ I(X1;Y1|U1, U2, , U, V ), (101b)
R1C +R2C +R1P ≤ I(U,X1, U2;Y1|V ), (101c)
R1C ≤ I(U1;Y2|X2, U, V ), (101d)
R2P ≤ I(X2;Y2|U1, U2, U, V ), (101e)
R1C +R2C +R2P ≤ I(U,X2, U1;Y2|V ). (101f)
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The proof continues by applying a Fourrier-Motzkin elimination process on (101). Set R1P =
R1 −R1C , R2P = R2 −R2C . Eliminate R1P , R2P from the inequalities in (101) to obtain:

R2C ≤ a1, (102a)
R1 −R1C ≤ a2, (102b)
R1 +R2C ≤ a3, (102c)

R1C ≤ b1, (102d)
R2 −R2C ≤ b2, (102e)
R2 +R1C ≤ b3, (102f)
−R1C ≤ 0, (102g)

−R1 +R1C ≤ 0, (102h)
−R2C ≤ 0, (102i)

−R2 +R2C ≤ 0. (102j)

Collect the inequalities in (102) that do not include R1C among the above inequalities to obtain:

R2C ≤ a1, (103a)
R1 +R2C ≤ a3, (103b)
R2 −R2C ≤ b2, (103c)
−R2C ≤ 0, (103d)

−R2 +R2C ≤ 0. (103e)

Collect the inequalities in (102) that include R1C with positive coefficients to obtain:

R1C ≤ b1, (104a)
R2 +R1C ≤ b3, (104b)
−R1 +R1C ≤ 0. (104c)

Collect the inequalities in (102) that include R1C with negative coefficients to obtain:

R1 −R1C ≤ a2, (105a)
−R1C ≤ 0. (105b)

Eliminate R1C by adding each inequality from (104) and each inequality from (105) to obtain:

R1 ≤ b1 + a2, (106a)
R2 ≤ b3, (106b)

R2 +R1 ≤ b3 + a2, (106c)
−R1 ≤ 0, (106d)
R2C ≤ a1, (106e)

R1 +R 2C ≤ a3, (106f)
−R2 +R2C ≤ 0, (106g)
R2 −R2C ≤ b2, (106h)
−R2C ≤ 0. (106i)
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Collect the inequalities in (106) that do not include R2C to obtain:

R1 ≤ b1 + a2, (107a)
R2 ≤ b3, (107b)

R2 +R1 ≤ b3 + a2, (107c)
−R1 ≤ 0. (107d)

Collect the inequalities in (106) that include R2C with positive coefficients to obtain:

R2C ≤ a1, (108a)
−R2 +R2C ≤ 0, (108b)
R1 +R 2C ≤ a3. (108c)

Collect the inequalities in (106) that include R2C with negative coefficients to obtain:

R2 −R2C ≤ b2, (109a)
−R2C ≤ 0. (109b)

Eliminate R2C by adding each inequality in (108) with each inequality in (109) to obtain:

R1 ≤ a3, (110a)
R1 ≤ b1 + a2, (110b)
R2 ≤ b3, (110c)
R2 ≤ a1 + b2, (110d)

R1 +R2 ≤ b3, (110e)
R1 +R2 ≤ a3 + b2. (110f)

This completes the proof of Lemma 2.
The proof of Theorem 4 continues as follows, let k ∈ {0, 1} be fixed and consider the following
Gaussian input distribution for transmitter k:

V ∼ N (0, 1); U ∼ N (0, ρ); Uk ∼ N (0, λkc); and Sk ∼ N (0, λkp), (111)

where Xk =
√
PkU +

√
PkXkp +

√
PkUk +

√
λkePkV ; and (ρ, λkp, λkc, λke) ∈ [0, 1]4 and ρ +

λkp + λkc + λke ≤ 1. By symmetry, it suffices to prove (17a), (17b) and (17e). The choice of the
Gaussian input distribution in Lemma 2 yields:

I(U,X1, U2;Y1|V ) = h(Y1|V )− h(Y1|U,X1, U2, V )

=
1

2
log

Å
2πeVar[Y1|V ]

ã
− 1

2
log

Å
2πeVar[Y1|U,X1, U2, V ]

ã
=

1

2
log

Å
2πe(σ2

1 + (1− λ1e)P1h
2
11 + (1− λ2e)P2h

2
12)

ã
−1

2
log

Å
2πe(σ2

1 + λ2pP2h
2
12)

ã
=

1

2
log

Å
1 + (1− λ1e)SNR1 + (1− λ2e)INR1 + 2ρ

√
SNR1INR1

1 + λ2pINR1

ã
, (112a)
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which proves (17a). With the same power setting in (111), the following holds

I(U1;Y2|U,X2, V ) = h(Y2|U,X2, V )− h(Y2|U,X2, U1, V )

=
1

2
log

Å
2πeVar[Y2|U,X2, V ]

ã
− 1

2
log

Å
2πeVar[Y2|U,X2, U1, V ]

ã
=

1

2
log

Å
2πe

(
σ2
2 + (1− (ρ+ λ1e))P1h

2
21

)ã
− 1

2
log

Å
2πe(σ2

2 + λ1pP1h
2
21)

ã
=

1

2
log

Å
1 + (1− (ρ+ λ1e))INR2

1 + λ1pINR2

ã
, and (112b)

I(X1;Y1|U,U1, U2, V ) = h(Y1|U,U1, U2, V )− h(Y1|U,U1, U2, X1, V )

=
1

2
log

Å
2πeVar[Y1|U,U1, U2, V ]

ã
− 1

2
log

Å
2πeVar[Y1|U,U1, U2, X1, V ]

ã
,

=
1

2
log

Å
2πe(σ2

1 + λ1pP1h
2
11 + λ2pP2h

2
12)

ã
− 1

2
log

Å
2πe(σ2

1 + λ2pP1h
2
21)

ã
=

1

2
log

Å
1 + λ1pSNR1 + λ2pINR1

1 + λ2pINR1

ã
. (112c)

This proves (17b). Finally, using (112b) and (112c), yields the proof of (17e).

C.2 Proof of 17g
The choice of the channel input in (111) guarantee that the random variables Y3,1, . . . , Y3,n
are independently and identically distributed (i.i.d.). For all n ∈ {1, 2, . . . , N}, Y3,n follows a
zero-mean Gaussian distribution with variance B̄ given by

B̄ = E[Y 2
3,n]

= E[(h31X1,n + h32X2,n + Z3,n)2]

= h231E[X2
1,n] + h232E[X2

2,n] + 2h31h32E[X1,nX2,n] + σ2
3

= h231P1 + h232P2 + 2h31h32E[X1,nX2,n] + σ2
3

≤ h231P1 + h232P2 + 2h31h32
√
P1P2(ρ+

√
λ1eλ2e) + σ2

3 , (113)

By the weak law of large numbers, it holds that ∀ε > 0

lim
n→∞

Pr
î
B(N) < B̄ − ε

ó
= 0 (114)

From (114), it holds that for any energy B which satisfies 0 < B ≤ B̄, it holds that

lim
n→∞

Pr
î
B(N) < B − ε

ó
= 0 (115)

This proves (17g) and completes the proof of Theorem 3.
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D Proof of Theorem 4
Fix an information-energy rate triplet (R1, R2, B) achievable with a given coding scheme (Defi-
nition 1). Denote by X1 and X2 the channel inputs resulting from transmitting the independent
messages (W1,Ω) and (W2,Ω) using such coding scheme. Denote by Y 1 and Y 2 the correspond-
ing channel outputs. Define the following random variables:

S1 = h21X1 + Z2 and (116)
S2 = h12X2 + Z1, (117)

where, Z1 and Z2 are real Gaussian random variables independent of each other with zero
means and variances σ2

1 and σ2
2 , respectively. Using assumption (13a) and Fano’s inequality and

following similar steps as in [5], it can be shown that the information rates R1 and R2 must
satisfy the following inequalities

NR1 ≤
N∑
n=1

[h(Y1,n)− h(Z1,n)] + o(N), (118a)

NR1 ≤
N∑
n=1

[h(Y2,n)|X2,n)− h(Z2,n) + h(Y1,n|X2,n, S1,n)− h(Z1,n)] + o(N), (118b)

NR2 ≤
N∑
n=1

[h(Y2,n)− h(Z2,n)] + o(N), (118c)

NR2 ≤
N∑
n=1

[h(Y1,n)|X1,n)− h(Z1,n) + h(Y2,n|X1,n, S2,n)− h(Z2,n)] + o(N), (118d)

N(R1 +R2) ≤
N∑
n=1

[h(Y1,n|S1,n, X2,n)− h(Z1,n) + h(Y2,n)− h(Z2,n)] + o(N), (118e)

N(R1 +R2) ≤
N∑
n=1

[h(Y2,n|S2,n, X1,n)− h(Z2,n) + h(Y1,n)− h(Z1,n)] + o(N). (118f)

Using assumptions (13b), for a given ε(N) > 0, for any η > 0 there exists N0(η) such that for
any n ≥ N0(η) it holds that

Pr
Ä
B(N) < B − ε(N)

ä
< η. (119)

Equivalently,
Pr
Ä
B(N) > B − ε(N)

ä
> 1− η. (120)

Using Markov’s inequality, the probability in (118) can be upper-bounded as follows:

(B − ε(N)) Pr
Ä
B(N) > B − ε(N)

ä
6 E[B(N)]. (121)

Combining (118) and (119) yields:

(B − ε(N))(1− η) 6 E[B(N)], (122)

which can be written as
(B − δ(N)) 6 E[B(N)], (123)

for some δ(N) > ε(N) (for sufficiently large N). The bounds in (116) and (121) are evaluated
assuming that the channel inputs X1,n and X2,n are arbitrary correlated random variables with
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µi,n
4
= E[Xi,n], (124)

γ2i,n
4
= Var[Xi,n], (125)

λn
4
= Cov[X1,nX2,n], (126)

for n ∈ {1, . . . , N} and for i ∈ {1, 2}. The input sequence must satisfy the input power constraint
which can be written, for i ∈ {1, 2}, as follows:

1

N

N∑
n=1

E[X2
i,n] =

(
1

N

N∑
n=1

γ2i,n

)
+

(
1

N

N∑
n=1

µ2
i,n

)
6 Pi. (127)

Using these asumptions, the following holds:

h(Y1,n) 6 1

2
log

Å
2πeVar[Y1,n]

ã
=

1

2
log

Å
2πe(h211γ

2
1,n + h212γ

2
2,n + 2h11h12λn + σ2

1)

ã
, (128a)

h(Y2,n|X2,n) 6 1

2
log

Å
2πeVar[Y2,n|X2,n]

ã
=

1

2
log

Å
2πe

Å
γ22,n +

h221
σ2
2

(γ21,nγ
2
2,n − λ2n)

ãã
− 1

2
log
(
2πeγ22,n

)
+

1

2
log(2πeσ2

2)

=
1

2
log

Å
1 + γ21,n

Ç
1− λ2n

γ21,nγ
2
2,n

å
h221
σ2
2

ã
+

1

2
log(2πeσ2

2), (128b)

h(Y1,n|X2,n, S1,n) 6 1

2
log (2πeVar[Y1,n|X2,n, S1,n])

6 1

2
log

Ñ
1 +

(
γ21,nγ

2
2,n − λ2n

) h2
11

σ2
1

γ22,n + (γ21,nγ
2
2,n − λ2n)

h2
21

σ2
2

é
+

1

2
log(2πeσ2

1)

=
1

2
log

Ö
1 +

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+

1

2
log(2πeσ2

1). (128c)

Given (X2,n, S1,n), the variance of Y1,n is upper-bounded by

Var[Y1,n|X2,n, S1,n] 6 KY1,n
−KY1,n(X2,n,S1,n)K

−1
(X2,n,S1,n)

KT
Y1,n(X2,n,S1,n)

, (129)

where

KY1,n = σ2
1,nh

2
11 + σ2

2,nh
2
12 + 2λnh11h12 + σ2

1 ,

KY1,n(X2,n,S1,n) = [λnh11 + h12γ
2
2,n, h21h11γ

2
1,n + λnh21h12], and

K(X2,n,S1,n) =

ï
γ22,n λnh21
λnh21 γ21,nh

2
21 + 1

ò
,
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Finally, the bounds in (116) can be rewritten as follows:

NR1 6
N∑
n=1

1

2
log

Ç
h211γ

2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

+
2h11h12λn

σ2
1

+ 1

å
+ o(N), (130a)

NR1 6
N∑
n=1

1

2
log

Ç
1 + γ21,n(1− λ2n

γ21,nγ
2
2,n

)
h221
σ2
2

å
+

N∑
n=1

1

2
log

Ö
1 +

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+ o(N), (130b)

NR2 6
N∑
n=1

1

2
log

Ç
h222γ

2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

+
2h22h21λn

σ2
2

+ 1

å
+ o(N), (130c)

NR2 6
N∑
n=1

1

2
log

Ç
1 + γ22,n

Ç
1− λ2n

γ21,nγ
2
2,n

å
h221
σ2
1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
22

σ2
2

1 + γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
12

σ2
1

è
+ o(N), (130d)

N(R1 +R2) 6
N∑
n=1

1

2
log

Ç
h222γ

2
2,n

σ2
2

+
h221γ

2
1,n

σ2
2

+
2h22h21λn

σ2
2

+ 1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
11

σ2
1

1 + γ21,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
21

σ2
2

è
+ o(N), (130e)

N(R1 +R2) 6
N∑
n=1

1

2
log

Ç
h211γ

2
1,n

σ2
1

+
h212γ

2
2,n

σ2
1

+
2h11h12λn

σ2
1

+ 1

å
+

N∑
n=1

1

2
log

Ö
1 +

γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
22

σ2
2

1 + γ22,n

(
1− λ2

n

γ2
1,nγ

2
2,n

)
h2
12

σ2
1

è
+ o(N). (130f)

The expectation of the average received energy rate is given by

E
î
B(N)

ó
= E

[
1

N

N∑
n=1

Y 2
3,n

]

= σ2
3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

n∑
n=N

(γ22,n + µ2
2,n)

)

+2h31h32

(
1

N

N∑
n=1

(λn + µ1,nµ2,n)

)
. (131)

Using Cauchy-Schwarz inequality, the expected value on the energy rate in (129) can be upper-
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bounded as follows:

E
î
B(N)

ó
6 σ2

3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

Ñ∣∣∣∣∣ 1

N

N∑
n=1

λn

∣∣∣∣∣+

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2
é
. (132)

Combining (121) and (130) yields the following upper-bound on the energy rate B:

B6σ2
3 + h231

(
1

N

N∑
n=1

(γ21,n + µ2
1,n)

)
+ h232

(
1

N

N∑
n=1

(γ22,n + µ2
2,n)

)

+2h31h32

Ñ∣∣∣∣∣ 1

N

N∑
n=1

λn

∣∣∣∣∣+

(
1

N

N∑
n=1

µ2
1,n

)1/2(
1

N

N∑
n=1

µ2
2,n

)1/2
é

+ δN . (133)

In order to obtain a single-letterization of the upper-bound given by constraints (128) and (131),
define also

µ2
i
4
=

1

N

N∑
n=1

µ2
i,n, i ∈ {1, 2}, (134)

γ2i
4
=

1

N

N∑
n=1

γ2i,n, i ∈ {1, 2}, (135)

ρ
4
=

(
1
N

N∑
n=1

λn

)
|γ1||γ2|

. (136)

With these notations, the input power constraint in (125) can be rewritten as

γ2i + µ2
i 6 Pi, i ∈ {1, 2}. (137)

Lemma 3

1

N

N∑
n=1

1

2
log

Ö
1 +

γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ii

σ2
i

1 + γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ji

σ2
j

è
6 1

2
log

Ö
1 +

γ2i
(
1− ρ2

) h2
ii

σ2
i

1 + γ2i (1− ρ2)
h2
ji

σ2
j

è
. (138)

Proof: Using the fact that Hα,β(x) = log
Ä
1 + αx

1+βx

ä
is a concave function on x with
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positive α and β, it follows that

1

N

N∑
n=1

1

2
log

Ö
1 +

γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ii

σ2
i

1 + γ2i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ji

σ2
j

è
6 1

2
log

Ö
1 +

1
N

∑N
n=1 γ

2
i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ii

σ2
i

1 + 1
N

∑N
n=1 γ

2
i,n

(
1− λ2

n

γ2
i,n
γ2
j,n

)
h2
ji

σ2
j

è
(a)

6 1

2
log

Ü
1 +

1
N

∑N
n=1 γ

2
i,n

Å
1− ( 1

N

∑N

n=1
λn)

2

1
N

∑N

n=1
γ2
i,n

1
N

∑N

n=1
γ2
j,n

ã
h2
ii

σ2
i

1 + 1
N

∑N
n=1 γ

2
i,n

Å
1− ( 1

N

∑N

n=1
λn)2

1
N

∑N

n=1
γ2
i,n

1
N

∑N

n=1
γ2
j,n

ã
h2
ji

σ2
j

ê
=

1

2
log

Ö
1 +

γ2i
(
1− ρ2

) h2
ii

σ2
i

1 + γ2i (1− ρ2)
h2
ji

σ2
j

è
, (139)

where (a) follows from the fact that G(γ2i,n, γ
2
j,n, λn) = σ2

i,n

Ç
1− λ2n

γ2i,nγ
2
j,n

å
is a concave function

on γ2i,n, γ2j,n and λn; and Kα,β(x) =
αx

1 + βx
is an increasing function on x.

By the concavity of the mutual information, applying Jensen’s inequality and Lemma 3 in the
bounds (128) yields, in the limit when N →∞,

R1 6 1

2
log

Ç
h211γ

2
1

σ2
1

+
h212γ

2
2

σ2
1

+ 2ρ

 
h211h

2
12γ

2
1γ

2
2

σ4
1

å
, (140a)

R1 6 1

2
log

Å
1 +

h221
σ2
2

γ21
(
1− ρ2

)ã
+

1

2
log

Ñ
1 +

γ21(1− ρ2)
h2
11

σ2
1

1 + γ21(1− ρ2)
h2
21

σ2
2

é
, (140b)

R2 6 1

2
log

Ç
h222γ

2
2

σ2
2

+
h221σ

2
1

σ2
2

+ 2ρ

 
h22h21γ21γ

2
2

σ4
2

å
, (140c)

R2 6 1

2
log

Å
1 +

h212
σ2
1

γ22
(
1− ρ2

)ã
+

1

2
log

Ñ
1 +

γ22
(
1− ρ2

) h2
22

σ2
2

1 + γ22 (1− ρ2)
h2
12

σ2
1

é
, (140d)

R1 +R2 6 1

2
log

Ç
h222γ

2
2

σ2
2

+
h221γ

2
1

σ2
2

+2ρ

 
h222h

2
21γ

2
1γ

2
2

σ4
2

å
+

1

2
log

Ñ
1+

γ21(1− ρ2)
h2
11

σ2
1

1 + γ21(1− ρ2)
h2
21

σ2
2

é
, (140e)

R1 +R2 6 1

2
log

Ç
h211γ

2
1

σ2
1

+
h212γ

2
2

σ2
1

+2ρ

 
h211h

2
12γ

2
1γ

2
2

σ4
1

å
+

1

2
log

Ñ
1+

γ22(1− ρ2)
h2
22

σ2
2

1 + γ22(1− ρ2)
h2
12

σ2
1

é
, (140f)

and the upper-bound on the energy rate (74) :

B 6 σ2
3 + h231(γ21 + µ2

1) + h232(γ22 + µ2
2) + 2h21h22(|ρ| |γ1||γ2|+ |µ1||µ2|). (140g)

To sum up, it has been shown so far that, in the limit when N tends to infinity, any information-
energy rate triplet (R1, R2, B) ∈ EFBb can be bounded by the constraints in (138) for some γ21 ,
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γ22 , µ1, µ2 satisfying (135) and for some ρ ∈ [−1, 1]. Let RFB
b (γ1, γ2, µ1, µ2, ρ) denote the set of

information-energy rate triplets satisfying (138), for some γ1, γ2, µ1, µ2 such that (135) is true
and for some ρ ∈ [−1, 1]. Thus, it holds that

EFBb ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

−16ρ61

RFB
b (γ21 , γ

2
2 , µ1, µ2, ρ). (141)

In this union, it suffices to consider 0 6 ρ 6 1 because for any −1 6 ρ 6 1, RFB
b (γ21 , γ

2
2 , µ

2
1, µ

2
2, ρ)

⊆ RFB
b (γ21 , γ

2
2 , µ

2
1, µ

2
2, |ρ|). Thus,

EFBb ⊆
⋃

06γ2
1+µ

2
16P1

06γ2
2+µ

2
26P2

−16ρ61

RFB
b (γ21 , γ

2
2 , µ1, µ2, ρ) ⊆

⋃
γ2
1+µ

2
1=P1

γ2
2+µ

2
2=P2

06ρ61

RFB
b (γ21 , γ

2
2 , µ1, µ2, ρ).

Let βi ∈ [0, 1] be defined as follows:

βi
4
=
γ2i
Pi

=
Pi − µ2

i

Pi
, i ∈ {1, 2}. (142)

Using (140), any region Rb(γ1, γ2, µ1, µ2, ρ) in the union over all (µ1, µ2, γ1, γ2) that satisfy
γ21 + µ2

1 = P1, γ22 + µ2
2 = P2 and 0 6 ρ 6 1, can be rewritten as follows:

R1 6 1

2
log

Ç
h211β1P1

σ2
1

+
h212β2P2

σ2
1

+ 2ρ

 
h211h

2
12β1β2P1P2

σ4
1

å
, (143a)
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2
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h221
σ2
2

β1P1
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1− ρ2

)ã
+

1

2
log

Ñ
1 +

β1P1(1− ρ2)
h2
11

σ2
1

1 + β1P1(1− ρ2)
h2
21

σ2
2

é
, (143b)
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log

Ç
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σ2
2

+
h221β1P1

σ2
2
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σ4
2

å
, (143c)
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log
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σ2
1

β2P2

(
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)ã
+

1

2
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Ñ
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(
1− ρ2

) h2
22

σ2
2
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h2
12

σ2
1

é
, (143d)
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2
21β1β2P1P2

σ4
2

å
+
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2
log

Ñ
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(
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) h2
11

σ2
1

1 + β1P1 (1− ρ2)
h2
21

σ2
2
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, (143e)

R1 +R2 6 1

2
log

Ç
h211β1P1

σ2
1

+
h212β2P2

σ2
1

+ 2ρ
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2
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σ4
1
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2
log
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(
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) h2
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σ2
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12
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, (143f)

B 6 σ2
3+h

2
31P1+h

2
32P2 + 2h31h32(|ρ|

√
β1P1β2P2+

»
(1− β1)(1− β2)P1P2), (143g)

B > b, (143h)
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for some (β1, β2) ∈ [0, 1]2 and ρ ∈ [0, 1]. Hence, using the definitions in (7) and (10), the region
(141) contains all information-energy rate triplets (R1, R2, B) satisfying constraints (18), which
completes the proof of Theorem 4.
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