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Dynamics of planar rocking-blocks with Coulomb
friction and unilateral constraints: comparisons between
experimental and numerical data

Hongjian Zhang · Bernard Brogliato · Caishan Liu

Abstract This paper concerns the dynamics of planar rocking blocks, which are mechanical
systems subject to two unilateral constraints with friction. A recently introduced multiple
impact law that incorporates Coulomb friction is validated through comparisons between
numerical simulations and experimental data obtained elsewhere by other authors. They
concern the free-rocking motion with no base excitation, and motions with various base ex-
citations for the study of the onset of rocking and of the overturning phenomenon. The com-
parisons made for free-rocking and for the onset of rocking demonstrate that the proposed
impact model allows one to correctly predict the block motions. Especially the free-rocking
experiments can be used to fit the impact law parameters (restitution and friction coeffi-
cients, block width). The free-rocking fitted parameters are then used in the excited-base
cases.

Keywords Rocking block · Multiple impacts · Coulomb friction · Free-rocking · Onset
of rocking · Overturning

1 Introduction

Modeling the dynamics of a rigid block hitting a rigid ground has attracted the attention
of scientists in the field of earthquake engineering for a long time; see, e.g., [5, 22, 32, 42,
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46, 53, 54, 59, 60] to cite a few. In parallel, the field of impact dynamics has witnessed
an intense activity in the past 25 years; see, e.g., [8–10, 15, 18–20, 29, 31, 38, 48, 52, 66]
and references therein. It happens that the problem of modeling impacts with friction is a
tough issue, especially when there are several simultaneous contact points (multiple impacts
with friction). Typically, the so-called rocking block problem involves double-impacts with
friction, when one assumes that the base contacts the ground at two points only. Together
with chains of balls, the rocking block is an apparently a simple multibody system (the
block and the ground); however, it involves multiple impacts with friction and its modeling
is consequently not simple at all.

In [7], experimental tests were led and compared to the model with Housner angular
restitution r [22] calculated from the conservation of angular momentum before and after
the shock. It was found that the analytical value of r = − 2l2−L2

2L2+2l2
, where l and L are the

block height and width, respectively, did not match with the experimental one. Similar con-
clusions were drawn in [45] who found a rather big discrepancy between the analytical and
the experimental values of r . Usually the experimentally measured values for r are larger
than the theoretically predicted ones, and many authors simply fit r with the data without
questioning the model [7, 32, 45, 50, 54]. Recently experimental tests on concrete blocks
have shown [16] that the ratio between the measured r and the above one may be smaller
or larger than one, despite the fact that it is generally found to be smaller (see Table II
in [16]), contradicting the older conclusions. These authors also showed the inability of the
kinematic angular restitution law to predict the free-rocking motion (see Fig. 18 in [16]).
Lispcombe et al. [32] calculated r by introducing the kinematic restitution and adding con-
straints for no slipping or unidirectional slip. The fact that a block rotating around one corner
and impacting at the other corner may rebound at both corners (and thus become airborne)
is studied in [32]. Most importantly, these authors also proved experimentally the existence
of sequences of impacts at the corner point around which the block rotates during a rock-
ing motion. The number of such impacts, and the duration of the rebound phase, depend
on the block aspect ratio l

L
. Yilmaz et al. [59] used a generalization of Routh’s approach

and so-called impulse correlation ratios, without friction. They found good agreements be-
tween their simulations and their experiments. Pena and Prieto et al. [42, 43, 46] performed
many experiments and also proposed a new model for rocking. It is noteworthy that in their
experiments that Pena et al. [42] found better matching between the above value of r and
the experimental values, which differ by much smaller percentage than in [7, 45]. Some
authors like Palmeri et al. [41] introduced compliance at the contacts and frictional effects
in order to cope with such complex dynamics. In [5], the nonsmooth mechanics framework
is adopted and friction with a nonconstant sliding coefficient is used. Taniguchi [53] uses
the Housner angular velocity restitution coefficient, and Coulomb’s law during nonimpact-
ing phases of motion. He points out that perfect rocking seldom occurs, whereas stick/slip
phases may be the common behavior. In [11, Sect. 5], it is shown that if rebounds are al-
lowed at the corners, r may lack of physical meaning as it cannot be uniquely chosen given a
unique energetical behavior. It is also shown that Housner coefficient is a lower bound in the
space of admissible coefficients, corroborating observations in [17]; see [11, Table 1]. The
conclusions to be drawn from all these works are that experimental results are not always
easy to interpret, and kinematic restitution rules applied to planar models are too simplistic
to correctly model the motion of a block rebounding on a ground, which may consist of
complex stick/slip/impact/rebound phases. Recently, three-dimensional models have been
developed [67], thus relaxing the assumption that the system is confined in a 2D motion.

The objective of this work is to demonstrate that the multiple impact model introduced
in [33–36, 65] and named in the sequel the LZB model, can be useful for the study of the
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rocking block dynamics (free-rocking when the base is fixed, and with various base excita-
tions). This is shown through detailed comparisons between numerical results obtained with
the LZB model, and experimental results obtained in Pena et al. [42, 43]. Those comparisons
concern free-rocking (fixed base) and the onset of rocking (with horizontal base excitation).
The conclusions are quite positive and confirm the results obtained in [34, 36, 39, 65] where
detailed comparisons with experimental data for Newton’s cradle [36], bouncing dimer [65],
column of beads [34], and tapered chains [39] are made: The LZB model does encapsulate
the main dynamical effects of multiple impacts with Coulomb friction. It is noteworthy that
our model seems to be able to predict the motion for systems ranging from few grams (the
dimer [65]) to several hundreds of kilograms (the rocking blocks in [42, 43]). Most im-
portantly, it is shown that the free-rocking experiments can be used to fit the parameters
(restitution coefficients, friction coefficients, block width), which are used to predict more
complex motions with base excitation. The paper is organized as follows: In Sect. 2, the
planar block dynamics and the multiple impact model are introduced. Section 3 is dedicated
to the comparisons between the experimental data in [42, 43] and numerical results, for free-
rocking motion. Sections 4, 5, and 6 deal with the case of base excitation: Rocking motion,
the onset of rocking, and the overturn phenomena are studied. Conclusions end the paper in
Sect. 7.

2 The block dynamics and the impact law

In this section, we introduce the dynamical model of the two-body block/anvil system, which
will be used to perform the numerical simulations.

2.1 The block dynamics outside the collisions

Let us consider the block as a three degree-of-freedom planar homogeneous solid, with gen-
eralized coordinates qT = (x, y, θ), where x and y are the horizontal and vertical positions
of the center of gravity, θ is the angular position; see Fig. 1. The base (the anvil) is a one

Fig. 1 The planar block with
horizontally moving base
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degree-of-freedom system with mass mb , moving in translation along the x-axis. Its position
is denoted as xb . Let us make the following assumptions.

Assumption 1 The block/anvil contact can be represented by two points A and B at the
corners.

Assumption 2 The dynamical effects of the block on the anvil are neglected.

Assumption 1 is common in the rocking block literature. Its validity will be discussed
in this paper. Assumption 2 is motivated by the fact that we shall use experimental results
from [42, 43]. Actually, it is indicated in [43] that the uniaxial shaking table used in their
experiments has a total mass mb = 6 tons, while the blocks have masses ranging from 120 to
500 kg. Hence, m

mb
∈ [0.02,0.08]. In fact, assumption 2 means that one neglects all vertical

motions (velocity jumps at impacts, vibrational effects) in the mechanical structure which
makes the base.

Following [10, Chap. 6], we infer that the block, when y ≤
√

l2+L2

2 , is subject to two
unilateral constraints: {

f1(q) = y − l
2 cos(θ) + L

2 sin(θ) ≥ 0,

f2(q) = y − l
2 cos(θ) − L

2 sin(θ) ≥ 0,
(1)

where f1(q) ≥ 0 expresses that point B cannot penetrate into the base, while f2(q) ≥ 0
expresses the same for point A. Given the above assumptions, the dynamics of the block
subject to (1) and Coulomb friction is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ(t) = λt,1(t) + λt,2(t),

mÿ(t) = λn,1(t) + λn,2(t) − mg,

IGθ̈(t) = λn,1(t)
(

l
2 sin(θ(t)) + L

2 cos(θ(t))
) + λn,2(t)

(
l
2 sin(θ(t)) − L

2 cos(θ(t))
)

+ (
l
2 cos(θ(t)) − L

2 sin(θ(t))
)
λt,1 + (

l
2 cos(θ(t)) + L

2 sin(θ(t))
)
λt,2,

0 ≤ λn(t) ⊥ f (q(t)) ≥ 0,

λt,i (t) ∈ −μiλn,i(t) sgn(vt,i (t) − vb(t)), i = 1,2,

(2)

where vb(t) = ẋb(t) is the base horizontal velocity, μi > 0 is the friction coefficient at con-
tact i, and vt,i is the tangential velocity at the point i, i.e., vt,1 = ẋ + ( l

2 cos(θ) − L
2 sin(θ))θ̇

at B and vt,2 = ẋ + ( l
2 cos(θ)+ L

2 sin(θ))θ̇ at A (from which vt,1 = vt,2 when θ = 0). Notice
that if the contact point i detaches then the complementarity conditions imply that λn,i = 0
so λt,i = 0. The complementarity conditions are componentwise, f (q)T = (f1(q), f2(q)),
λT

n = (λn,1, λn,2). For a block with G at the geometric center, one has IG = m
12 (l2 + L2).

In (2), we have not yet considered the impacts with the ground, but only those phases of mo-
tion where the contact force is a bounded function of time. It is possible to rewrite compactly
the smooth part of the dynamics in (2) as

Mq̈(t) = Wn

(
q(t)

)
λn(t) + Wt

(
q(t)

)
λt (t) − g (3)

with g = (0 mg 0)T , M = diag(m,m, IG); Wn(q) and Wt(q) are easily identified from (2).
One has vn = WT

n (q)q̇ , vt = WT
t (q)q̇ , where vn = (vn,1 vn,2)

T , vt = (vt,1 vt,2)
T denote the

local velocities of the contact points [2]. From (1) and (2), the complementarity problem that
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allows one to calculate the contact forces during the smooth phases of motion (i.e., outside
impacts) is given by

0 ≤ λn(t) ⊥ A(θ)λn(t) + Wn(q)M−1Wt(q)λt (t) + B(θ, θ̇) ≥ 0, (4)

with

A(θ) =
(

1
m

+ 1
4IG

(l sin(θ) + L cos(θ))2 1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ))

1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ)) 1
m

+ 1
4IG

(l sin(θ) − L cos(θ))2

)
, (5)

and

B(θ, θ̇) =
(−g + 1

2 θ̇2(l cos(θ) − L sin(θ))

−g + 1
2 θ̇2(l cos(θ) + L sin(θ))

)
. (6)

The matrix A(θ) = WT
n (q)M−1Wn(q) is the so-called Delassus’ matrix of the system

(1)–(2). The details on how to analyze and solve such problems is outside the scope of this
paper; see [2, 35]. Let us just mention that, in general, friction may create inconsistencies
and indeterminacies [10, Sect. 5.5] yielding Painlevé paradoxes. Such issues are met only
for unrealistic values of friction in planar blocks [30, Appendix A].

2.2 The impact dynamics

The impact model proposed in [33–36, 65] is summarized in this section. It will be named
the LZB impact model in the following (from the authors’ names). The contact stiffnesses
are denoted as ki , the elasticity potential energy at contact i is Ei , η is the elasticity coeffi-
cient. The matrix Wn(q) is the Jacobian between the generalized velocities q̇ and the contact
points normal relative velocities, i.e., WT

n (q) = ∂f

∂q
(q) = ∇f T (q) ∈ R

2×3, whereas Wn(q)λn

represents the generalized contact force associated with the generalized coordinates q; see
(2) and (3). The scalar Pn,i denotes the normal component of the interaction force impulse at
contact point i, Pn = (Pn,1,Pn,2)

T is the vector of normal impulses. An important assump-
tion in this model, that is an extension of the Darboux–Keller approach [10], is that positions
q are constant during the impact process. Thus, Wn(q) is supposed to be constant during an
impact and is simply denoted as Wn. In the frictionless case, the LZB impact dynamics is
summarized as follows:

• Contact parameters: γji = kj

ki
(normal contact stiffnesses ratios), en,j (energetic restitution

coefficients), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, η (= 1 for linear elasticity, = 3
2 for Hertz contact, or

other values).
• Dynamical equation:

M
dq̇

dPn,i

= Wn

dPn

dPn,i

if Eji(Pn,j ,Pn,i) ≤ 1 for j �= i (7)

with the distributing law:1

dPn,j

dPn,i

= γ
1

η+1
j i

(
Eji(Pn,j ,Pn,i)

) η
η+1 , (8)

1The power of the potential energies ratio Eji(Pn,j ,Pn,i ) is inverted in [33, 34].
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Fig. 2 Bistiffness contact
compliant model

and the potential energies ratios:

Eji(Pn,j ,Pn,i) = Ej(Pn,j )

Ei(Pn,i)
, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, (9)

where

Ej(Pn,j ) =
∫ Pn,j (t)

0
wT

j q̇ dPn,j . (10)

The vectors wj
�= ∇fj are the columns of the Jacobian matrix Wn. The impulse Pn,i

at contact i is the so-called principal impulse that is chosen as the new time-variable in the
impact model. It may change during the impact process; see [33] for details. The compliance
effect is added into LZB model by using a contact model such as the monostiffness or
bistiffness compliance models. We limit ourselves to the bistiffness as presented in [21, pp.
92, 107], which aims to incorporate elastic effects together with plastic, damage and other
irreversible effects. It has been experimentally verified for sphere/sphere impacts in several
papers; see, e.g., [6, 12, 13, 51, 56, 58]. As illustrated in Fig. 2, for the bistiffness compliance
model, the force-indentation relationship at a given contact point j for the compression
phase is expressed as

λc,j = kj (δj )
η. (11)

It is different from that for the expansion phase expressed as

λe,j = λM,j

(
δj − δr,j

δM,j − δr,j

)η

, (12)

where δr,j is the plastic deformation, and λM,j and δM,j are respectively the maximum val-
ues of the normal contact force and of the normal deformation at the contact point j at the
end of the compression phase (when δ̇j = 0). The maximum compression is attained at the
point M in Fig. 2, and δr is the residual indentation. The time tc of maximal compression at
the contact j is calculated from δ̇j (tc) = 0 where δj is the relative normal displacement at
contact j (δ̇j = wT

j q̇ = ∇f T
j q̇). For a single impact at contact j , the termination time tf is
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Fig. 3 Contact point
experiencing multiple
compression and expansion
phases

calculated from the energy constraint Wr,j = −e2
n,jWc,j , where the works during compres-

sion and expansion phases are given by, respectively,

Wc,j =
∫ Pn,j (tc)

0
wT

j q̇ dPn,j , Wr,j =
∫ Pn,j (tf )

Pn,j (tc)

wT
j q̇ dPn,j . (13)

Thus, the residual indentation δr,j at contact j is a function of en,j , and δr,j =
δM,j (1 − e2

n,j ) for constant en,j ; see [33, Eq. (3.4)]. When a contact experiences multiple
cycles of compression and expansion phases, secondary cycles can be treated as the case of
single cycles with an initial potential energy. The initial potential energy of each secondary
cycle is the one computed for the preceding cycle at the point where the secondary cycle
under consideration starts. To illustrate this, we consider a contact experiencing two com-
pression and expansion phases shown in Fig. 3. The secondary cycle starts at the point R,
follows the compression curve R̂M2 and then the expansion curve M̂2B , and finally stops
at the point B where the potential energy is entirely released or dissipated. This secondary
cycle is treated as a single cycle whose initial potential energy Eo,j is the potential energy

at the point R computed for the cycle ÔM1R. As proved in [33], the distributing law in
(8) remains valid for multiple compression/expansion phases, i.e., more than two compres-
sion/expansion cycles at the same contact point.

One has en,j ∈ [0,1], which means that the work performed by the normal force during
the expansion cannot exceed the energy “injected” in the system during the compression
(when several compression/expansion phases exist at contact j the energetical constraint is
applied to the whole contact process at this point). In view of (2), in the frictionless case, the
impact dynamics have reduced dimension because dẋ

dPn,i
= 0, hence the coordinate x plays

no role in the analysis; see (2) with λt,1(t) + λt,2(t) = 0. Coulomb friction can be easily
added in the impact model, at the force (or infinitesimal impulse) level [35, 65]. In such
a case, the right-hand side of (7) has to be modified accordingly with the insertion of the
tangential force components; see (2) and (3):

M
dq̇

dPn,i

= Wn

dPn

dPn,i

+ Wt

dPt

dPn,i

if Eji(Pn,j ,Pn,i) ≤ 1 for j �= i. (14)

Remark 1 In this paper, the basic Coulomb’s law is enhanced to incorporate static μs and
dynamic μ friction coefficients; see Fig. 4. Also, it will be assumed in all the following simu-
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Fig. 4 The friction model,
i = 1,2

lated examples that μ1 = μ2 = μ and μs,1 = μs,2 = μs , in accordance with the experimental
data taken in [42, 43].

This impact model is therefore a rigid body model that incorporates some flexibility ef-
fects through the distributing law, with one restitution coefficient and one (or two) friction
coefficient per contact. In this work, we shall use the same static and dynamic coefficients
of friction for the two contact points. More details on the implementation may be found
in [35, 36, 40]. For the dynamics outside the impacts, the complementarity problem in (4) is
used to integrate the system, and either an explicit Euler or Runge–Kutta algorithms are im-
plemented. It is noteworthy that the numerical scheme that is employed next is of the event
driven type [2], and that all the stick/slip and contact/detachment conditions are carefully
taken care of (taking care, in particular, of the multivalued feature of the friction law at zero
tangential velocity). To summarize, we use an event-driven method with the complemen-
tarity model (2) outside impacts and the above LZB impact dynamics when an impact is
detected. In the rest of the paper, it will be assumed that the normal restitution is identical
for the two contact points, denoted as e∗

n. The impact LZB model applied to the block/anvil
system therefore has a total of 5 parameters including friction: en, η, γ12 = k1

k2
, μ, μs .

Remark 2 An interesting feature of the LZB impact law is that it allows for stick/slip tran-
sitions during the impacts, as shown in [63, 64]. This means that the relative tangential
velocity can reverse its sign during the collision without implying energetical incoheren-
cies, as it is the case with kinematic restitution laws [11, 15]. Tangential velocity reversals
do occur in the planar block; see Fig. 21(b) in [63]. Notice that the complementarity mod-
eling in (2) has been used before for block/ground systems in [5, 44, 49, 62]. Finally, it is
noteworthy that rocking motions cannot be described by kinematic normal restitution laws
coupled to Coulomb friction [11]. This means that kinematic restitution laws are unable to
model dry friction effects and rocking motions together. Other models have been introduced
[4, 24], which allow for different modes (airborne block, stick/slip transitions). Andreaus
and Casini [4] use a compliant contact/impact model, whereas [24] uses a rigid body model
but no complementarity relations, and the friction during impacts is simply introduced with
constant kinematic tangential restitution coefficients.
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3 Free-rocking experiments

In this section, it is proved that the LZB model can be fitted to provide correct predictions
of free-rocking motions, with fixed base. Free-rocking corresponds to the block initialized
with a nonzero angle θ(0), one corner in contact, and zero initial velocity θ̇ . Experimental
data led on blue granite stone blocks are reported in [42, 43]. In the following, we provide
detailed comparisons between the numerical simulations obtained with the LZB model and
the experimental data of [42, 43].2 The tests concern four specimens of blocks. The masses
of the blocks are estimated from their dimensions and density, and are given by 503 kg,
228 kg, 120 kg, 245 kg, for specimens 1, 2, 3, 4, respectively. It has been shown in [43] that
specimen 3 is prone to significant three-dimensional effects like torsional and vibrational
effects. Due to this, the planar model could not satisfactorily reproduce the experimental θ(t)

response. Similar difficulties were found in [42] to calibrate a DEM model on specimen 3
data (see Table III in [42]). The results for specimen 3 are thus not presented in this paper.
Specimens 1, 2, and 4 experimentally showed no or negligible three-dimensional effects [43,
Sect. 8.1].

3.1 The θ(t) response

The results are depicted in Figs. 5(a), (b), and (c). The fitted restitution coefficients are
en = 0.999 for specimen 2 in Fig. 5(b), and en = 0.97 before 2.83 s, en = 0.88 after 2.83 s
for specimen 1 in Fig. 5(a). For specimen 4, the fitted values are en = 0.99 before 0.85 s,
en = 0.84 after 0.85 s (see comments (i) and (ii) in Sect. 3.2). The fitted dimensions are
l
L

= 1
0.23 ≈ 4.35 for specimen 1 and l

L
= 1

0.155 = 6.45 for specimen 2, l
L

= 0.50
0.115 = 4.34

for specimen 4. The friction coefficients are chosen as μ = 0.3 and μs = 0.577 as in [43].
The SRM curves correspond to the response calculated with the Housner angular restitution
coefficient (as recalled in Sect. 1).

Uncertainties in en and L It happens that the rocking motion is highly sensitive to param-
eters variations, which renders the calibration of the parameters a delicate process. This is
illustrated in Figs. 5(b) and 6; see also Fig. 41 in [63], where it is shown that very small
variations on en and L produce large variations on the θ(t) response. The uncertainty in the
width L affects mainly the pseudo frequency of the oscillations and has little effect on the
magnitudes. This is in contrast with uncertainties on en, which affect both the frequency and
the magnitude. The various widths, which enter the study are recapitulated in Table 1. The
geometric widths are those measured on the blocks. The experimental widths are obtained
from an estimation process using the Housner model; see Sect. 4.1 in [42]. The other two
sets of widths are obtained by fitting the parameters. The larger width discrepancy for spec-
imen 4 comes from large cuts at the corners on this block. The choices for smaller widths
in simulation are in agreement with the conclusion in [47], where what we call the width in
simulation may be called the effective width following [47]. In short, due to the contact line
geometry imperfections, the equivalent width of the model with two contact points must be
smaller than the geometrical width of the real block. See also Sect. 3.2(ii) below.

2All the experimental data used for the comparisons with numerical data presented in this paper have been
made available to us by Dr. F. Pena from the Instituto di Ingenieria, UNAM, Mexico. They correspond to the
data in the various figures and tables in [42, 43]. They can be consulted in Tables 3–8 in [63].
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Fig. 5 Numerical vs. experimental values of θ(t) and r

Table 1 The various widths
1 2 4

Geometric width (m) 0.24 0.16 0.15

Experimental width (m) 0.2394 0.1645 0.1255

Width in simulations of [43] (m) 0.2468 0.1696 0.1464

Width in LZB model (m) 0.23 0.155 0.115

The elasticity coefficient η and normal stiffnesses The elasticity coefficient enters the
LZB impact model through the co-called distributing law and the potential energies ratios
Eji(Pj ,Pi). In all the simulations, we have made the choice η = 3

2 (Hertz contact). It hap-
pens that the potential energies ratios are small enough so that changing η from 1 to 3

2 does
not much influence the results. Also we always chose stiffnesses ratios equal to one for ob-
vious physical reasons (the materials characteristics are the same at both contact points).
Notice that only the stiffnesses ratios play a role in the impact dynamics, not their absolute
values (this fact holds true for other types of multibody systems with several contact points;
see [10, Claim 6.3]).
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3.2 Comments

(i) Some fitted values for en (i.e., 0.999 or 0.99) are very close to one, showing very small
amounts of kinetic energy loss at each impact. Experimental works on single granite/granite
impacts without friction report values of the restitution coefficient in [0.873,0.897], and
varying nonmonotonously with the height drop [23, Fig. 6]. It is also known from many
experimental results that the restitution coefficient usually tends to 1 when the initial relative
velocity tends to zero; see, e.g., [51]. In the presented results, the normal relative velocity is
very small (about 0.02 m/s). The values for the angular restitution coefficient r calculated
in Table II in [42] are very high also, however. In Fig. 5(d) are reported the values of r

obtained from the LZB model and from the experiments in [43]: they almost match. This
demonstrates indirectly that our values are realistic values close to the experimental ones.
We infer that the dissipation visible on the θ(t) responses in Figs. 5(a), (b), and (c) may
be due mainly to the rebound phases that involve many impacts before the contact corner
stabilizes on the base (as experimentally evidenced in [32]), and possibly to sliding during
the impacts.

(ii) The fitted value for en had to be decreased after some impacts for both specimens 1
and 4. Arguments concerning the two-point contact assumption, the line contact effects and
the effective width are discussed in [42]; see also [47]. It is noteworthy that such switching
process has not been necessary for the bouncing dimer (see [65] and [35]). However, the
bouncing dimer has two physical contact points (two sphere/plane contact points), whereas
the two-contact-point model is a rough approximation of the line/line contact for the planar
block/anvil system. Line/line or even plane/plane effects together with low normal velocities
may explain the necessity of the switch in the fitted values for en.

(iii) A detailed analysis of the angular restitution coefficient r = θ̇ (t+)

θ̇(t−)
is proposed in [63,

Sects. 6.1.2, 6.3]. The major conclusion is that r varies very little during the established
rocking motions, despite its first value may differ by a small percentage from the other val-
ues (see Figs. 43, 44, 45, and 56 in [63]), and that it varies little when en varies, see Table 9
in [63]. This suggests that a kinematic restitution law with angular velocity restitution might
be used, provided that r can be chosen within the admissible domain defined by the kine-
matic, kinetic, and energetic constraints [11] (see also comment (iv) below). However, an
important part of the dynamics like the rebound phases after the first impact, may be missed
in many instances of slender blocks. The transient behavior before rocking occurs cannot
be predicted by such an impact model (see Sect. 5). We infer that this kinematic law does
represent the rocking motion only when there is tangential sticking at impacts and outside
impacts, and when the rebound phases vanish (such cases have been experimentally shown,
see [32] with l

L
= 8). Moreover, such a kinematic law does not permit to predict that a par-

ticular motion will occur: it can just be fitted a posteriori. If, anyway, one knows in advance
that perfect rocking3 with sticking (or almost sticking) contact/impact points is going to oc-
cur, then a kinematic law may be preferred because of its simplicity that may be important
for calculations.

(iv) In Fig. 5(d) are plotted three angular restitution coefficients: computed and averaged
from the LZB simulations with the above fitted parameters rLZB, from the experiments

3Perfect rocking means that the block rocks without any tangential slip, and with no rebound at the impacting
corners.
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Fig. 6 Specimen 2, en = 0.99

in [43] rexp, and the Housner coefficient obtained from the conservation of angular mo-

mentum r = L2−2l2

2L2+2l2
. The conservation of angular momentum hypothesis usually yields an

underestimation of r . This is quite visible in Figs. 5(a), (b), and (c) where the Housner value
of r yields a much too big dissipation. This is consistent with the results reported in the
fourth row of Table 1 in [11].

(v) A very good fitting has been obtained for specimen 2, with en = 0.999 in Fig. 5(b).
As we shall see in Sects. 4 and 5, the persistent rocking motion and the onset of rocking
with base excitation are better fitted with en = 0.99. One observes in Fig. 6 that the choice
en = 0.99 provides a very good fitting for the first oscillations, with a small divergence after
8.5 s. The underlying question is whether the free-rocking experiments can be used to fit the
parameters for the base-excited simulations. The relative difference between the two fitted
en is less than 1 %. In view of the high sensitivity of the block responses with respect to such
parameters, it seems unavoidable that an additional process for parameter identification may
be necessary in some instances.

4 Rocking motion with harmonic base excitation

Experiments with horizontal base excitation are presented in [43]. We consider here the
specimens 1 and 2 in [43]. The base excitation has the form xb(t) = A sin(ωt). The parame-
ters en and μ, μs in the LZB model are those obtained from the free-rocking fitting process,
i.e., en = 0.97 for specimen 1, en = 0.99 for specimen 2, μ = 0.3, μs = 0.577, l = 1 m
and L = 0.23 m for specimen 1, l = 1 m and L = 0.155 m for specimen 2. The results are
reported in Fig. 7. It is seen that the LZB model has the tendency to underestimate the peaks
magnitudes, however, the frequency of the response is very well predicted. As shown in
Fig. 12 in [43] through repeatability tests, the amplitude of the rocking angle θ(t) may vary
from one experiment to the other, which may explain that the LZB model does not predict
the same amplitude as in the experimental figures. We may anyway conclude that there is
a very good matching between the numerical results and the experimental ones using the
free-rocking fitted parameters, taking into account comment (v) of Sect. 3.2.

Remark 3 The DEM method employed for the simulations in [42] seems to provide compa-
rable results to the LZB/complementarity one; see Fig. 7 in [42] that concerns specimen 2
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Fig. 7 θ(t) responses with base
excitation

with A = 5 mm, ω
2π

= 5 Hz. It is difficult at this stage of the studies to determine which of
the two methods is the best one. It is, however, noteworthy that we show in this paper that
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the LZB/complementarity model and event-driven code, is able to correctly predict several
types of motions (free-rocking, rocking with horizontal motion, onset of rocking). It is also
recalled that the LZB model successfully predicted various motions of different impacting
systems like chains of balls [34, 36, 39] and bouncing dimer [65]. It therefore encapsulates
the main dynamical effects, which are necessary to well simulate multiple impacts for rate-
independent materials, with few parameters that possess a clear physical meaning for both
the tangential and the normal dissipation effects.

5 Onset of rocking with harmonic base excitation

To start with, the onset of rocking motion in the (A,ω) plane is depicted in Fig. 8(a) with
the experimental data taken from Table 4 in [43]. They concern specimen 2 with l = 1 m,
L = 0.155 m, m = 228 kg. In all of this section en = 0.99, μ = 0.3, and μs = 0.577. A good

Fig. 8 The onset of rocking
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matching is found between the numerical and the experimental results.4 Notice that it is
considered that rocking is initiated if the block not only starts to rock on the base, but if
this rocking motion is persistent in time (i.e., the mere detachment of one contact point is
not sufficient to decide for rocking). The tendency is that rocking starts to occur for large A
when ω is small, and for small A when ω is large. This tendency is also in agreement with
the experimental data of Fig. 14 in [57].

Figure 8(b) depicts the onset of rocking for base amplitude A = 5 mm. The friction
parameters are varied. For high enough friction, the onset of rocking occurs almost inde-
pendently of the friction, but depends mainly on the aspect ratio l

L
, corroborating previous

results [57]. For small enough friction, however, there exists a minimum aspect ratio l
L

un-
der which the onset of rocking starts to depend a lot on friction. When the friction is high
enough, the contacts statuses are mostly stick, therefore, the value μ does not count whereas
μs plays a role. The results for l

L
< 2 are not depicted in Fig. 8(b). Indeed for such values of

the aspect ratio and for realistic values of friction, the onset or rocking occurs for very large
values of the frequency and one may infer that rocking never occurs in practice.

Let us now consider Fig. 8(c), which depicts the onset of rocking as a function of the
aspect ratio l

L
and the amplitude A, for a fixed frequency f = ω

2π
=3.3 Hz. The points on

the curve represent the lower limit of the necessary A for onset of rocking, i.e., rocking
occurs for magnitudes just larger. Flat blocks need a large A to rock, while slender blocks
rock for small A. This seems intuitively clear. Figure 9 are depicted the trajectories θ(t) and
the relative tangential velocity ẋrel(t) at the contact point A, for amplitude A = 5.94 mm
just below the amplitude that triggers rocking and frequency f = 3.3 Hz, and the amplitude
such that there is onset of rocking A = 5.95 mm. These trajectories show that the block
motion before rocking settles, is far from an all-stick motion (stick in the tangential direc-
tion, and with no impacts), but usually possesses velocity jumps and stick/slip transitions
(acceleration jumps). The fact that the complementarity + LZB model is able to predict the
onset of rocking after such a complex transient dynamics, with few parameters fitted from
the free-rocking experiments, proves that is does encapsulate the main dynamical effects of
the block/anvil system.

Finally, Fig. 10 depicts the variation of the minimum value of the product Af 2 that de-
termines the onset of rocking, as a function of l

L
. Notice that this quantity is directly related

to the maximum acceleration of the base. The values of Fig. 10 are obtained from the av-
erage of several values obtained by varying both A and f (see the data in Tables 17 and
18 in [63]). It is clear that the minimum Af 2 tends to infinity as l

L
tends to zero (very flat

blocks), while it tends to zero as l
L

diverges (very slender blocks). The curve is very regular
(and exponential-like) for aspect ratios ≥ 3. Previous works report a criterion for the onset
of rocking without sliding [27, 44, 49], which in fact reduces to a static equilibrium crite-
rion μs ≥ L

l
(see, e.g., Eq. (32) in [27]). The results obtained here do not make the sticking

assumption, and some slipping phases are possible both outside and during the impacts, as
evidenced in Fig. 9. The maximal acceleration of the base is known to play a significant
role in the block dynamics; see, e.g., [26] where this is denoted as PTA (for Peak Table Ac-
celeration) and used to study the so-called engineering demand parameter in purely sliding
motions. It is also noteworthy that our results are not based on some model approximations
as done sometimes [1], but keep the full nonlinearity of the dynamics in addition to the
nonsmooth features.

4It is important to notice here that the experiments in [43] have been led for a discrete set of amplitude
values, for obvious experimental constraints. Thus, the experimentally obtained minimum amplitudes, for a
given frequency, are necessarily larger than the numerical ones, which have been computed from a much finer
set of amplitude values. This explains the discrepancies between the red dots and the triangles in Fig. 8(a).
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Fig. 9 Responses θ(t) and relative tangential velocity, μ = 0.3, μs = 0.577, f = 3.3 Hz, l
L

= 3.5, A = 5.94
mm (left column), and A = 5.95 (right column)

Fig. 10 Af 2 that triggers
rocking

6 Overturning phenomenon

In this section, the overturning phenomenon is studied numerically, where the classical har-
monic and pulse-based excitations are used. Many studies have been devoted to the over-
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turning phenomenon; see e.g. [1, 3, 14, 17, 26–28, 47, 53, 55, 57]. In particular, several
works aim at defining simple enough criteria that may be used to assert if a block is likely to
overturn or not. Our goal in this section is rather to prove that the LZB model may be use-
ful to study the overturning because it encapsulates the rich dynamics of the block/ground
system. Comparisons with existing numerical studies on the overturning are presented.

6.1 Harmonic base excitation

We first consider a horizontal harmonic motion of the base of the above form xb(t) =
A sin(ωt). It is expected that the overturning phenomenon hardly obeys simple rules, be-
cause it is known that the block dynamics with moving base is an extremely sensitive pro-
cess with respect to initial data and parameters, especially when restitution is high and
stick/slip occurs [25]. In all the figures of this section, the curves are numbered starting
with the smallest magnitude, or with the smallest frequency. The overturning is the re-
sult of an “optimal” exchange of energy between the base and the block, through an in-
crease of the block’s oscillation magnitude. This is illustrated in Fig. 11(a), where the
θ(t) response is depicted during 6 s, with frequency ω

2π
= 3.3 Hz, en = 0.99, l

L
= 6, and

L = 0.155 m, μ = 0.3, μs = 0.577. This figure demonstrates that overturning may occur
quickly for A = 40,55,60,70,30,50 mm, later for A = 25,35,45,65 mm, and not over-
turn for A = 15 mm before 6 s. In all cases, the block motion before the overturn is quite
similar in frequency and amplitude. This indicates that the overturn is the result of a sud-
den “break” in the base/block relative motion. Figure 11(b) shows that decreasing en, i.e.,
adding normal dissipation at the impacts, decreases significantly the risk of overturning since
all amplitudes A ≤ 40 mm yield stable rocking. Figure 12(a) shows that decreasing A may
yield a stable rocking motion after some transient, as may be expected. In Fig. 12(b), the
same study is done with varying frequencies and fixed A = 3 mm. Similar conclusions as
for the varying amplitude can be drawn, that there is no monotonic variation of the over-
turning phenomenon as a function of the base frequency. Discontinuities in the dynamical
behavior are common in systems with impact and Coulomb friction. It is expected that more
energy dissipation is going to prevent the block from overturning. Dissipation may come
from two sources: sliding motions and normal restitution. The friction between the base and
the block mainly influences the onset of rocking, for if μ = μs = 0 the block’s corners never
detach from the base. However, when rocking has been established the most efficient way to
“control” the overturning via energy dissipation is through the normal restitution, as demon-
strated in Fig. 11(b). The base excitation is a persistent one. This means that it is difficult
to assert firmly whether a motion is really stable or not, because the mechanism of energy
transmission between the base and the block is very complex. For instance, we cannot say
if the motion with A = 40 mm in Fig. 11(b) is stable or not on a long term. This is why
studying overturning with simpler base excitations like one-sine period only, may be useful.
This is done in the next section.

6.2 Pulse-type base excitation

Let us consider that the base has the pulse-type motion (called one-sine type-A pulse in [26,
37, 61]) with an acceleration equal to

v̇b(t) =
{

ap sin(ωpt + ψ) if − ψ

ωp
≤ t ≤ 2π−ψ

ωp
,

0 otherwise,
(15)
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Fig. 11 The overturning with
varying A, f = 3.3 Hz

with ψ = arcsin(
αg

ap
), α = arctan(L

l
). The advantage of considering such a base excitation is

that it allows one to clearly separate the motions that overturn and those that do not overturn.
Indeed, once the base is at rest, the block may only lose energy. If it has not overturned before
it starts to lose its energy, it will never overturn. This has been used in [26, 61], where one
can find numerical results about the safe and unsafe areas depending on the amplitude and
frequency of the base excitation (see, for instance, Fig. 6 in [26]). The results are reported in
Fig. 13(a). The parameters are chosen as in [37, Fig. 5], which is reproduced in Fig. 13(b),

i.e., l = 1.555, L = 0.3971, en = 0.9, so that p
�=

√
3g

4R
= 2.14 and α = arctan(L

l
) = 0.25.
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Fig. 12 The overturning with
varying frequency and amplitude

• In Fig. 13(a) are depicted various areas in the (
ap

αg
,

ωp

p
) plane. Qualitatively, we recover

the same shapes as in [26, Fig. 6] or [37, Figs. 5, 8, 9]: a big area within which overturning
occurs with no impact, and a smaller “tongue shaped” area where overturning occurs after
one or several impacts. In more detail:
– μ = 0.3, μs = 0.577: overturn with no impact in AGH , with one or two impacts in

AFECBA.
– μ = 0.3, μs = 0.8: overturn with no impact in AGH , with one or two impacts in

AFIDCBA.
– μ = 0.5, μs = 0.8: overturn with no impact in AGJK , with one or two impacts in

AFIDCBA.
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Fig. 13 Overturning safe and unsafe areas

The tongue-shaped areas have been reported numerically and with some experimental
validations on overturning in [17, Figs. 6, 7, 8]. They have been computed numerically in
various papers [14, 26, 28, 55].

• The transitions between the various areas in Fig. 13(a) are illustrated in Figs. 67, 68, 69
in [63]. In particular, the number of impacts before the overturn event may be seen on
the θ(t) curves (a), (b), (c) of these figures. There are, however, some discrepancies with
respect to the results in [26, 37, 61]; see also [27]:
– Consider the case μ = 0.5, μs = 0.8. The overturn in the area above the line AB and

below the line AF , occurs after two impacts (which is new compared to [26, Fig. 6] and
to Fig. 13(b), which indicate only one impact). There is a discontinuity between points
B and C, because the overturning in the area above CD and below the next curve AFI

occurs with one impact only. The result is that the LZB model considers that overturn
may occur for much higher frequencies than the linear model used in [37] to establish
Fig. 5 in that paper. Notice that the break at BC corresponds to the largest frequency
of the one-impact overturn area of Fig. 13(b).
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– The overturning area with one or two impacts, is much larger than the one-impact over-
turning area in [26, Fig. 6] or [27, Fig. 11]. It is noteworthy that Fig. 11 in [27] and
Figs. 8 and 9 in [37] already show a big discrepancy between the two models used
in these papers (called therein the linear and the nonlinear models), as illustrated in
Fig. 13(c) (the scales are not the same but are presented in [37] so that the two figures
can still be compared). Our simulations are led with the full smooth nonlinearities, and
with in addition the stick/slip modes. This indicates that simplifying too much the dy-
namical equations and neglecting the smooth nonlinearities in (2) as well as Coulomb’s
friction modes outside and during the impacts, may result in an overestimation of the
safe area of no overturn: as long as new dynamical effects are added to the model, the
safe area decreases as is visible starting from Fig. 13(b) then (c) then (a). As shown
in [37, Fig. 14], the discrepancy between the results provided by the various models
also depends on the type of excitation that is applied on the base. We may infer that
much more work is needed in the future to determine safe areas as a function of all
parameters: aspect ratio, contact parameters, base excitation.

• As expected, the safe area increases when the friction decreases that indicates that more
slip implies less overturn. In the frictionless limit, there is no overturn since the block
keeps slipping on the base.

• Figs. 14(a), (d), (g) correspond to a point on the line AB in Fig. 13, Figs. 14(b), (e), and (h)
correspond to a point on the line CD, Figs. 14(c), (f), and (i) correspond to a point on the
line AF . From Figs. 14(g), (h), and (i), one sees that the overturning is almost always
occurring after a phase of slip, followed by a sticking phase at the point of contact (notice
that the vertical scales in Figs. 14(g), (h), and (i) and in Figs. 14(d), (e), and (f) are quite
different in magnitude).

The overturning phenomenon is certainly the most complex phenomenon that may oc-
cur in the block/ground system. Our numerical results mainly aim at showing that the LZB
model with friction, coupled to the complementarity system in (2) outside the impacts, may
improve our knowledge about overturning in planar blocks. It is to be considered as a pre-
liminary work because on the first hand three-dimensional effects are likely to play a signif-
icant role in most of the experiments with strong base excitation, on the second hand, real
earthquakes excitations are more complex than those considered here.

7 Conclusions

This paper focusses on the experimental validation of the multiple impact law with Coulomb
friction introduced in [33–36, 65] on the planar block/anvil system. This impact law is based
on the Darboux–Keller assumptions, and is a rigid body model incorporating local flexibility
effects at the contact points, with few parameters per contact (restitution and friction coeffi-
cients). Detailed comparisons between the numerical results obtained with an event-driven
method and the experimental data found in [42, 43] are made. It is shown that the simple,
free-rocking experiments, may be used to fit the parameters of the impact law for simulating
more complex dynamics with base excitation. Compared to other models widely used in the
earthquake engineering literature, our model incorporates Coulomb friction and allows for
bounces at the contact corner, a fact experimentally evidenced elsewhere [32]. In particular,
this allows to simulate the transient behaviour that occurs before the onset of rocking, which
is shown to consist of stick/slip and impact events that can hardly be neglected. It also has
the advantage of using few parameters. This work is a preliminary validation of a recently
introduced multiple impact law with Coulomb friction, on a two-body, two-dimensional
system. Future works should concern in priority:
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Fig. 14 (a), (b), (c): θ(t), (d), (e), (f) vertical positions, and (g), (h), (i) relative horizontal velocities of the
contact points

• the analysis of the three-dimensional block/anvil system;
• incorporating line/line or plane/plane contact models, lumped flexibilities in the structure,

asymmetry in the block geometry;
• more complex base excitations, like real earthquake and random excitations;
• stacked blocks.
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