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Modeling Mechanical Behavior of Very Coarse 
Granular Materials

Zhen-Yu Yin1; Pierre-Yves Hicher2; Christophe Dano3; and Yin-Fu Jin4

Abstract: A novel approach has been developed to predict the mechanical behavior of very coarse granular materials with a constitutive model, 
which considers both grain breakage and size effect. The behavior of granular assemblies is significantly influenced by particle breakage. A 
critical-state double-yield-surface model incorporating the change in the critical-state line and in elastic stiffness caused by grain breakage 
during loading has been adopted. The amount of grain breakage was estimated by extending the size effect theory on individual grains to 
granular assemblies. The results from earlier studies on granular materials with parallel gradations have been usefully exploited to calibrate 
and to validate the model. Comparisons between experiments and simulations suggest that this approach can predict the mechanical behavior of 
very coarse granular materials from test results performed on a finer fraction with a homothetic gradation.

keywords: Coarse granular material; Critical state; Grain breakage; Plastic work; Weibull’s theory; Elastoplastic model.

Introduction

The construction of large civil engineering works involving coarse
grained materials, such as rockfill dams, is increasing worldwide.
However, despite the steady efforts of geotechnical engineers and
scientists to study the mechanical behavior of coarse granular
materials, the design methods of such geotechnical structures
need still to be significantly improved to avoid severe accidents.
Accidents occur because it is difficult to construct apparatus large
enough for testing such materials, even for small granular materials,
and the cost can be prohibitive. For example, for a 0–250-mm
rockfill, a representative cylindrical probe for a triaxial test should
measure approximately 1.5 m in diameter by 3 m high, and weigh
more than 10 t.

Pioneering experimental work in large-scale testing of a wide
range of different materials was developed in the 1960s, together
with the development of large rockfill dam construction (Marsal
1967; Marachi et al. 1969). Smaller devices have also been used
to provide useful results concerning the behavior of coarse granular
materials (Chavez and Alonso 2003; Frossard et al. 2012). In these
tests, grain breakage was generally observed and shown to depend
on the grain sizes. As a consequence, the size effect of granular

assemblies was observed, but its quantification remains difficult
to assess.

In this paper, the authors suggest a novel modeling approach to
evaluate the mechanical properties of assemblies of large particles
from the mechanical behavior of assemblies of smaller particles on
the basis of size effect in granular materials. For this purpose, a
critical-state-based elastoplastic model is adopted. The influence
of the particle size on the mechanical behavior of granular assem-
blies is related to the amount of particle breakage during loading
and the size influence on particle crushing strength. The effect of
grain breakage is incorporated into the model by introducing the
evolution of the grain-size distribution in the constitutive equations.
The model has been finally validated by simulating the previously
done triaxial tests on Pyramid dam rockfill.

Constitutive Model

Basic Elastoplastic Model for Granular Material

For building an efficient constitutive model that is able to reproduce
the main features of coarse granular materials, one needs at first to
consider the main aspects of behavior of a given granular material.
For this purpose, the developed model, similar to that by Yin et al.
(2013a), contains two yield surfaces: one for shear sliding (f1)
and one for compression (f2). The plastic strain increment can
be expressed as follows:

ε̇pij ¼ ε̇p1ij þ ε̇p2ij ¼ dλ1
∂g1
∂σ 0

ij
þ dλ2

∂g2
∂σ 0

ij
ð1Þ

where the scripts 1 and 2 = shear sliding and compression compo-
nents, respectively. For one component with f < 0, the correspond-
ing dλ is equal to zero.

Nonlinear Elasticity
The nonlinear hypoelastic model by Richart et al. (1970) was
selected. The bulk modulus K and the shear modulus G are power
functions of the mean effective stress p 0 and are dependent on the
material void ratio e:
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K ¼ K0 · pat
ð2.97 − eÞ2
ð1þ eÞ

�
p 0

pat

�
n
;

G ¼ G0 · pat
ð2.97 − eÞ2
ð1þ eÞ

�
p 0

pat

�
n

ð2Þ

where G0, K0, and n = material constants; and pat = atmospheric
pressure used as reference pressure (pat ¼ 101.3 kPa). A constant
Poison’s ratio ν ¼ ð3K0 − 2G0Þ=2ð3K0 þG0Þ was implied by
Eq. (2). Thus, the input parameters can be two of G0, K0, and ν
with n.

Plastic-Sliding Behavior
The shear sliding yield function, f1, has the following expression:

f1 ¼
q
p 0 −

Mpε
p
d

ðMpp 0Þ=ðGpRGÞ þ εpd
¼ 0 ð3Þ

where the deviatoric plastic strain εpd = hardening variable; q = de-
viatoric stress; GpR = relative plastic stiffness controlling the hard-
ening rate, which is similar to micromechanical models of Yin et al.
(2009, 2010, 2011, 2013b, 2014); and Mp = peak stress ratio,
which can be expressed as

Mp ¼ 6 sinϕp

3 − sinϕp
ð4Þ

where ϕp = “peak” friction angle with more details described
subsequently.

The plastic potential function is given by

g1 ¼
q

Mptp 0 þ lnðp 0Þ ð5Þ

where g1 is different from f1; therefore, the model is nonassociated.
Mpt can be expressed as

Mpt ¼
6 sinϕpt

3 − sinϕpt
ð6Þ

where ϕpt = phase transformation angle or characteristic angle,
which corresponds to the transition from the contracting to the
dilating domain, with more details described subsequently.

Critical-State Line–Related Density State Effect
Critical state is one of the most important concepts in soil mechan-
ics. At critical state, the material will remain constant in both
volume and stress while subjected to a continuous distortion.
The void ratio corresponding to this state is ec, named as the critical
void ratio, which is a function of the mean effective stress p 0 as
follows:

ec ¼ eref − λ ln

�
p 0

pref

�
ð7Þ

where λ = slope of the critical-state line in the e- lnp 0 plane; the
two parameters (eref , pref ) correspond to a reference point on the
critical-state line (CSL). For simplicity, eref ¼ 0.5 is fixed, and only
pref is needed. This adopted linear CSL is considered suitable on
the basis of experimental observations on granular materials before
grain breakage.

The friction angle at critical state ϕu is considered constant for
the material. However, the peak friction angle ϕp is dependent on
the stress state and the void ratio

tanϕp ¼
�
ec
e

�
β
tanϕu ð8Þ

where β = material constant. A common value is β ¼ 1, according
to Biarez and Hicher (1994). This formulation indicates that, in a
loose structure, in which particles have more freedom to move, the
interparticle shear force can be fully mobilized during sliding.
Under these conditions, the peak friction angle ϕp is equal to ϕu.
Conversely, in dense packing, in which there is a higher degree of
interlocking, more effort is needed to mobilize the particles in
contact. In this case, the peak friction angle ϕp is greater than ϕu.
When the stress state passes the phase transformation state, the
granular assembly begins to dilate. The void ratio increases. As
a consequence, the peak friction angle is reduced, which results
in a strain-softening phenomenon.

The phase transformation angle ϕpt depends on the packing
density and can be simply expressed as follows by adopting the
same form as the peak strength:

tanϕpt ¼
�
ec
e

�−β
tanϕμ ð9Þ

which indicates that a dense packing has a smaller phase transfor-
mation angle than does a loose packing. This equation as shown in
Yin et al. (2010, 2014) gives the same trend as experiments and
exponential forms used in Jefferies and Been (2006) and Kikumoto
et al. (2010).

Compression Behavior
To describe the compression behavior of granular materials, a sec-
ond yield surface was added. The function of the breakage limit by
Kikumoto et al. (2010) was adopted as the compression yield
surface in this study

f2 ¼
1

2

�
η
Mp

�
3

p 0 þ p 0 − pm for η ≤ Mp ð10Þ

where pm = hardening variable controlling the size of the yield sur-
face. This yield surface expands with the plastic volumetric strain,
as in the modified Cam-clay model

pm ¼ pm0 exp

�
1þ e0
λ − κ

εpv

�
ð11Þ

where κ ¼ ð1þ e0Þp 0=K is used with K by Eq. (2); and λ takes the
same value as that of the CSL.

Considering Grain Breakage

Estimating the Amount of Grain Breakage
Grain breakage commonly occurs when a granular material under-
goes compression and shearing. The amount of grain breakage
caused by mechanical loading is usually evaluated on the basis
of the change of the grain-size distribution (GDS). Different mea-
sures have been proposed in previous studies (Lee and Farhoomand
1967; Marsal 1967; Hardin 1985; Lade et al. 1996; Nakata et al.
1999; Einav 2007; Kikumoto et al. 2010). Because the GSD tends
to become fractal as shown by McDowell et al. (1996) and Coop
et al. (2004), the breakage index B�

r suggested by Einav (2007)
varies from 0 to 1 with the change in the GSD. Therefore, B�

r should
be a pertinent measure of the amount of grain breakage during
mechanical loading.

For a given material, the amount of grain breakage increases
when stresses and strains increase (Biarez and Hicher 1997). There-
fore, the amount of grain breakage can be considered as a function
of the plastic work during loading (Daouadji et al. 2001; Daouadji
and Hicher 2010; Hu et al. 2011)
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B�
r ¼

wp

aþ wp
ð12Þ

where a = material constant controlling the evolution of the break-
age amount. In this study, the expression of the plastic work is
slightly modified

wp ¼
Z

ðp 0hdεpv i þ qdεpdÞ ð13Þ

where dεpv and dεpd = volumetric and deviatoric plastic strain incre-
ments, respectively. The MacCauley function in Eq. (13) implies
that the shear induced dilation (dεpv < 0) is not accounted for in
the modified plastic work. As a result, the evolution of the grada-
tion is not influenced by shear-induced dilation (Biarez and
Hicher 1997).

Once the amount of grain breakage is determined, the actual
GSD can be obtained by the formulation proposed by Einav (2007)

FðdÞ ¼ ð1 − B�
rÞF0ðdÞ þ B�

rFuðdÞ ð14Þ
where F0ðdÞ and FuðdÞ = initial and fractal GSDs, respectively,
with FuðdÞ ¼ ðd=dMÞ0.3 according to Coop et al. (2004).

Dynamic Critical-State Line
Recent experimental and numerical works by Liu et al. (2013) and
Li et al. (2014) showed that the position of the critical-state line in
the e- logp 0 plane depends on the grain-size distribution repre-
sented by the coefficient of uniformity Cu ¼ d60=d10. If grain
breakage occurs during loading, the grain-size distribution evolves,
and the value of d60=d10 increases. As a consequence, the critical-
state line is shifted toward lower values of e. A simple way to
describe the change of the critical state is to change the reference
critical point (eref , pref ). eref or pref is the only variable necessary to
control the evolution of the critical-state line, if one can assume that
the slope remains constant regarding to very similar form of grains
before and after grain crushing for natural sand by Biarez and
Hicher (1997). A simple way to consider the evolution of eref or
pref is, therefore, to make it dependent of the amount of grain
breakage.

In this study, pref corresponding to a fixed value of eref ¼ 0.5
was adopted to describe the evolution of the critical-state line
caused by grain breakage; the following expression is suggested:

pref ¼ pref0 expð−bB�
rÞ ð15Þ

where parameter b controls the rate of the CSL shifting caused by
grain breakage. Because there exists an ultimate CSL correspond-
ing to the fractal GSD, the value of b ¼ lnðpref0=prefuÞ can be
obtained by the ultimate prefu when Br ¼ 1, if tests for the material
with fractal GSD are available.

From Eq. (15) combined with Eqs. (7)–(9), ruptures of particles
will reduce the dilatancy of the granular assembly and increase its
contractancy. As a consequence, the material will develop more
deformation when subjected to oedometric compression and the
maximum strength along deviatoric loading paths will reduce.

Influence of Grain Breakage on Compression Behavior
The evolution of pm caused by grain breakage was added in
Eq. (11) as follows:

pm ¼ pm0 exp

�
1þ e0
λ − κ

εpv

�
expð−bB�

rÞ ð16Þ

Because the same evolution is used for pm and pref , the same
amount of shifting is imposed for the isotropic compression curve
and the CSL.

For simplicity, an associated flow rule has been adopted for the
normal compression. Therefore, only the initial value of pm0 for
εpv ¼ 0 and B�

r ¼ 0 is needed for input.

Influence of GSD on Elastic Stiffness
According to Iwasaki and Tatsuoka (1977), the shear modulus of
natural sands at small strain decreases with the broadening of the
grain-size distribution. Because the change of GSD is estimated by
the amount of grain breakage, the elastic stiffness can be modified
as follows:

K ¼ K0 · pat
ð2.97 − eÞ2
ð1þ eÞ

�
p 0

pat

�
n
expð−ρBrÞ;

G ¼ G0 · pat
ð2.97 − eÞ2
ð1þ eÞ

�
p 0

pat

�
n
expð−ρBrÞ ð17Þ

where the parameter ρ controls the degradation rate and also the
final degradation percentage of elastic stiffness when Br ¼ 1.
For instance, on the basis of the results of Iruma sands shown
by Iwasaki and Tatsuoka (1977), ρ ¼ 0.94 was estimated for a final
degradation of up to 60%.

Because the plastic stiffness for η-εpd in Eq. (3) is controlled by
GpRG, the aforementioned modification will also lead to the deg-
radation to the plastic stiffness, in agreement with the experimental
observations.

Considering Size Effect

Size Effect in Individual Grains
The statistical theory of the strength of brittle materials proposed by
Weibull (1939) gives the following distribution for the survival
probability of a material of size d subjected to a tensile
stress σ

PsðdÞ ¼ exp

�
−
�
d
do

�
nd
�
σ
σo

�
m
�

ð18Þ

where σo = characteristic strength (Ps ¼ 37% for a sample of size
do); and m controls the amplitude of data scatter on crushing
strength. According to Bažant and Planas (1997), nd is the geomet-
ric similarity of the mechanical problem: nd ¼ 1, 2 or 3, for linear,
surface or volume similarity, respectively.

For a given survival probability and known empirical
parameters, a size-effect relation is obtained between the induced
tensile stress at failure (σf) and the characteristic size of the
sample (d)

σf ∝ d−nd=m ð19Þ

Marsal (1973) suggested the following empirical expres-
sion between the crushing force (ff) and the rock particle size
for a crushing compression test between two stiff parallel
platens:

ff ¼ ηdζ ð20Þ
where d = characteristic size of the particle (distance between
platens before crushing); and η and ζ = experimentally fitted
parameters. ff induces a tensile stress σf, which causes the
brittle failure of the particle and can be expressed as
(Jaeger 1967)

σf ∝ ff
d2

ð21Þ
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From Eqs. (20) and (21), a power law expressing the size effect
on particle crushing strength can be obtained (where a ¼ ζ − 2 is
an empirical parameter)

σf ∝ dα ð22Þ

Empirical validation of Weibull’s theory is possible by confirm-
ing the validity of the relation α ¼ −nd=m [from Eqs. (18) and
(22)]. For soil particles and rock aggregates under compression be-
tween two stiff parallel platens, it has been generally assumed that
failure occurs under bulk-induced tensile stress (i.e., in Mode I),
which gives nd ¼ 3 (Lobo-Guerrero and Vallejo 2006). Values
of m for different materials have been reported in the literature
(Ovalle et al. 2014), i.e., approximately 3–4, corresponding to
sound heterogeneous materials as quartz sands, biotite and ballast;
as for feldspars, limestones, and carbonates, m varies between 1
and 3.

McDowell and Bolton (1998) examined the application of
Weibull’s theory on weak limestone sand by checking the ability
of Eq. (18) for nd ¼ 3, obtaining a good agreement. Similar con-
clusions for silica sand and for rock fragments of biotite gneiss and
grey quartzite can also be found. Conversely, geometric similarities
of nd ¼ 2 was also obtained to represent size effects on granite and
railway ballast particles, respectively, in which failure was gener-
ally induced on weak surface flaws. In general, if no information is
available on material flaws distribution or on internal stress distri-
bution on particles, the physical sense of nd might be missed. As
aforementioned, Weibull’s theory assumed that the structure is
equivalent to a uniaxial stressed bar. Afterward, if one considers
an alternative structure, all information about the mode of failure
is lost and becomes irrelevant. This could be the case of soil grains
and rock aggregates with significant data scatter in parameters such
as particle size, particle shape, grain anisotropy, and flaws distri-
bution. After several crushing tests, failure could occur in different
geometric similarities for different aggregates. Therefore, for prac-
tical applications, nd could just be fitted to use Weibull’s distribu-
tion as a statistical tool (Ovalle et al. 2013).

Size Effect in Granular Assemblies
The method proposed by Frossard et al. (2012) considers two
homothetic granular materials (say, G1 as the finer and G2 as
the coarser) under the same loading condition and with the same
mineralogy and grain shape. Thus, if an identical survival proba-
bility is assumed for two grains under compression of characteristic
sizes d1 and d2 in G1 and G2, respectively, the following relation
for the particle crushing strength (σGi) can be obtained from
Eq. (18):

σG2 ¼ σG1

�
d2
d1

�−nd=m ð23Þ

Then, according to Eq. (21), the crushing forces of each particle
(fGi) are related by

fG2 ¼ fG1

�
d2
d1

�
2−nd=m ð24Þ

Now, if both granular materials present the same amount
of grain breakage after shearing, the stress magnitude on G2
should be lower because coarse grains have lower strength.
By focusing on contact micromechanics, a condition for the inten-
sity of the contact forces between grains n and p (fðn=pÞ) is
obtained

fG2ðn=pÞ ¼ fG1ðn=pÞ

�
d2
d1

�
2−nd=m ð25Þ

In parallel, the geometric scaling gives a relation between
branch vectors (lðn=pÞ) and grains volumes

lG2ðn=pÞ ¼ lG1ðn=pÞ

�
d2
d1

�
and VG2 ¼ VG1

�
d2
d1

�
3

ð26Þ

The stress tensors σij for G2 and G1 are given by the following
expressions (Rothenburg and Selvadurai 1981):

σij−G1 ¼
1

VG1

X
n<p≤N

fG1ðn=pÞ ⊗ lG1ðn=pÞ &

σij−G2 ¼
1

VG2

X
n<p≤N

fG2ðn=pÞ ⊗ lG2ðn=pÞ ð27Þ

Hence, combining Eqs. (26) and (27), the stress tensor of G2 as
a function of G1 is obtained

σij−G2 ¼
�
d2
d1

�−nd=m 1

VG1

X
n<p≤N

fG1ðn=pÞ ⊗ lG1ðn=pÞ ð28Þ

Therefore, the modified plastic works wpG1 and wpG2 necessary
to create the same amount of grain breakage in materialsG1 andG2
along the same loading path are linked by the relation

wpG2 ¼ wpG1

�
d2
d1

�−nd=m ð29Þ

And, as a consequence, the material constants aG1 and aG2 are
linked by a similar relation

aG2 ¼ aG1

�
d2
d1

�−nd=m ð30Þ

Therefore, if one can assume that all the other parameters are
identical for materials G1 and G2, it is possible to calibrate the
parameters of coarse material G2 from experimental testing per-
formed on fine material G1. This assumption is reasonable if ma-
terials G1 and G2 are made of the same grains with similar shapes
for different sizes and homothetic grain-size distributions. Then, to
model the behavior of a given coarse granular material, it is pos-
sible to select a finer homothetic grain-size distribution to prepare a
representative finer material whose grain sizes are compatible with
the available experimental means of the laboratory.
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Summary of the Model Parameters

The parameters of the model can be classified into four groups:
(1) elastic parameters K0, G0 and n, shown in Eq. (2) or (17);
(2) plastic parameters GpR, ϕμ, pref0, and λ, shown in Eqs. (3)–(9);
(3) grain breakage–related parameters a, b, pm0, and ρ, shown in
Eqs. (10)–(17); and (4) size effect–related parameters nd and m,
shown in Eq. (30).

On the basis of all aforementioned constitutive equations and
according to conventional elasto-plasticity and the framework of
double-yield-surface model (Yin et al. 2013a), the stress-strain re-
lationship can be solved for test simulations.

To predict the mechanical behavior of materials made of large
particles, it is possible to determine all the aforementioned param-
eters from tests on samples made of small particles. Parameters of
Groups 1 and 2 can be determined in a conventional way [see
details in Yin et al. (2013b)] or by an optimization procedure

Table 1. Values of Model Parameters for Pyramid Dam Material

Group Parameters Values

Elastic parameters K0 70
G0 42
n 0.4

Plastic parameters GpR 22
ϕμ 40

pref0 (MPa) 1.22
λ 0.04

Grain breakage effect a (MPa) 3
b 4

pm0 (MPa) 1.5
ρ 0.94

Size effect nd 3
m 4
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(Yin and Hicher 2008). The size effect–related parameters can be
determined separately from crushing tests on individual particles of
different sizes. Thus, only the value of dM is needed for modeling
large assemblies.

Experimental Validation

Selected Material and Experimental Testing

Marachi et al. (1969) performed drained triaxial tests on samples of
Pyramid dam granular material with parallel gradations and respec-
tive maximum sample sizes of 7.1, 30.5, and 91.4 cm (with maxi-
mum grain size dM of 1.18, 4.9, and 14.5 cm). All specimens had
the same initial compactness. Relatively high values between
200 and 4,500 kPa of the confining pressure were applied. The
material was selected because of the homogeneity of the grains over
the different granular fractions in terms of mineralogy and grain

angularity, resulting from the crushing of a sedimentary rock.
Fig. 1 presents the grain-size distributions of the tested materials
and the grain-size distribution of the material used to build
the dam.

Determination of Model Parameters

The determination of the model parameters was based on four tri-
axial tests, together with the isotropic compression stage and mea-
surements of the GSD before and after testing performed on the
finest material (dmax ¼ 1.18 cm), shown in Figs. 2 and 3.

The elastic parameters were determined from the isotropic com-
pression curve [IC stage of tests in Fig. 2(a)]. One obtained K0 ¼
70 and n ¼ 0.4. The shear modulus G0 was calculated by assuming
a commonly adopted constant Poisson’s ratio ν ¼ 0.25.

The plastic parameters were determined from the triaxial test
results. The relative plastic stiffness GpR ¼ 16 was determined
from four εa-q curves of an axial strain level of up to 2% [Fig. 3(a)].
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The critical friction angle ϕμ ¼ 40was calculated from the slope of
the CSL in the p 0-q plane measured directly from the final stress
states [Fig. 3(b)]. Because only the triaxial test performed at the
smallest confining stress did not produce any significant grain
breakage, the slope of the CSL in the e- lnp 0 plane had to be
assumed: λ ¼ 0.04 was reasonably selected corresponding to
different granular materials (Biarez and Hicher 1994; Jefferies and
Bean 2006).

For the grain breakage related parameters, the breakage rate
parameter a ¼ 3 MPa was determined on the basis of the evolution
of GSD [Figs. 3(e and f)]. The yield stress of the breakage limit
Pm0 ¼ 1.5 MPa and the degradation of the yield stress b ¼ 4 were
determined from the isotropic compression curve up to a high stress
level [Fig. 2(b)]. Because no measurement at small strain is avail-
able for the selected material, the parameter of the elastic stiffness
degradation ρ ¼ 0.94 was assumed on the basis of the test results
on Iruma sands shown by Iwasaki and Tatsuoka (1977).

Because no statistical data on crushing tests on grains were
available, no direct determination of the Weibull parameters could
be made. The values of the size effect–related parameters, nd ¼ 3

and m ¼ 4, were assumed according to Lobo-Guerrero and Vallejo
(2006) and Frossard et al. (2012).

All determined parameters are summarized in Table 1. The tri-
axial tests on coarser material were simulated by using the same
set of parameters for the validation of the model.

Test Simulations
In Fig. 3(a–d), the simulations without grain breakage effect by
taking nd ¼ 0 were plotted together with those with grain breakage
(nd ¼ 3). The model appears able to reproduce the main features of
the mechanical behavior of granular material influenced by particle

breakage: (1) under the lowest confining stress (200 kPa), the
material shows a dilative behavior; (2) for higher confining stresses,
the material becomes contractive, and the disappearance of the
dilation is caused partly by the increase of particle breakage occur-
ring under high stresses (from 207 to 4,480 kPa); (3) the grain-size
distribution broadens more significantly for higher stress levels
[Fig. 3(e versus f)].

Figs. 4 and 5 show the comparisons between experimental re-
sults and model predictions for drained triaxial tests in compression
with confining stresses varying from 207 to 4,482 kPa on samples
with a maximum grain size of 4.9 and 14.5 cm., taking into account
the size effect by setting nd ¼ 3. A relatively good agreement was
achieved for all comparisons. The comparison shows that the grain
breakage effect on the mechanical behavior is well predicted by the
model for samples with larger grain sizes. In addition to this, the
simulations without considering the size effect by giving nd ¼ 0

were also plotted in Figs. 4 and 5. The comparisons demonstrate
that the behavior of coarse granular materials can be reproduced by
the model if the size effect is correctly estimated.

Discussions
The influence of the grain size is illustrated in Fig. 6, in which the
numerical simulations of the triaxial tests at the confining pressures
of 207 to 4,480 kPa are presented for the four different materials
including the field gradation with the maximum grain size varying
from 1.18 to 37.2 cm according to Fig. 1. The simulations for the
maximum grain size of 37.2 cm corresponding to the GSD of dam
rockfills were also carried out and plotted in dashed line. The re-
sults demonstrate that at higher stress levels the amount of grain
breakage is greater, and, as a consequence, the size effect is more
pronounced on both the shear stiffness and the maximum strength.
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These results agree well with the experimental observations on
coarse granular materials.

Fig. 7 illustrates the evolution of the GSDs for the different
material grain sizes. One can see that this evolution is more

pronounced at a given confining stress for coarser materials.
The computed GDSs agree well with the experimental ones mea-
sured at the end of each triaxial test. The dashed lines show again
the computed evolution for the field gradation.
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Conclusions

A novel approach for modeling the mechanical behavior of very
coarse granular materials has been proposed. First of all, the authors
constructed a constitutive model able to reproduce the main fea-
tures of granular materials. This model incorporates the critical
state and the elastic stiffness which, in our approach, are both con-
sidered dependent on the amount of grain breakage developed
within the granular assembly during loading. The amount of grain
breakage is made a function of the plastic work developed along a
given loading path. The constitutive relation includes two model
parameters, which depend on the individual strength of the grains.
A size effect is then introduced, which takes into account the de-
crease of the grain strength with the grain size. To validate the ap-
proach, drained triaxial tests under different levels of confining
stresses on rockfill material of Pyramid dam with parallel grain-size
distributions were simulated. The same set of parameters was used
for all simulations. Comparisons between experiments and simu-
lations demonstrate that the model can predict the mechanical
behavior of very coarse granular materials from test results per-
formed on a finer fraction with a homothetic gradation.

From the results of this study, one can suggest a procedure for
modeling very coarse granular materials for which experimental
behavior is not accessible because of the lack of adapted testing.
Standard tests can be performed on a specimen with a smaller grain
size and a grain-size distribution homothetic to the one correspond-
ing to the real material. The grain-size distribution after the tests
should be measured to analyze the amount of grain breakage.
Moreover, crushing tests on individual grains of different sizes
should be performed to obtain a quantification of the size effect.
By combining these results, the calibration of the model parameters
can be made, and numerical simulations can be performed to obtain
the stress-strain behavior of the coarse material.
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