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parabolic equations with a quadratic
nonlinearity:.
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Abstract

We develop a general framework to describe global mild solutions
to a Cauchy problem with small initial values concerning a general
class of semilinear parabolic equations with a quadratic nonlinearity.
This class includes the Navier—Stokes equations, the subcritical dis-
sipative quasi-geostrophic equation and the parabolic—elliptic Keller-
Segel system.
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1 Presentation of the results.

In this paper, we shall study parabolic semi-linear equations on (0, +00) x R™

of the type :
O+ (—A)Pu = (=A)P %2 (1)

with0<a<n+28and 0< 8 < a.

More generally, we consider the following Cauchy problem : given Wy €
(8'(R™))?, find a vector distribution % on (0, +00) x R™ (or on (0,7) x R")
such that, for e = 1,...,d, we have

Opu; = —(=A)ui +Y Y 00 k(D) (uyup) (2)

j=1 k=1
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and
lim u;(t, ) = ;. (3)

t—0

We assume that o;;5(D) is a homogeneous pseudo-differential operator of
degree f with 0 < f < a <n+25: for f € S(R") with Fourier transform
Ff, we have :

oiik(D)f = fﬁl(%,j,k(f)}—f(f)) (4)

where o, 1 is a smooth (positively) homogeneous function of degree 5 on
R™ — {0} :

for A>0and € £0, 0i;x(A) = Ny x(€). (5)
We rewrite equation (2) in a vectorial form :
Ol = —(—A)*"*4 + (D) (i ® ) (6)

and use Duhamel’s formula to transform the problem into an integral problem
t
= e NG 4 / e =R (DY (I @ @) ds. (7)
0

We shall use the classical estimate :

Lemma 1 There exists a constant Cy (depending on o) such that, for two
functions @ and U on R™ (with values in R?) we have

~(t=)(=2)"2 . D\(i & T <C’/ |d(y)|[5(y)] d 8
e o(D)(u® )| < Co e ([t — s|1/o + |z — y])"B y. (8)

Due to homogeneity, this lemma is a direct consequence of Lemma 7 which
will be proved in Appendix A.

The core of the paper is the discussion of the equation

U(t,z) = Uy(t,z) + Cy //R . Ko 5(t—s,0—y)U(s,y) ds dy  (9)

with
1

([e[7e 4 fa )7

K, p5(t,z) = (10)

and Uy > 0.

The link with our initial problem is easy to see. Indeed, due to Lemma
1, we have the following domination principle :
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Theorem 1 [f there exists a function W (t,s) such that

//M{n 1 W(s,y) ds dy < W(t,x) (11)

n+4
“ |z - y!)

and such that, for some T € (0, +00] we have

—t(—A)/2
Lo<i<rle A 2U | < 4_COW (12)

[where Cy is the constant given in Lemma 1], then defining inductively Us on
(0, 7) x R™ and Wy on R x R™ as

o Up(t,z) =e NG for0<t<T
o Wolt,x) = Locrer|e A
° ﬁk+1 = Uo + f(f 67(t78)(7A)a/20'(D)(ka ® Uk) ds

L Wk+l = WO + ffRXR" 1 L n+p8 Wk(s7y)2 ds dy
(lt=sl® +la—y|)

we have the following results :

e W, converges monotonically to a function Wy, such that Wy, < 20 =W
and
Co 2
Weo =Wy + i Weols,y)” ds dy  (13)
(= s+ o~ y))
o |Up] < Wy and |Uysy — Uy| < Wir — Wy, on (0,T) x R®
o the sequence (Uy(t, z))en converges pointwise to a solution Uy, of
¢
Uso = Uy + / e = 0 (DY (U @ Us) ds. (14)
0

Proof : Just use monotone convergence for Wy and dominated convergence
for Uy. o

The aim of this paper is to describe the class of initial values iy to which
this domination principle can be applied. To this end, we shall introduce the

following sets of Lebesgue measurable functions on R xR™ and of distributions
on R" :



Definition 1 C, s is the set of non-negative measurable functions W on R x
R™ such that W < +0o0 (almost everywhere) and

//R . Wi (s,y) ds dy < W (t,x) (15)
g |t "o — yl)

Definition 2 V*? is the space of [classes of] measurable functions f on
R x R™ such that there exists A > 0 and 2 € Cop such that |f(x)] < A2
almost everywhere.

Proposition 1 The function f € V% i || f|lyes = inf{\ / IQ € Cos |f] <
AQ} is a norm on VP, Moreover, V" is a Banach space for this norm.

This proposition is proved in Appendix B (Proposition 9).

Definition 3 Let T € (0, +oc|. The space XQ@T(R”) is defined as the space
of tempered distributions f such that f € BS % (if T < +o00) [or f € BL %
if T < +00] and locper e A2 f € Va’ﬁ It is normed by || f|x, s r@) =

a/ B _ a/
H1t0<t<Te =4 2f||va5 + SUPyg<t<T tl o ” = 2fHoo

Proposition 2 X, 37 (R") is a Banach space. Moreover, if T\ < +o0o0 and
Ty < 400, then Xo g1 (R") = X, g1, (R™) with equivalent norms.

This proposition will be proved in Section 4. Theorem 1 may then be
rewritten as :

Theorem 2 If iy € X, 37(R") and

t( A)a/? 1 (16)

1 af < ——
octcrle™ & e < 7o

(where Cy is the constant in Lemma 1), then the equation
t
G=e A" g 4+ / e =0 (DY(d @ @) ds. (17)
0

has a solution i@ on (0,T) x R™ such that loci<rii € (V*P)4.

Theorem 1 is essentially obvious, and thus so is its restatement as Theo-
rem 2. Thus, X, g7 appears as the maximal space where trivial arguments
exhibit solutions for our equations. However, neither V*# nor X, sr are
trivial spaces. The paper will thus be devoted to give easy criteria to check
whether %, belongs to X, sr. These criteria will be described in the following
section, using the theory of parabolic Morrey spaces.
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2 V*’ as a space of multipliers.

We shall use the parabolic (quasi)-distance
Sal(t,2), (5,)) = |t = s/ + |2 — | (18)

on RxR"™. The space RxR" endowed with this metric and with the Lebesgue
measure dt dx is a space of homogeneous type, as described by Coifman and
Weiss [7]. Its associated homogeneous dimension is @) = n + .

We may write the kernel K, 3 as
1
Koglt—s,x—y) = . 19
A N e [ N O (19)

This leads to the following definition :

Definition 4 Z, ,_3 is the Riesz potential operator asociated to K, g :

Losf(e) = [[  Kalt=s.a=0)f(s.0) dsdy (20)

and WP is the potential space defined by
geW* & 3hel? g=1,, sh (21)

A direct application of Kalton and Verbitsky’s theorem [[14], Theorem
5.7] (see Appendix B, Theorems 9 and 10) on quadratic equations with sym-
metric kernels then gives the following characterization of V*# :

Theorem 3 Let 0 < 3 < a < n+ 2B. V*P is the space M(W*P s L[?)
of pointwise multipliers from WP to L*(R x R"), and the norm of V*# is
equivalent to the norm

[fllmewesszzy = sup [[fgl2.
lgllypra,p <1
This space of multipliers is not easy to handle (it can be characterized
through capacitary inequalities, see [23] for the Euclidean case). Instead,
we will use some spaces that are very close to V*# : the (homogeneous)
Morrey—Campanato spaces.

Definition 5 The (homogeneous) Morrey-Campanato space MP9(R x R™)
(1 <p<q<+o0) is the space of functions that are locally LP and satisfy
1 1

Iflige = sup  sup RRG)( /B e dsdy)"" < o0 (22)
t,x),

(t,x)ERXR™ R>0

where B(xz, R) = {(s,y) € R x R"™ / 0,((t, ), (s,y)) < R}.

b}



We have the following generalization of the Fefferman—Phong inequality
[9] (proved in Appendix C, Theorem 11) :

Theorem 4 Let0< f<a<n+20and2 <p< Zto‘ Then we have :

is)

n+ 2 n+
)

NP Ve = MW s 1) € M (23)

3 The case 8 < 2.

We now give another characterization of V*#(R x R") :

Theorem 5 If 3 < 2, we define W*?(R x R™) as the Banach space of tem-
pered distributions such that their Fourier transforms f are locally integrable
and satisfy

[ [ 1SR o de dr < oo, (24)
. 218
Equivalently, we have : W8(R x R") = L2H8 N [2H,
Veb s the space M(W*P s L2) of pointwise multipliers from W*? to
L*(R x R"), and the norm of V** is equivalent to the norm

HfHM(WaﬂHLQ): sup ”ngz-

l9llya,s<1

To prove this theorem, we shall use the theory of vy-stable processes on

Rpforthecasesp:nandvzﬂ,andpzlandvz%ﬁ.

Let W, ,(x) be defined, for p € N* and 0 <y < 2, as

1 v iz
W, p(z) = @) /Rp el eiws ge. (25)

When v = 2, we get the Gaussian function

Wap(z) = e 1. (26)

(47)P/2

When 0 < v < 2, we have a subordination of W, , to W5, :

W) = [ Wyl ) dio() (27)

where dji, is a probability measure on (0, +00)[25].
We have the following important result of Blumenthal and Getoor [3] :

6



Lemma 2 Let 0 <y < 2. There exists a positive constant ¢, such that

lim VV%p(x)‘ﬂer7 = Cyp- (28)
|z| =400
Thus, we have
A/ 1 Yy
ety WL =) dy (29)
Rr T o’
with 1 ;
Y
W) " (30)
to tr (7 + [yt

(where the notation F' ~ G stands for the existence of two positive constants
c1 and ¢y such that ¢; < F/G < ¢3).

In order to prove Theorem 5, let us remark that equation (9) involves a
convolution on RxR"™ with K, g. It will be interesting to give an approximate
Fourier transform of the convolution kernel K, g.

Proposition 3 Let 0 < f < min(a,2). Let K, 5(t, z) be defined on R x R"
as
1 x
Kaﬁ(t,ﬂf) == Hlﬂwﬁ’n (W) . (31)

Kas(t,z) = Kup(t, x). (32)
Let M, 5(7,€) be the Fourier transform of K, 5(t,x). Then

Then :

N 1
[

Maﬂ(Ta f) (33)

Proof : Inequality (32) is a direct consequence of (30) with v = $ and
p = n. We then compute the Fourier transform M, s(7,§) as the Fourier
transform in the time variable ¢ of the Fourier transform N (,£) in the space
variable = of K, g. We have

N(t, &) = Le—\tlglé\ﬁ (34)

B
t]

so that

1 1
Moo =0 [ () 0 @



Thus, we have

Maﬁ(T,f)%/ L —5 €17 7 dn. (36)
BT =7 (|E]* + ) e
We may rewrite this estimate as
1 T
Mo (T, €) = Aap(7) (37)
’ gle=8 " el
with
Aas(r) = [ — L dy (38)
a,B = B .
7=l (14 [n])+e
Let G(1) = | ‘11 s and H(r) = W, so that A, = G x H. Since
T|T T a 1+|7 a

G € L'+ L*(R) and H € L' N L>®(R), we have that G x H is continuous,
positive and bounded, so that we have : for |7| < 2, A,3(7) = Q(1). For
7| > 2, we write :
18
o (1
o GxH(r)> (ﬁ) [ Hm) d

_B

o [T G —mHEm) A< (2) 1A,

1—
|77|>|T|/2 G(T_T])H(T]) d77 S *f‘77|>‘7'|/2 m|m1l+§ d C|T| < C (%)

so that A, 5(7) ~ Q < 11/3). o

I7]

Now, Theorem 5 is a direct consequence of Proposition 3. Indeed, replac-
ing the kernel K, g with the kernel K, g will not change the space of resolution
V*# but only replace its norm with an equivalent one. We now endow R x R™
with the quasi-metric p, 5((t, z), (s,9)) = (Kap(t — s, 2 — y))iﬁ and apply
again Kalton and Verbitsky’s theorem. We find that Y/ = M(W®? — L?)
whith We# = = Joa— 5L and J, o—p defined in the same way as Ia a—p (replac-
ing K, g with Kaﬂ) Taking the Fourier transform, we see that TWe# = W5,
o

4 The spaces X, 7.

We now study the spaces X, g for T < +o00 and the space X, . = X4 g 00-
We begin with some remarks on V% :

Q@



o if F € V*F and |G| < |F|, then G € V*# and ||G||yas < || F|lyeas.

o if F € V% and (ty,79) € R x R", then F(- —ty, - —x) € V*? with the
salnle norm.

e if A€ LYR) and B € LY(R"), then, if I € V*# we have A*, F =
JA(S)F(- —s,-)ds € V*F with || A%, Fllyas < ||A[J1]|F|lyes and B *,
F = [B)F(, —y)dy € V*¥ with || B s, Fllyes < [|Bll1[[F|lyes.

o if F € V*% and A > 0, then A* PF(\*. \.) € V*# with the same norm.
These properties are easily transferred to the spaces X, g7 :

o if feX,pr (0<T <+400)and zy € R", then f(- —x) € X, with
the same norm.

o if B € L'(R"), then, if f € Xopr (0 < T < +00), we have B f €
Kapr With | B+ fllx, s » < [Bllill fllxa s

o if f € X,p7 and X > 0, then A*Pf(\) € X, gr-or With the same
norm.

We may now prove Proposition 2. First, we recall some basic facts on the
homogeneous Besov space B (R") with 7 > 0. It can be defined in two
equivalent ways :

e thermic characterization : A tempered distribution f belongs to Bo_ojoo(R”)
with v > 0 if and only if sup,., /2" f||eo < +o00.

e Littlewood—Paley characterization : A tempered distribution f belongs
to B;O”joo(R") with v > 0 if and only if the homogeneous Littlewood—
Paley decomposition of f into dyadic blocks A,f (j € Z) satisfies
sup;ez, 27| Aj flloo < 00 and f =37, Ajf (convergence in S').

As the kernels of e=2)** and of ANe=(=2)"* are integrable functions (see
Lemma 6), we have

e O A fllao < Cay min(1, 272V 3) [ A floo
Taking N > ~/2, we find that

—t(— /2 T
e =22 1) < Coqt ;||f||3;700'

Conversely, using the fact that the kernel of Aget 2" ig integrable (see
Lemma 5), we find that sup,.,ta[|e 2" f|| o is a norm on BLY, which

00,00

is equivalent to the usual norm on B .
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Similarly, the quantities supy_,_pta[e 2 f|l for T < 400 are
norms on B which are equivalent to the usual norm on B

Now, it is clear that the spaces X, g7r(R™) are Banach spaces, since
{(f.g9) € BEE x VP | g = locpepe™ D “f} is closed in BY; o X VP
The equality of X, g7, (R") and X, 1, (R") for 0 < T} < Ty < 400 is easy
to check. We have obviously X, g1,(R") C X, 57 (R™) (continuous embed-
ding). Conversely, if f € X, 51, (R™), we shall prove that f € X, g o (R")
for every p € N, hence f € X, g1, (R"). Of course, it is enough to deal with
the case p = 1 (and then go on by induction). Let g = 10<t<Tle*t(*A)a/2f
and G = locpcor e 'OV We have G = g+ e EA 5 g(- = T),-); as
g € V*P we find that G € V5.

Thus Proposition 2 is proved. o

For § < 2 (at least), we may simplify the norm of X, sr(R"™), as we have
the following estimate :

Proposition 4 Let 0 < f < a <n+ 208 and f < 2. Then, the norm of f
in Xopr(R?) (0<T < +00) is equivalent to ||1g<i<re = Q/Qf”V& 5.

Proof : We are going to show the inequality

A)e/ NTY
e A" flloe < Caypt” [ Locscee™ ™ fllvas.

We write .
CH(—A)/2 r—=y
e t(—A) f = / t_gWa’n(tlT>f(y) dy

where W, ,, is the inverse Fourier transform of e 61", As we have shift-
invariance and the scaling property, it is enough to prove the inequality for
r=0andt=1.

For 1/4 < 7 < 1/2, we may write as well

—(—A)/2 1 W r—y Ay ]
’ / /(1—7)2 O"”<(1_7)1/a)6 f(y) dy.

Picking a non-negative function # € D(R) which is supported within (1/4,1/2)
and such that [0ds =1, we find

A / H(7,9) locrer (1)e ™ () dr dy
with .
H(r,y) = emmw@n(ﬁ»

10



From Lemma 6, we find that

11— 7| 1

|H(7,y)| < CO(r) (e g < C’O(t)W.

Let § € D(R) be supported in (0, 1) and equal to 1 on [1/4,1/2], and let

1 H
'7(7-7 y) = 5(7-)—7“1 and G = —.
(1+ [y)*=* g

We have |G| < C"0(1)—2L55, so that G € L?*(R x R™). On the other

n+a 3
(I+[yl) 2 5

1-a

hand, it is easy to see that (—97) 2"y € L*(R x R") and (—Ax)#f €
L*(R x R™) (just check that all the derivatives in time and space variables of
every order of 7y belong to L?(R x R") and then interpolate). Thus, v belongs

. - 1-8
to We?(R x R") = L2HY A N Lthl * and we find that

_(— a/2 —s(— a/2
le”CDF0)] < G2l llwes [ Locscre™ A flpas.

The proposition is proved. o

5 Cheap solutions for a semilinear parabolic

equation.
In this section we go back to our Cauchy problem : given i, € (S'(R"))<,
find a vector distribution @ on (0, +00) x R"™ such that, for i = 1,..., d, we
have

d d
O = —(=A)ui + Y Y 00 k(D) (uyup) (39)
j=1 k=1
and
yﬂé u;(t, r) = u;p (40)

where 0;;5(D) is a homogeneous pseudo-differential operator of degree /3
with 0 < S <a <n+28.

Theorem 1 gives us a way to exhibit solutions through a domination prin-
ciple. In this theorem, we are only interested in the pointwise convergence
of the Picard iterates to some Lebesgue measurable solution of the equation.
As we did not use any refined analysis of the coefficients o; ; x(D) (no maxi-
mum principle, no conservation of energy, and so on), but just controlled the
integrals by the absolute values of the integrands, we shall call the solutions

11



we found as cheap solutions : they do not provide much insight into the
structure of the equation.

Theorem 2 restates the result as a result in terms of Banach spaces X, g
and V*#. This theorem is a direct consequence of Theorem 1, but we could
as well prove it through the classical formalism associated to the Banach
contraction principle. Let us sketch this proof. We define an operator B on
(V) by

t
B(@,7) = / =01 0DV (i @ ) ds (41)

and we are going to solve U=U,+ B(ﬁ, [j) with Uy = Locyere 21,
We have, from Lemma 1, that

B, V)| < C / Kap(t — 5,0 —)[0(s,9)] [V(s, ) ds dy  (42)
RxR"

so that o . .
1BU,V)lyes < Col|Ullpes ||V ][ yass- (43)

The Banach contraction principle gives that, when ||Up||ye.s < ﬁ, there

exists a unique solution U such that [|U||yes < ﬁ For ) satisfying the as-
sumptions of Theorem 2, we can thus find a solution U of U = Uy + B(ﬁ U )
with Uy = 1159 e_t(_A)a/Qﬁo; this solution, obtained by iteration, satisfies
U =0 for t < 0. The solution @ of Theorem 2 is then given by 4 = 1g<;<7U.
o

Remark that, for 7' = +o00, we have found a global solution.

6 Regularity of the solutions.

In this section, we discuss the size and regularity of global cheap solutions.
We begin with the following lemma :

Lemma 3 There exists a constant C' which depends only on n, o and 5 such
that :

B
\t]l a]//Ka,ﬂ(t—s,x—y)WQ(s,y)dsdm

(44)
_B
< ClWves (W lyes + sup [s]"= W (s, )loo)-

12



Proof : The proof is based on the following remark : the function

J(t,x) // —5 dsdy (45)
il ([t — 8]« +|fv y|) o (|s]w +|y\)

is well-defined for (¢, x) # (0,0), as 5 < a (local integrability) and # >0
(integrability at infinity). By Fatou’s lemma, it is lower semi-continuous,
hence, since {(t,z) / pa(t,z) = 1} is a compact set, we have

= inf J(t,x) > 0. 46
7= I Jt7) (46)
By homogeneity, we find
1
J(t,x) >~ (47)

We may now estimate I(t,z) = [[ Kyp(t — s,x — y)W?(s,y)dsdy. Let
e € (0,1/2) and let

Alt,x) = Ko p(t—s,o—y)W?(s,y)dsdy 48
sl
s|<e

and B.(t,xz) = I(t,z) — A.(t,x). Let us define moreover Ny = ||W||yas and
Ny = sup,cp ]3|1_§||W(5, Ilso- We have

28 B
2\* e\ =
A(t,r) < N? <m) // | K, 5(t—s,x —y)dsdy = CN; <m) :
t—s|<et

(49)
On the other hand, writing J.(t,x) = 1_sseyJ(t — 5,2 — y), we have

1
B(t.r) < = / / Jolt = 5,2 — y)PW2(s,y) ds dy (50)
and
Lit—o|>et|
J(t—s,x—y) < 5 dodz.
(Is — ol + \y—z\)"+5(\t—0\ +lz—a)* e
(51)
Let Fiye(o,2) = l't*"'x“('wn 7; we get

1
(lt—of & +[z—z|)

1 1
B (t,x) < ﬁNf / |Fy (0, 2)]? dodz = CN}F—— (52)

(el

jol)ey

13



5
o Ny

Ni1+N2*

We conclude the proof by taking €'~ o

1
2

We now consider a solution @ on (0,400) x R"™ of the semi-linear heat
equation

t
7 =e Mg, 4 / ~(t=)A 5 (DY (i @ @) ds (53)
0

obtained by the iteration algorithm :

—

t
Uy = "2 and Uysy = Uy + / e A (DY, 0 Ty) ds. (54)
0

We already know that, if 19,0y is small enough in (V2R x R"))? (i.e. if
iy is small enough in (X, (R™)?), then S5 10 (Tri1 — Up)|[pas < +00.
We get other estimates from this inequality :

Proposition 5 If

400
o<t Dollyes + Y Io<t(Tir — Uk)llyes < +oo, (55)

k=0
then
8., = Rl B - -
sup 2o, e + Y sup 5 | (t) = Oilt, Mo < +00. (50)
<t — o<t

Proof : Writing U, = 0, Ap = |Ijk — U'k_l\ and By, = \ﬁkl, we have, for all

keN,
Ak(s,y)(Br(s,y) + Br_1(s,v))
Ap(t,x) < C ds dy. 57
et ) 0/ / (Jt = st/ + |z —y|)n+h Y (57)
We define
8
o =sup t' o [ Ag(t, ) |loo + || Asllyes,
o<t
—sup 14 || Br(t, )llao + || Billyoos,
Br sup | Be(t, )l | B llye.s (58)
Vi = Ak|lyes,
O =|| B |lyes-

We remark that || /[FGlx < VI FllxllGlle and [/ [FGllyes < v/ Fllyes[Gllves,

therefore we may apply Lemma 3 (with W = \/Ay(By, + Bj_1) and get :

14



g1 < Cv ar(Br + Br-1) 1 (0k + k1) (59)

€ = Zaj and M = Zyk. (60)

i<k keN

Let

From (59), we get the inequality

1
Q1 < 50 + C M€ (61)
which gives
€k+1 S QCMZ’)/J‘EJ‘ (62)
i<k
hence
> v < (14 20My) Y i€ (63)
J<k+1 J<k
which gives
+oo
Z Vi€ S Yo€o H(l + QCM")/l) (64)
J<k+1 =1
and finally
+oo
sup € < 2C M€ H(l +2CM~y,). (65)
keN 1
Proposition 5 is proved. o

Proposition 6 Under the same assumptions as in Proposition 5, we have,
for all positive v, that

a=B+y

sup #°5 [i(t, )] g, < oo, (66)
o<t ’

Hence the solution i is C* on (0,T) x R".

Proof: Let~y > 0. Start from the information that sup,_, e 4t ) 52 <too

if ¥ > 0 and that sup0<ttaT_BHﬁ(t, oo < 4+00. We then have the estimate
a—B+y

supg, ¢« ||u(t,.) ®u(t, )|l gy . < +oo. Then write

t a t t o
Gt x) = e 22 /26(§,$)+ / e~ =22 0 (DY (s, ) ®ii(s,.)) ds (67)
t/2

to control the norm of @ in BLF& 7. o
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7 A Besov-space approach of cheap solutions.

Theorem 2 gives a criterion to grant existence of a solution : the initial
value is required to satisfy 10<t<T\e_t(_A)a/21Io| € V8. But the space of the
distributions such that 10<t<T\e_t(_A)a/260\ € V*P is not a classical one and
we might try to find some subspaces that are close enough to this maximal
space but belong to a classical scale of spaces.

We shall thus describe Banach spaces X of measurable functions in time
and space variables that lead to cheap solutions : one should have the fol-
lowing properties :

o if f(t,2) € X and if [g(t, z)| <|f(# x), then g € X and |lg[lx <||f]lx

o for f,ge X, F = [[Kuop(t—s,x—y)|f(s,y)|]9(s,y)] ds dy € X and
I1Fllx < Cx|lfllxlgllx

From Proposition 10, we know that X C V*#(R x R") and from Lemma 1
we know that we may find a solution @ to the equation

t
7= e 2" g, + / ~=)CA5(DY (G @ @) ds (68)
0

on (0,7) x R suCh that lociert € Xd as soon as lociep|e™ Mg ol € X
and || Liocrer|e 20| x < G0 C (where T" might be a positive real
number [local solution| or equal to +oo [global solution]).

The simplest way to find such a space X is to replace the kernel K, 3 by
kernels whose action are well documented on functions in time variable or in

space variable. For instance, if max(1/2,5/a) < v < min(1, ”;rjﬂ)7 we may
write

1 1

Rap(t2) < o i

(69)

Let I, a,—p be the convolution operator (in z varlable) with W and

I;1_+ be the convolution operator (in ¢ variable) with We have :

|t|“’

[ Kastt = 5.0~ 0I5 oo, ds dy < LosLes(lf g2 (70

In this way, we have dissociated the action on the variable x from the action
on the variable ?.

Let E be a Banach space of measurable functions on R" satisfying ||| f| ||z <
Crllfllz. We see that Xps = {f / supuot”?||f(t, )|z < +oo} will be
contained in V*? if (f,g) — I,,_s(fg) is bounded from E x E to E and
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(f,9) = Li_(fg) is bounded on X, = {f / [t|*/*f € L*}. Using again
the theory of multipliers, we find that the maximal Banach space F we can
associate (in this way) to v is Xg s with

E=V7PRY) = M(HPR") = L*(R"))

and v = 1 — 2. Thus, we find that we can easily get cheap solutions when
the initial Va]ue Uy belongs to (and is small in) X¢, where X, is the Besov
space Xy = B;,.‘f:f” with max(0, 25%) < r < min(a — 3, %) [18].

Due to the Fefferman-Phong mequahty, we may replace the space V" by
a Morrey spce M/ With 2 < s < . The corresponding space Xy will be a

Besov-Morrey space B " oo (see Kozono and Yamazaki [17]) with Serrin’s

scaling relation ¢ > + 2z T B (and with 2 < s < ¢, ozL—B < q and, if a > 28,

q <

= 26) If s = ¢, we find the classical Besov space B, 4 (see Cannone [5]).
More precisely, we have the following result :

Theorem 6 Let 0 < < a < n+ 28. Let X% be the Banach space of
distributions such that X*? C Bﬂ * and 1o € —t =220 € V4B Then :

e if > /2, then

1
a?/B
Itll_g ey (71)

so that X*P = Bfo—g;

o if 5 < a2, there exists ug € Bgo_; such that ug ¢ X*P. More pre-
cisely :

— if B < «/2, then there exists ug € Bﬁ 1 such that ug ¢ X8,

—if 6 < /2, then Bq,;o ot

2n
a—28"
Proof : If f > /2 and 2 <r < -5, then

"d
// dsdy<C / _Atds == C'Rrer@=h) - (72)
palt—s,z—y)<R (\s\l

a

lléeM S cyes

This inequality implies that "
t
We now consider the case 23 < a. We shall consider the cheap parabolic

equation of Montgomery—Smith [24] :
Opu + (=A)*u = (=A)72(u?) (73)
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and the associated bilinear operator
t
B, 5(u,v) :/ e_(t_s)(_A)a/Q(—A)/B/Q(u(s,.)v(s,.)) ds. (74)
0

Let 0 € S(R") such that 1« < f(¢) < lig|<2. For v € R, we take u, =
237,55 0(x) cos(27x1)277. Then u, belongs to B2, for every q € [1, +00], and

belongs to Bgoyl for every 0 < —v. Let v, = e_(t(_A)a/Quw. If By g(Va,y, Va,y)
is well defined, we check it against a test function w(¢, ) which satisfies, in
spatial Fourier variables,

Lijaciciligar S w(t,6). (75)

For |n| = Q(27), |€] < 1,1/2 <t < 1, we have

t t
/ o~ =s)lgl—sinlo—sle=nl® g > o1 / o—shle—sle=nl* g
0 0

1 — et +le=nl®) (76)
€ = nl* + |n|*
> 0,27,

>e

We thus have (with ¢ = (1,0,...,0))
(2m)"(Ba,8(Va s Vay) lw) >

1
5N 0@ [ (e e Niin 4 e de d
ca/1/2/|£|<l|£| % [ e —n it + ) e e .

“+00
> Cix Z 93 (27—a)
j=3

with ¢/, > 0. Thus, By, g(Va,y, Va,y) cannot be well defined for 2y > a.
Hence, we have uq/2 ¢ X8 On the other hand, we know that Ugj2 €

Bfo*f‘ if f—a < —a/2,ie B < af2. Similarly, if 5 < «/2 and ¢ = az—gﬁ, we
./B_a_;’_ﬂ

know that ua/e € Byd = By °. Theorem 6 is thus proved. o

Remark : In this paper, we deal only with critical spaces and global
existence. But it is easy to check that the same example of the cheap equation
and of the initial value u, /o shows that there is no local existence result for

the subcritical spaces B, with a/2 < § < o — §.
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8 The case a = 20.

We have seen that for § > a/2 we have nggg C X*# so that the Cauchy
problem for our general parabolic equation with a small initial value in
(B2 2)? will have a solution. For 8 > /2, we found an example u, /> € B2 |
such that, for every A > 0, the Cauchy problem for the cheap equation with
the initial value Au,/, will have no solution.

In the limit case 8 = «/2, the counter-example u,/2 belongs to BOO%QQ ,

so that Boo?;/o is not included in X**/2. However, the Cauchy problem for
the general parabolic equation with a small data in (Bo_oofl/ 2)d will have a

global solution. As a matter of fact, the Koch and Tataru theorem [16]
gives that this is true for a small initial value in (B]\/[ o~/ 2) where we have
B c B> c BMO~/2 = (=A)*/ABMO = F%* ¢ B2,

We don t detall the proof here, as it is exactly the same one as for the
Koch and Tataru theorem (see [18] for details). Use the fixed-point theorem
in the space of functions (¢, r) which satisfy sup,.o t*/?||u(, .)||ee < 400 and

sup t‘/ / |?ds dy < +o0. (78)

t>0,z€R™

Note that the proof involves an integration by parts [using the fact that
(—A)/ 2t A2 — 5 (et 2 ) gee Lemma 16.2 in [18]]. Thus, the
proof does not involve domination by a positive kernel, and BAMO~%/? is not
a subspace of X**/2. But we have obviously (due to scaling invariance and
local square integrability in V*/2) the embedding X**/2 ¢ BMO~%/2,

9 Persistency.

When @ is small in (X*?)? (or, when a = 24, in (BMO~%/%)), we know
that a solution & may be constructed through the iteration algorithm :

t
Uy = e 18" o tlp and Uk+1 Uo"‘/ 6_(t_s)(_A)a/20(D)(Uk®Uk) ds, (79)
0

and that we have

—+00

_B o
S(]uE)tl «||Uo(t, . Hoo—i—Zsupt || T (t,.) = Uilt, )]l < +00.  (80)
< k=0

This will allow us to use the persistency theory developed in [18]. Let us
recall first the definition of a shift-invariant Banach space of local measures :
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Definition 6 A) A shift-invariant Banach space of test functions is a Ba-
nach space E such that we have the embeddings D(R") C E C D'(R™) are
continuous and such that:

e shift-invariance : for all zo € RY and for all f € E, f(- —x¢) € E and

1l =11/ = zo)lle;

e scaling : for all X > 0 there exists C\ > 0 such that for all f € E
f) € E and |[f(X)|le < CAll s

e D(RY) is dense in E.

B) A shift-invariant Banach space of distributions is a Banach space E, which
is the topological dual of a shift-invariant Banach space of test functions E™).
The space E©) of smooth elements of E is defined as the closure of D(R?) in
E.

C) A shift-invariant Banach space of local measures is a shift-invariant Ba-
nach space of distributions E such that for all f € E and for all g € S(R?)
we have fg € E and || fgllg < Cgll fll£llgllc, where Cg is a positive constant
(which depends neither on f nor on g).

An important property of shift-invariant Banach spaces E of distributions
or of test functions is that convolution is a bounded bilinear operator from
L'xEto E: |[f*glle < [Iflhllgle
We measure regularity with semi-norms ||f||H§ = [|[(=A)?f||g, or ||f||BfE =
»q

. 1/q
(Z]EZ 23pq||Ajf||'fE> . These are only semi-norms, but we shall work in

spaces L* N HP, or L>* N B]piq, so that we don’t bother with the kernel of
the semi-norms.
The persistency theory then tells us the following :

Theorem 7 Let iy be small enough in (X*%)? (or, when a = 283, in (BMO~%/2)?)
to grant that

+oo
_B _B 3 =
sup ' o [Uo(t, )lloo + > supt' || Upsa(t,.) = Uklt, )]l < +00  (81)
o<t k=0 o<t

and
— = — —
sup [Tt M g + D 50 [Tor (1) = Tilt, M g < +o0. (82)
o<t ’ 1o 0<t ,

Let F' be a shift-invariant Banach space of local measures.
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e If moreoveriiy € F, then the limit it of Uy, satisfies @ € L>((0, +00), F'?).

e Let E be a space of reqular distributions over F: for some positive p
and for some q € [1,4+00], E'= Hp or B = By (with1 < q < oc0). If
iy € E® then @ € L*>((0,00), E%)

Proof : If @, € F% then U, € L°°((0 +00), F4). We then write, for
Wy, = Uy — Up_y and oy = Sup,.q t* aHWk( Moo :

\IWk+1(t7.)HF§/ ¢ 1 Ui(s,) © Wi(s, ) + Wils, ) @ Upa(s, )| r ds

[t = sl

= ' C 1
< (10lzer + WGecallzmr [

0 |t—s|%|s|i-%
= C,(HﬁkHL?"F + ||(jk:—1||L§°F)ak
(83)

If Ay = Zfzo HW]'HL?OF, we have ||t r < supyegn A;. Moreover, we have

A1 = A+ Wi | e r < Ap(1 + 20" ay) (84)

so that @ € L>®((0, +o0), F*) with [|@| e r < [|do]|r [Tneo(1 + 2C"ay,)

We now consider the case when @, € E%. We find that Uy € L*((0, +00), (quoo)d)-
We write Wy, = Uy—U 1, o = supog 1 [Wa(t, oo T = 3 pent Wil o e
and By, = Z?:o ||M/j||L§°B;:’OO

We begin by estimating fg when f,g € L> N Bfo_’oo‘o N B’}m. Using the
Littlewood—Paley decomposition f = > ., Ajf = Spf+D "5, A f (see [18]),
we write fg = u+v, where u =73, > s AjfArg =)y SkrafArg and
V=2 D okra D ARG = 32 A;fSj-39. We have [[Ay(SkiafArg)|r <
CllflclArgllr < Clifllcllglizy, 27 it k > 1~ 6, and = 0 if k < I —6.

Hence u € B]"},oo and

lulli, < CllFlllgll s (85)
On the other hand, when k < j — 4, we have ||A;(A;fArg)||r = 0 when
1=l = 3 if [ = j] < 2, we write [|A)(A; fAwg)llr < C27||gll gy [1fllse

and |A(ARfA;9)||F < 2K 5)Hg||35 027 “’HfHBp We then fix A such that
< A <1, and we find that

p+a B

1A(A;£Sj-39) | < C2TPAD( fll g gl ga-a ) Ngllze 11 Fllee)'
(86)
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and thus
I vl gososr < U llgy_llallgae MUl Fle) ™ (87)

The second step is to check that e~ (=925 (D) maps (Bf;,oo)dXd to (Bgl)d
foro<p+p5:

|t (D) fll gy < Clt—5)" 07 (88)
Combining these estimates, we find that
LC 1
Wit g, < s | —— 2
[t — s|a s'7a
B Ot e 1 [ ¢ Ly
+ (e B) (TIWit, g, ) 0 |t — 5| ZTAN-E) A0-D) >
(89)
We take A close enough to 1 to ensure that
p 5 5
AMl—=)<land =+ (1-N(1-=) <1
(I-7)<land =+ (1-X(1-~)< (90)

We thus have
Wi (2, s, < CarBy + ClarBy) M| Wi(t, -)HB;J)PA- (91)

We find that
Wi (2, s, < okBy+ —HWk( s, (92)

with 0 = C’ak( + A2(1 — )\)F) A). For 1 < p < k, we also have
Wt e, < Gp1Bi + $lIIWpma(t, gy, while [Wolt, )iz, < 6-1By
if we take 5_1 = 1. This gives

Wi (£, e, < Bil Z 3;227") (93)
j=—1

so that i

Bia < Bp(14 ) 5,274 (94)
j=—1
and finally

suka<BOH 1+Z§2ﬂ k) < 400. (95)

keN o =

22



The theorem is proved : for E = H% or B'Zﬂ,q, we have

oo
lilzwr < Il + 3 Wiy, < oo (96)
k=1

and we conclude since B2, |, C E. o

10 A Triebel-space approach to cheap solu-
tions.

Recall that X is defined by uy € X¥ & 1,u0e 2y, € VB In
section 8, we tried to give an approximation of X*# by Besov spaces. Another
way of approximating X®? is to approach V*# with Morrey spaces, using
the Fefferman—Phong inequality.

We thus define ]-"Z?’*B for2 <p< TT‘E by :

n+a

ug € .7:;"8 S ug € Bgoioao and 1t>0€7t(7A)a/ ug € My =7 (97)
We have of course (for 2 < p < %g)
a3 o, 28—«
Foob ¢ xoP ¢ B2 (98)

Assume now that p“’%ﬁ > 1. For R > 0 and zy € R", we find that

/ / et A4 P dt dy < // |1t>oe_t(_A)a/2u0|p dt dy
B(zo,R (t—0,y—x0)
/ / e A gl dt dy
B(zo.y)

< CHUOHpa,B Rto p(a—p3)

+ Clluol| go-o R"R* 3,
(99)

Thus, we find that ( O+°° e =2 2P dt) e MP4(R"), where ¢ satisfies

the Serrin scaling relation % +2 L= a— 3. We thus see that ]-"1?’5 is aTriebel~
Lizorkin—-Morrey space, as studied by Sickel, Yang and Yuan [26] :

Theorem 8 For2 < p < % such that pﬂ > 1, the space }"I?"B 15 equal
_a 1 1

to the homogeneous Triebel-Lizorkin-Morrey space Fp,f'" *.
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11 Examples

11.1 The Navier—Stokes equations.

The Navier—Stokes equations are given on (0, +00) x R? by
i+ (@.V)i=Ai — V
o+ (u.V)u . uq Vp (100)
div 4 = 0.

Using the Leray projection operator P on divergence-free vector fields
and the fact that # is divergence free, we get rid of the pressure (on the
assumption that p is small at infinity) and get

i = Al — P div (7 ® ) = 0. (101)

This is a system of equations analogous to (2) with & = 2 and § = 1. Since
2001, from the Koch and Tataru theorem [16], we know that we may find a
global solution as soon as the initial value iy is small enough in BMO~!,

Initially, in 1964 [10], the proof of existence of global solutions was given
for an initial value in H*(R?) with s > 1/2 and with a small norm in H'/2(R%).
It is easy to see that /2 ¢ X2! so that the existence of a global solution
in L{°H? is then a combination of Theorems 7 and 9.

Later, in 1984 [15], Kato proved existence of global solutions in L®L? for
an initial value with a small norm in L?. Again, this can be proved through
a combination of Theorems 7 and 9, as L3 C X2

Then, in 1995 [5], Cannone considered the case of an initial value in L3,
3

. N . . .
with a small norm in B, ¢ with 3 < ¢ < +00 and obtained existence of a

global solution in L°L3. Again, this can be proved through a combination
143
of Theorems 7 and 9, as Bq,ijq C XL ‘
Let us recall that ill-posedness in the critical Besov space B, was es-
tablished in 2008 by Bourgain and Pavlovi¢ [4], following the example given
by Montgomery—Smith for the cheap equation [24].

11.2 The modified Navier—Stokes equations.

The diffusion term in the Navier—Stokes equations has been modified in some
studies by a fractional diffusion :

{ Oyt + (L.V)id = — (=A% — Vp (102

divi=0



Initially, o was taken larger than 2 (it is the hyperdiffusive case). Indeed,
when o > 5/2, the problem is locally well posed in L?, and, using the energy
inequality that ensures that the norm in L? stays bounded, local existence
is turned into global existence [21]. More recently, the case 1 < a < 2 has
been considered, due to the increased use of a—stable processes in non-local
diffusion models.

Using again the Leray projection operator P , we get the system

Ol = —(—A)d —P div (d®@ i) =0 (103)

This is a system of equations analogous to (2) with @ > 1 and g = 1.

When 1 < a < 2, we know from Theorem 6 that we may find a global
solution as soon as the initial value 1, is small enough in Béo_ ¢ (this is the
theorem of Yu and Zhai [28]).

When a > 2, in accordance with Theorem 6 and the remark we made
after the Theorem, Cheskidov and Shvydkoy [6] have shown illposedness in
Bl oo for 1 —a<vy<—a/2

11.3 The subcritical quasi-geostrophic equation
The subcritical quasi-geostrophic equation is given by the system
80 + (Z.V)0 = —(—A)*/%0
1, W2) — m

where 1 < a < 2.
If we use the unknowns (6, u1,us), we get the system

p

0,0 = —(—A)?9 — div (01)
1
vV-A

1
Dty = —(—=A)* 2y — oy div (0).
\ V&
This is a system of equations analogous to (2) with 1 < o < 2 and § = 1.
We know from Theorem 6 that we may find a global solution as soon as the

initial value 6, is small enough in B;g ¢ (this is the theorem of May and

Zahrouni [22]).
In particular, when 6, € L1 ¢ B9 and is small in B2, we know

00,00 00,00

that the solution @ satisfies § € L°La-1. If 0y € L7 with % < q < o0,

8,5’&1 = —(—A)a/2u1 + 82 div (91_[)

(105)
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we have local existence in L>°L4; moreover 6 satisfies a maximum principle :
10(t, )llg < ||6ollq, and this implies that local existence is turned into global
existence [27].

11.4 The parabolic-elliptic Keller—Segel system
The parabolic-elliptic Keller—Segel system is given on (0, +00) x R™ by

{ O = Au— div (uVy) (106)
—Ax = u.
If we use the unknowns v = ﬁx = —%ﬁu, we get the system
n 1 - 1. n
O = AT + Zl AV div Oy (v;7) - §V(; v2). (107)

This is a system of equations analogous to (2) with & = 2 and 5 = 1. We
thus know that we may find a global solution as soon as the initial value
is small enough in BMO™!, i.e. ug is small enough in BMO~2. This result

2

seems to be new : in [13], the case uy € By, :jq is discussed.

Let us assume that ug € L2 N L' (and n > 2), with the norm of ug
small enough in BMO™2 (remark that L2 ¢ BMO~%). Then we know
from Theorem 9 that the solution ¢ will belong to L¥H! N LooHil, and

. ) Ln/2
that @ = ' — "%y € L* B, , | N L™ B} ;. Writing
_tA . —
u=e"uy+ div o, (108)

we find that uw € L®°L™2 N L®L" : this is the theorem of Corrias, Perthame
and Zaag [8].

A final remark is that one usually deals with positive solutions (as u
represents a density of cells). We have the inequalities

luoll g2, < Clluollzro-2 < C'||uol|ypin/ (109)

when the space M2 is the space of locally bounded (signed) measures
p such that : sup, cgn goo B> fB(IO’R) d|lp(y)| < +o0o. When ug is a non-
negative distribution (i.e. a non-negative locally bounded measure), we have
the reverse inequality

[wollyrimsz < C¥lluoll 52, (110)

(see [20]). Thus, the critical norm to be controlled is indeed the norm in the
Morrey space M™/2.
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A Homogeneous distributions.

in this section, we recollect some more or less classical estimates on homoge-
neous distributions.

Lemma 4 Let~y > —n and o be a smooth (positively) homogeneous function
of degree v on R™ — {0} :

forA>0and £ #0, o(X) = No(§). (111)

Let 0 € D be equal to 1 on a neighborhood of 0, and let T', Ty and Ty be the
inverse Fourier transforms of o, o and (1 — 0)o. Then :

o the distribution T s positively homogeneous of degree —n —

e the restriction of T to R™\ {0} is a smooth (positively) homogeneous
function

e the distribution Ty is a smooth function that satisfies

sup (1 + |z])"|To ()| < +o0
reR™

e the restriction of Ty to R™\ {0} is a smooth function that satisfies for

every N € N
sup |z|V|Ty(x)| < +oo.
|z|>1
Proof : Just write that 7' is homogeneous, T is smooth and that the

Fourier transform of |z|*NT) is integrable as soon as 2N > n + ~. The size
estimates are then obvious. (The derivatives of T, Ty and T} are controlled
in the same way, as the Fourier transforms of the derivatives of T' are still
homogeneous). o

Lemma 5 Let v > 0 and o be a smooth (positively) homogeneous function
of degree v on R™ —{0}. Let 6 € D be equal to 1 on a neighborhood of 0, and
let U be the inverse Fourier transform of 0e?. Then the distribution U is a
smooth function that satisfies

sup 1+ |z))" U (x)| < 4o0.
zeR™

We have a similar decay for the derivatives of U : if 6 € N, then

sup (1 + |z))"PHN°U ()] < +oo.
xe n

27



Proof : Write e = Zg:o% + Ry(t). If Ny > 2M > n + v, we find
that (—A)?M (0Rx(0))) is integrable, so that the inverse Fourier transform
of ORy (o) is O(|z|7M) for |z| — +o00. On the other hand the inverse Fourier
transform of do* is O(|x|~"*7) for k > 1, and the inverse Fourier transform

of o® = 0 belongs to the Schwartz class.
The same proof holds for @°U (by differentiating 0 Ry (a)). o

Lemma 6 Let v > 0 and o be a smooth (positively) homogeneous function
of degree v on R™ — {0}. Assume that o(§) > 0 for all £ € R* —{0}. Let V
be the inverse Fourier transform of €. Then the distribution V' is a smooth
function that satisfies

su]é)(l + |2))" NV (x)| < +o0.
we n

We have a similar decay for the derivatives of V : if 6 € N, then

SUp (1 + |z|)" PNV ()] < +oo.
zeR™

Proof : With the notations of Lemma 5, we have V' — U € S(R"). o

Lemma 7 Let 0 < 8 < «, og and o, be smooth (positively) homogeneous
functions (respectively, of degree 5 and o) on R™—{0}. Assume that 0,(&) >
0 for all§ € R"—{0}. Let V' be the inverse Fourier transform of e’>og. Then
the distribution V' is a smooth function that satisfies

su]é) (1+ |x|)"+ﬁ]V(:c)| < +00.
reR™

Proof : Let 6 € D be equal to 1 on a neighborhood of 0, and let T be the
inverse Fourier transform of 6os. Let V, be the inverse Fourier transform of
e’>. Now, remark that V — V,, * T belongs to S, while we control V,, x Tj
with Lemmas 4 and 6. o

B Semilinear equation with a positive kernel.

In this section, we discuss the general integral equation

f(2) = fola) + /X K (2, 9) () du(y) (112)

where p is a non-negative o-finite measure on a space X and K is a positive
measurable function on X x X : K(z,y) > 0 almost everywhere. We shall
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make a stronger assumption on K : there exists a sequence X,, of measurable
subsets of X such that X = U, cnX,, and

dp(x) dp(y)
// Ky < (113)

We start with the following easy lemma :

Proposition 7 Let fy be non-negative and measurable and let f, be induc-
tively defined as

e / K (2, 9) f2(y) du(y). (114)

Let f = sup,ey fu(x). Then either f = 400 almost everywhere or f < +00
almost everywhere. If f < 400, then f is a solution to equation (112).

Proof: Due to the inequalities fo > 0 and K > 0, we find by induction that
0 < fu, so that f,1 is well defined (with values in [0, +00]); we get moreover
(by induction, as well) that f, < f,411. We thus may apply the theorem of
monotone convergence and get that f(z) = fo(x —I— Jx K(z,y) f*(y) du(y).
If f = +o0 on a set of positive measure, then [, K(z,y)f*(y) du(y) = o0
almost everywhere and f = 400 almost everywhere. o

We see that if fj is such that equation (112) has a solution f which is finite
almost everywhere, then we have fo < f and [, K(x,y)f*(y) du(y) < f(x).
This is almost a characterization of such functions fj :

Proposition 8 Let C'x be the set of non-negative measurable functions €2
such that Q < +oo (almost everywhere) and [ K(x,y)Q*(y) du(y) < Q(z).
Then, if Q € Ck and if fy is a non-negative measurable function such that
fo < %Q, equation (112) has a solution f which is finite almost everywhere.

Proof : Take the sequence of functions (f,,)nen defined in Proposition 7.
By induction, we see that f,, < %Q, and thus f = sup,, f, < %Q o

This remark leads us to define a Banach space of measurable functions in
which it is natural to solve equation (112) :

Proposition 9 Let Ex be the space of measurable functions f on X such that

there exists A > 0 and Q € Ck such that |f(x)] < AQ almost everywhere.
Then :
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e & is a linear space

o the function f € Ex — ||fllx = inf{\ / IQ € Ck |f] < A\Q} is a
semi-norm on Ex

o ||fllxk =0« f=0 almost everywhere

e The normed linear space Ex (obtained from Ex by quotienting with the
relationship f ~ g < f = g a.e.) is a Banach space.

o If fo € Ek is non-negative and satisfies || fo|x < 1, then equation (112)
has a non-negative solution f € Ex.

Proof : Since t — t? is a convex function, we find that Cx is a balanced
convex set and thus that Ex is a linear space and || || x is a semi-norm on Ex-.
Next, we see that, for 2 € Ck and ¢ € N, we have

Jx, Jx, U

/X ) die) < oI (115)

To prove (115), we recall that €2 is finite almost everywhere and that X
is locally finite. Writing X = X = U,nY, with u(Y,) < 400, we intro-
duce Z, = {z € U,_,Y, / Q(z) < p} and Q, = 17, (2)Q(z). We have, by
monotonous convergence, ((X,) = lim, 4 ,u(Z N X,), qu Qx)dp(z) =
lim,, 4o prqu Q,(z) dp(x); moreover, prqu Q,(z)dp(xr) < 400 and, for
x € Zy, we have [, K(z,y)(y)du(y) < Qx) = Q,(x). Then, (115) is
easily checked by writing that

//anxq Q(y) dp(y) du(z) <

\//xq/quﬂ \//X [ Kla)22() dutw) dute).

(116)

Thus we find that, when || f||x = 0, we have qu |f(x)| du(z) = 0 for all q,
so that f = 0 almost everywhere.

Similarly, we find that if A, > 0, Q, € Ck and )
Q=23 cn Ay, we have (by dominated convergence),

[, 6 du fxq{X?Xq»?y (117)

nen A = 1, then, if
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so that © < 400 almost everywhere. Moreover (by dominated convergence)
we have () € (k. From that, we easily get that Ex is complete.

Finally, existence of a solution of (112) when || fo||x < 1 is a consequence
of Proposition 8. o

An easy corollary of Proposition 9 is the following one :

Proposition 10 If E is a Banach space of measurable functions such that :
e feE=|fle Eand]| [f| e < Crlfle
o | [x K(z,y)f*(y) du)lle < CelflE

then E s continuously embedded into Ey .

Now, we recall a result of Kalton and Verbitsky that characterizes the
space Ef for a general class of kernels K.

Theorem 9 (Kalton and Verbitsky [14], Theorem 5.7) Assume that the
kernel K satisfies :

o p(x,y) = m is a quasi-metric :

p(z.y) = ply,z) > 0.
pl,y) =02 =y.

p(z,y) < k(p(z, z) + p(z,9)).

o K satisfies the following inequality : there exists a constant C' > 0 such
that, for all x € X and all R > 0, we have

R +o0
[ wwlzen[~[ 18
0 Jp(zy)<t p(@,y)<

Then the following assertions are equivalent for a measurable function f
on X :

° (A) f € Fy.
e (B) There exists a constant C' such that, for all g € L?, we have

/X F@)P] /X K(r.9)gw) du@)| du(z) < Cllglz. (119)

A direct consequence of this theorem is the following one :
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Theorem 10 Let (X, 0, 1) be a space of homogeneous type :
o forallz,y e X, é(x,y) >0

e i(z,y) =0(y,z)

¢ i(r,y)=0a=y

there is a positive constant k such that :

for all x,y,z € X,§(z,y) < k(d(z,2) +0(2,y)) (120)

there exists postive A, B and ) which satisfy :

for allz € X, for all v > 0, Ar9 < / du(y) < Br@  (121)
O(z,y)<r
Let ]
Ko(z,y) = ———— 122
(©0) = s (122)

(where 0 < o < Q/2) and Ef, the associated Banach space (defined in
Proposition 9). Let I, be the Riesz operator associated to K, :

T.f(x) = /X Ko, 9)f(y) du(y). (123)

We define two further linear spaces associated to K, :

e the potential space W< defined by

geW* s 3Ihe L? g=1T,h (124)

e the multiplier space V* defined by

f c V¥ & “f”VO‘ - (|Sup /X ’f(x)’2|z-ah(l')|2 dﬂ(iL’))l/Q < 400

|R]l2<1
(125)
(so that pointwise multiplication by a function in V* maps boundedly
We to L?).
Then we have (with equivalence of norms) for 0 < a < Q/2 :
Ex, =V (126)

Proof : It is enough to see that Atass < Sowaper A(y) < Bta's (with
plx,y) = m ) and that 1 < & < 2, then use Theorem 9. o
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C Parabolic Morrey spaces and the Fefferman—
Phong inequality.

We follow in this section the notations of Theorem 9 : (X, 4, i) is a space of
homogeneous type, with homogeneous dimension @). For 0 < a < Q/2, Z,
is the Riesz potential associated to the kernel K, = W, and V* is the
space of functions that satisfy

1 fllva = (‘sup /X | f(2)|?|Zoh(z)? du(x))1/2 < 400. (127)

Ihll2<1

Definition 7 The (homogeneous) Morrey-Campanato space MP9(X) (1 <
p < q < +00) is the space of the functions that are locally LP and satisfy

1_1 1
1L ysme = stup sup R2G—H( / WP duty) P oo (128)
B(z,R

z€X R>0
where B(z,R) ={y € X / d(z,y) < R}.

Remark that L9 C MP4(X), as it is easy to check by using Holder in-
equality (since u(B(x, R)) = CR?).

We shall need two technical lemmas on Morrey—Campanato spaces. The
first lemma deals with the Hardy—Littlewood maximal function :

Lemma 8 Let My be the Hardy-Littlewood mazimal function of f :

1
My(x) = ig%m /B(%R) |f(y)] du(y). (129)

Then there ezists constants C,, and C,, such that :

o for every f € L' and every A > 0,

/1l

p{r e X [ My(z) > A}) < ClT

o for1 <p < 400 and for every f € L
||Mf”p < Op“f”?

o for every 1 <p < g < 400 and for every f € Mp’q(X)

||Mf||MM < CP#]HfHMM'
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Proof : The weak type (1,1) of the Hardy-Littlewood maximal function is
a classical result (see Coifman and Weiss [7] for the spaces of homogeneous
type). The boundedness of the maximal function on L” for 1 < p < +o0 is
then a direct consequence of the Marcinkiewicz interpolation theorem [11].

Thus, we shall be interested in the proof for M?4(X). Let f € MP9(X).
For x € X and R > 0, we need to estimate fB(LR) (M s(y)|P du(y). We write
f = fi+ fa, where fi(y) = f(y)1B(2:r)(y). We have My < My, + My,
We have

Mp () duly) < (Cllfillp)? < CoI I, (26R)2"

B(z,R)

On the other hand, for §(z,y) < R,

_ 1 Q(1l-7)
M) =sip s | 1 ) < sup

SO that 1B(xR Mf2 S ”f”MPq and
ARq

B(x.R) Mp(y)" duly) < p(B(z, R) I p@rnMplE < —||f||MquQ(1_5)

o
The second lemma is a pointwise estimate for the Riesz potential, known
as the Hedberg inequality [12, 1].

Lemma 9 If f € MP4(X) and if 0 < a < <, then

1 12
| /X S ) )] < Cpaa My R, (130

Proof : Let R > 0. We have

f() Wl
|/ n<r 0(z, )9 5z, yy@a ) < Z/ 5w, y)Qe Rt

2]+1 ‘Ty)<7

+oo ' .
<» B27/*R® . / ;

]Z:; W(B(x,27R)) Jpwain |f(y)] du(y)
= Bl — 2—aR Mf(l’)
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IO < S vl
| /p(%y)ZR o, y)% ol = JZ_; /QjR<P(w,y)<2j+1R o(x,y)< #y)

1** Jj+1 Q(1** Jj+1 ;*E
_ZQJR B P (2Z7R) (2 R) S| £y

Q(-3)
_1 2 a a-Q
<B'"» <1 f Wl g
_ga—?
We then end the proof by taking R = % o

As a direct corollary of Lemma 9, we get the following result of Adams
[2] on Riesz potentials :

Corollary 1 For0 < o < £, the Riesz potential Z,, is bounded from MP(X)

to MXX(X), with \ = —%

We may now state the comparison result between spaces of multipliers
and Morrey—Campanato spaces, a result which is known as the Fefferman—
Phong inequality [9] :

Theorem 11 Let 0 < a < Q/2 and 2 <p Q. Then we have :
MPE(X) C V= M(W® e L%) € M3 (X). (131)
Proof : For f € Mp’%(X) and g € Mp’%(X), we have fg € M2 %(X).
We have p/2 > 1 and o < @/q with ¢ = %, hence, since A\ =1 — “q =1/2,
T.(fg) € MP(X). Thus, from Proposition 10, we see that MP’E( ) c v
The embedding V* C MQ’%(X) is easy to check. Indeed, if F' = 13 21p),
we have for y € B(z, R)

du(z) . (Bly, R)

)
> > AR®
p(z,y)<R p(Z y>Q “ Re~e

L.rw) > |
hence, for f € V*,

1 B
? < S5 2AF2 < = 2 RQ-2
/B(w,R) F @I dply) < A2R2a”f||V 1F][z < A2HfHV R

o
Remark : The embeddings are strict. For a proof in the case of the
Euclidean space, see for instance [19].
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