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PACS 64.60.Ht – Dynamic critical phenomena

Abstract –The intermittent burst dynamics during the slow drainage of a porous medium is
studied experimentally. We have shown that this system satisfies a set of conditions known to be
true for critical systems, such as intermittent activity with bursts extending over several time and
length scales, self-similar macroscopic fractal structure and 1/fα power spectrum. Additionally, we
have verified a theoretically predicted scaling for the burst size distribution, previously assessed via
numerical simulations. The observation of 1/fα power spectra is new for porous media flows and,
for specific boundary conditions, we notice the occurrence of a transition from 1/f to 1/f2 scaling.
An analytically integrable mathematical framework was employed to explain this behavior.

Introduction. – The topic of fluid motion inside a1

porous network has deservedly been subjected to a consid-2

erable number of studies over the past decades. Scientists3

have studied the morphology and dynamics of the flow4

[1–12] and proposed a set of numerical schemes able to5

reproduce the observed macroscopic patterns [13–17] and6

relevant pore-scale mechanisms [18–26]. The topic is also7

of central importance for the study of groundwater flows8

and soil contaminants treatment [27,28] and has direct ap-9

plications in the energy sector, for example, in hydrocar-10

bon recovery methods [29]. One particularly interesting11

aspect of multiphase flow in porous media is its intermit-12

tent dynamics [3, 4, 18], with long intervals of stagnation13

followed by short intervals of strong activity. This kind of14

general behavior [30–32] appears in many physical, biolog-15

ical and economical systems, such as the stick-slip motion16

of a block on an inclined plane [33], the propagation of a17

fracture front in a disordered material [34–36], the number18

of mutations in models of biological evolution [37], acoustic19

emissions from fracturing [38,39], variations in stock mar-20

kets [40], and the rate of energy transfer between scales in21

fully developed turbulence [41, 42]. Intermittent phenom-22

ena arise irrespective of the (certainly different) specific23

details of each system. In the particular case of porous24

media flows, it is caused by the interplay between an ex-25

ternal load (for example, an imposed pressure difference26

across the system) and the internal random resistance due27

to the broader or narrower pore-throats.28

In the present work we show experimental results on29

the burst dynamics during drainage in artificial porous 30

media and investigate the question of how the pressure 31

fluctuations (due to the burst activity) can encode useful 32

information about the system. The flows studied are slow 33

enough to be in the capillary regime, in which capillary 34

forces are typically much stronger than viscous ones [3,43]. 35

We have employed synthetic quasi-2D systems driven by 36

a controlled imposed pressure (CIP) boundary condition. 37

This boundary condition differs from the controlled with- 38

drawal rate (CWR), more commonly used [3, 9]. The dy- 39

namics is characterized both via direct imaging of the 40

flow and by local pressure measurements. We present 41

results related to the statistics of bursts, their morphol- 42

ogy and orientation within the medium, and the power 43

spectral density (PSD) associated with the fluctuations 44

in the measured pressure signal. In particular, we show 45

that for systems driven by the CIP boundary condition, 46

the PSD presents a 1/f scaling regime. The presence of 47

1/fα power spectra is a widespread feature occurring in a 48

myriad of contexts [44–46], commonly signaling the collec- 49

tive dynamics of critical systems. Some examples are the 50

early measurements of flicker noise in vacuum tubes [47], 51

fluctuations in neuronal activity in the brain [48], quan- 52

tum dots fluorescence [49], loudness in music and speech 53

[50, 51] and fluctuations in the interplanetary magnetic 54

field [52]. Although 1/fα power spectra have also been 55

observed in some fluid systems, such as simulations and 56

experiments on hydrodynamic and magnetohydrodynamic 57

turbulence [53,54] and quasi-2D turbulence in electromag- 58

p-1



M. Moura et al.

netically forced flows [55], to the best of our knowledge the59

results reported here provide the first experimental obser-60

vations of 1/fα power spectra in porous media flows.61

Methodology. – Fig. 1 shows a schematic representa-62

tion of the setup employed (additional details in Ref. [56]).63

The quasi-2D porous network is formed by a modified64

Hele-Shaw cell filled with a monolayer of glass beads hav-65

ing diameters a in the range 1.0mm < a < 1.2mm. The66

beads are kept in place by a pressurized cushion placed on67

the bottom plate of the cell. A spongeous filter with pores68

much smaller than those in the medium is placed between69

the porous network and the outlet of the model. This filter70

allows the dynamics to continue inside the medium even71

after breakthrough [56]. Pressure measurements are taken72

at the outlet with an electronic pressure sensor (Honeywell73

26PCAFG6G) that records the difference between the air74

pressure (non-wetting phase) and the liquid pressure (wet-75

ting phase) at the outlet, i.e., pm = pnw − poutw . Since the76

inlet is open to the atmosphere, pnw = p0 in all experi-77

ments, where p0 is the atmospheric pressure. The porous78

matrix was initially filled with a mixture of glycerol (80%79

in weight) and water (20% in weight) having kinematic80

viscosity ν = 4.25 10−5m2/s, density ρ = 1.205 g/cm3
81

and surface tension γ = 0.064 N.m−1. We have per-82

formed experiments on 4 different porous media with di-83

mensions: (1) 27.3cm x 11.0cm, (2) 14.0cm x 11.5cm,84

(3) 32.8cm x 14.6cm and (4) 32.0cm x 4.5cm, where the85

first number corresponds to the length (inlet–outlet di-86

rection) and the second to the width. The outlet of the87

model is connected to an external reservoir. The height88

difference h between the surface of the liquid in this reser-89

voir and the model is used to control the imposed pressure90

via an adaptive feedback mechanism (CIP boundary con-91

dition). This mechanism guarantees that the pressure is92

only increased when the system is in a quasi-equilibrium93

situation (details in [56]). By slowly increasing the im-94

posed pressure (via small steps in the height of the reser-95

voir dh = 10µm =⇒ dp = ρgdh = 0.12 Pa, where g96

is the acceleration of gravity), new pore-throats may be-97

come available to invasion. The value of dh was chosen to98

satisfy the accuracy condition that the height would typ-99

ically have to be increased several times before new pores100

are invaded. As long as this condition is satisfied, the101

results obtained should be independent of the particular102

value of dh.103

Burst size distribution. – We begin by analyzing
the size distribution of invasion bursts in a CIP experi-
ment. A burst is understood as any connected set of pores
invaded in the interval Θ = t2−t1 between two consecutive
time instants, t1 and t2, at which the imposed pressure was
increased (i.e., the imposed pressure is constant during the
interval Θ, being changed only at its extremes t1 and t2).
Fig. 2 shows the individual bursts for experiment CIP-1
(the number identifies the model), colored according to
their area (top) and randomly (bottom), the latter be-
ing done to aid the visualization of separate bursts. Only

Fig. 1: (color online) Diagram of the experimental setup and
boundary conditions (CIP or CWR). The numbers (1), (2) and
(3) denote the porous medium, filter and external tubing.

bursts having their centroids in the mid 90% of the model’s
length are considered, to avoid possible boundary effects
[56]. A great deal of information can be obtained from
this image. Initially, one can observe the homogeneity
and isotropicality of the dynamics: the bursts don’t seem
to follow a well defined size gradient (the top image does
not seem to transition from blue to red following a spe-
cific direction), nor have they a clear preferred orientation
(they are not particularly elongated in any direction). It is
hard, if not impossible, to say from this image in which di-
rection the invasion takes place (it is from left to right). A
reflection (vertical or horizontal) or a 180◦ rotation would
also not be clearly identified. The box counting fractal di-
mension [57,58] of the invading cluster was measured to be
D = 1.76 ± 0.05. Fig. 3 shows the burst size distribution
N(n) for 3 separate experiments (the number of pores n
being measured by normalizing the burst area by a typi-
cal pore area ≈ 0.3mm2). The system exhibits the scaling
N(n) ∝ n−τ , with τ = 1.37 ± 0.08, over at least two
decades. The burst dynamics is therefore spatially self-
similar, a feature commonly associated with systems close
to a critical transition [46, 57]. The exponent τ has been
calculated via maximum likelihood estimation (MLE) [59]
using the data from Fig. 2 for burst sizes in the interval
1 pore < n < 150 pores. MLE was used in order to avoid
possible biases from data binning (MLE is a binning free
method), see also [60]. The scaling is shown in Fig. 3 on
top of the logarithmically binned histogram of the data for
the sake of visualization. Experiment CIP-4 was left out of
the analysis because boundary effects rendered the results
unreliable (model 4 is too narrow). The measured expo-
nent is consistent with the value τ = 1.30±0.05 predicted
by numerical simulations and percolation theory [21, 58].
Martys et al. [21] derived the analytical form

τ = 1 +
De − 1/ν′

D
, (1)

where D and De are respectively the fractal dimensions 104

of the growing cluster and its external perimeter and ν′ = 105

4/3 is the exponent characterizing the divergence of the 106
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Fig. 2: (color online) Individual bursts for experiment CIP-
1. The flow is from left to right, during ≈ 82h. Bursts color
coded by their size normalized by a typical pore area (top)
and randomly (bottom). The vast blue areas in the top image
contain many smaller bursts (detail).

correlation length [57, 58]. Using the values D = 1.76107

and De = 4/3 [14], we obtain τ = 1.33, very close to the108

measured value τ = 1.37 ± 0.08 shown in Fig. 3. Our109

measurements provide a direct experimental verification110

of Eq. (1), proposed in Ref. [21].111

Crandall et al. [61] performed measurements in a CWR112

system finding the exponent τ = 1.53, which is compared113

to the theoretical prediction of τ = 1.527 from Roux114

and Guyon [62]. Nevertheless, Maslov [63] pointed out115

an inconsistency in this theoretical prediction, the cor-116

rect expression being given in Eq. (1). Modified invasion117

percolation simulations and pressure measurements [3, 4]118

have shown that, in a CWR, system very large bursts are119

split into smaller ones. A burst size distribution was ob-120

served, with exponent τ = 1.3 ± 0.05 for the simulations121

and τ = 1.45 ± 0.10 for the experiments (consistent with122

Eq. (1)), followed by an exponential cutoff [3, 4]. In the123

CIP case large bursts can happen because the displaced124

liquid can freely flow out of the model but in the CWR125

case this is not possible since the available volume for the126

displaced liquid is bounded by the outlet syringe volume.127

Burst time distribution. – Let us now focus on the128

distribution G(Θ) of time intervals Θ between two succes-129

sive increments in the imposed pressure during which inva-130

sion bursts have occurred. Fig. 4 shows this distribution,131

produced for all bursts with Θ > 120s, a cutoff related132

to the minimum time difference for proceeding the image133

analysis used in the feedback mechanism [56]. It scales as134

G(Θ) ∝ Θ−γ with γ = 2.04±0.15 (exponent was also com-135

puted via MLE [59]). In the inset we show the distribution136

of inverse intervals g(1/Θ), which is nearly uniform, since137

it is related to G(Θ) by g(1/Θ) = G(Θ)Θ2 ∝ Θ2−γ . The138

uniformity of g(1/Θ) will play an important role further139

Fig. 3: (color online) Burst size distribution N(n). The line
shows the scaling N(n) ∝ n−τ , with τ = 1.37± 0.08, which is
consistent with the theoretical value τ = 1.30± 0.05 predicted
by numerical simulations and percolation theory [21, 58]. The
data has been shifted vertically to aid visualization.

on in the modeling of the pressure fluctuations PSD. 140

Connection between the burst size and time dis- 141

tributions. – We consider now the link between the 142

burst size distribution N(n) shown in Fig. 3 and the burst 143

time distribution G(Θ) in Fig. 4. Let Ȧ = s/Θ denote 144

the average growth rate of a burst of area s during the 145

time interval Θ. This corresponds to an external perimeter 146

growth [57, 58], therefore Ȧ ∝ ule where u is a character- 147

istic front speed (set by the Darcy law and the character- 148

istic capillary pressure) and le is the external perimeter, 149

related to the linear size across a cluster l as le ∝ lDe . 150

Since s ∝ lD, we have 151

s/Θ = Ȧ ∝ ule ∝ sDe/D =⇒ Θ ∝ sβ , (2)

with β = 1 − De/D. The distributions of s and Θ are 152

linked by |G(Θ)dΘ| = |p(s)ds| and since the area s of a 153

burst is proportional to its number of pores n (see Fig. 3), 154

it follows that p(s) ∝ s−τ . Therefore, 155

G(Θ) ∝ s−τds/dΘ =⇒ G(Θ) ∝ Θ−γ , (3)

with γ = (τ − 1 + β) /β = (τ −De/D) / (1−De/D). Us- 156

ing the literature values τ = 1.3 [21, 58], De = 1.33 157

and D = 1.82 [58], we find γ = 2.11, quite close to the 158

measured value γ = 2.04 seen in Fig. 4. As an imme- 159

diate consequence of Eq. (3), the distribution of inverse 160

intervals scales as g(1/Θ) ∝ Θ−η, with η = γ − 2 = 161

(τ − 2 +De/D) / (1−De/D). Using the literature values 162

above we find η = 0.11, which is in agreement with the 163

experimentally observed value η = γ − 2 = 0.04 ± 0.15 164

– i.e. these theoretical considerations explain the nearly 165

uniform distribution observed in the inset of Fig. 4. 166

Fluctuations in the measured pressure signal. –
Next, we analyze the fluctuations in the pressure signal,
following the pore invasion events. In Fig. 5, we show
the typical pressure signature in a CIP experiment. The
observed pressure pulses present a characteristic exponen-
tial relaxation. We also observe that a pulse can trigger
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Fig. 4: (color online) Burst time distributionG(Θ). The scaling
(red line) corresponds to G(Θ) ∝ Θ−γ with γ = 2.04 ± 0.15.
In the inset we show the nearly uniform distribution g(1/Θ).

others and even give rise to large avalanches with the in-
vasion of several pores. A pulse can be divided into two
phases: an initial fast drop in the capillary pressure pc and
a slower exponential relaxation back to the pressure level
ρgh set externally (see Fig. 1). The fast drop in pc occurs
as the liquid is displaced (following the invasion of one
or more pores) and subsequently redistributed to the sur-
rounding menisci, causing a back-contraction of the inter-
face [3,4,18]. The relaxation phase occurs as the liquid-air
interface readjusts itself inside the available pore-throats
and the liquid volume displaced from the pores flows out
of the model. The fluid motion sets in viscous pressure
drops which are reflected in the measured pressure, as seen
in Fig. 5. These drops occur (see Fig. 1): 1) in the porous
medium itself, 2) in the filter at the model’s outlet and 3)
in the external tubing (the numbers are in correspondence
with Fig. 1). The height difference h between the surface
of the liquid in the reservoir and the model level accounts
for a hydrostatic component ρgh. Adding these contribu-
tions and assuming that the flow is governed by Darcy’s
equation, we have

pw − u
µL1

k1
− uµL2

k2
− uS1µL3

S3k3
+ ρgh = p0 , (4)

where pw is the pressure in the wetting phase (liquid) just167

after the liquid-air interface, u is the average Darcy ve-168

locity of the flow in the porous network, µ = ρν is the169

liquid’s dynamic viscosity, Li and ki with i = {1, 2, 3}170

are the length and permeability respectively of the porous171

network, filter and the tubing and S1 and S3 are the172

respective cross sections of the model and the tubing.173

Since the capillary pressure across the liquid-air interface174

is pc = pnw − pw = p0 − pw, Eq. (4) becomes175

pc + uR− ρgh = 0 , (5)

where176

R = R1 +R2 +R3 =⇒ R =
µL1

k1
+
µL2

k2
+
S1µL3

S3k3
, (6)
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Fig. 5: (color online) Typical exponential relaxation signature
of pressure pulses. A pulse can trigger others and even give
rise to a large avalanche (shown in the inset).

is equivalent to an effective resistance to the flow. The 177

volumetric flux in a pore is dV/dt = ua2/φ, where a is 178

a characteristic pore length scale (for example the bead 179

diameter) and φ is the porosity of the model. By intro- 180

ducing the concept of a capacitive volume κ = dV/dpc 181

(used first in Ref. [3]), where dV is the liquid volume dis- 182

placed from a pore throat in response to a change dpc in 183

capillary pressure, we have 184

dV

dt
=
ua2

φ
=⇒ u =

κφ

a2
dpc
dt

. (7)

Plugging this equation into Eq. (5), 185

κφR

a2
dpc
dt

+pc−ρgh = 0 =⇒ pc(t) = ρgh+Ce−t/tc , (8)

thus producing the exponential behavior seen in Fig. 5.
C = pc(0)−ρgh < 0 is a constant associated to how much
the capillary pressure decreases during the invasion of a set
of pores before it starts to rise again. The characteristic
time scale of the exponential decay is

tc =
κφR

a2
. (9)

The invasion of one pore quite frequently triggers the 186

invasion of others, in such a manner that before an ex- 187

ponential pulse decays completely, another one is seen 188

in the pressure signal, see Fig. 5. This mechanism de- 189

lays the complete relaxation of the pressure, effectively 190

increasing the decay time from tc to t∗ ≥ tc. Indeed, if 191

this relaxation-delaying mechanism was absent, the burst 192

time distribution G(Θ) shown in Fig. 4 should be peaked 193

around the value Θ = tc. Since we have shown that 194

G(Θ) ∝ Θ−γ we expect the effective exponential decay 195

time t∗ to follow the same distribution and, in particu- 196

lar, the effective decay rate λ = 1/t∗ should be uniformly 197

distributed in an interval [λmin, λmax] following the same 198

distribution as 1/Θ (see inset of Fig. 4). λmax is related to 199

the minimum decay time t∗, i.e., λmax = 1/tc and we will 200
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Fig. 6: (color online) Power spectral density comparison for
CIP experiments (model’s numbers in the legend). Guide-to-
eye lines are shown for the scaling S(f) ∝ f−α, with α = 1
for lower frequencies and α = 2 for intermediate frequencies.

consider λmin = 0 for convenience. Later on we will show201

that the distribution of decay rates has a crucial impact202

on the power spectrum of the pressure signal.203

Pressure signal PSD. – Next we analyze the power204

spectral density (PSD) associated to the pressure signal205

for the CIP experiments. The PSD S = S(f) was com-206

puted for all experiments using the Welch method [64].207

We have noticed the existence of a 1/f scaling regime208

(flicker/pink noise) for lower frequencies, followed by a209

crossover and a 1/f2 scaling regime (brown noise) for in-210

termediate frequencies. For higher frequencies, another211

crossover follows and a region independent of f is seen212

(white noise associated with fluctuations in the pressure213

sensor and unimportant to our analysis). We see from214

Fig. 6 that the scaling properties of the power spectrum,215

in particular the occurrence of 1/f noise, seem to remain216

unchanged despite the changes in both sample dimensions217

and pore-size distribution (the samples were rebuilt before218

each experiment, thus changing the pore-size distribution219

[56]). The 1/f regime is associated with events having fre-220

quency f < 10−2Hz, or alternatively, periods T > 100s.221

From Fig. 5, we see that this corresponds to the charac-222

teristic time intervals between the pressure pulses, thus223

indicating that they are associated with the presence of224

the 1/f scaling in the PSD.225

Analytical modeling of the pressure signal and226

PSD scaling explanation. – The non-trivial scaling227

of the CIP power spectral density can be explained by the228

following mathematical framework, which is an adaptation229

of an argument proposed in [65] to explain a similar 1/f230

to 1/f2 transition in the very first reported observation of231

1/f noise [47] (see also [66] and [67]). Apart from a nearly232

constant offset, the pressure signal can be modeled as a233

train of exponentially decaying pulses located at randomly234

distributed discrete times tj ,235

pλ(t) =
∑
j

AH(t− tj)e−λ(t−tj) , (10)

where λ > 0 and A < 0 are initially taken to be constants 236

(the characteristic decay rate and amplitude of the pulses) 237

and H(t − tj) is the Heaviside step function, i.e., H(t − 238

tj) = 0 if t < tj and H(t− tj) = 1 if t ≥ tj . Let Pλ(f) be 239

the Fourier transform of pλ(t). The PSD Sλ(f) is 240

Sλ(f) = lim
T→∞

1

T

〈
|Pλ(f)|2

〉
=

A2r

λ2 + 4π2f2
, (11)

where r is the average rate of occurrence of pulses and the 241

brackets are the expected value operator (since in practice 242

one does not have access to an ensemble of measurements, 243

we have employed Welch’s method [64] to estimate the 244

PSD, which is based on the concept of a periodogram [68]). 245

The PSD shown in Eq. (11) is a Lorentzian curve which is 246

approximately constant for lower frequencies (f � λ/2π) 247

and decays as 1/f2 for higher frequencies (f � λ/2π). 248

A model with a single constant decay rate λ cannot 249

incorporate the 1/f region but, as previously argued, we 250

expect λ to follow the uniform distribution ξ(λ) = 1/λmax 251

in the interval [0, λmax]. Taking this distribution into ac- 252

count and writing λmax = 2 π ft, we have 253

S(f) =

∫ λt

0

Sλ(f)ξ(λ)dλ =
A2r

4π2ftf
arctan

(
ft
f

)
. (12)

Eq. (12) has the asymptotic behavior

S(f) =

{
A2r
8πft

1
f if f � ft

A2r
4π2

1
f2 if f � ft

, (13)

thus presenting the 1/f to 1/f2 transition observed in the 254

experiments. The transition frequency ft in experiment 255

CIP-1 is roughly ft = 1.5 10−2Hz (see Fig. 6). By us- 256

ing the constant A2r as a fitting parameter we can com- 257

pare the measured PSD with the theoretical prediction in 258

Eq. (12). Fig. 7 shows the resulting comparison produced 259

using A2r = 1.5Pa2/s. The dashed red vertical line marks 260

the transition frequency ft. The analytical result repro- 261

duces the experimental findings very well, scaling as 1/f 262

for f � ft and as 1/f2 for f � ft. Indeed, this theory not 263

only captures the 1/f and 1/f2 domains but also fits the 264

data well for the crossover region between these domains. 265

The transition frequency ft can be estimated using 266

Eq. (9) and the resistance R from Eq. (6). As a first 267

order approximation, let us consider only the contribu- 268

tion to R from the term R1 relative to the resistance in 269

the porous medium itself. Using µ = ρν = 5.1 10−2Pa.s, 270

L1 = 0.27m, a = 10−3m, κ = 1.1 10−12m3/Pa (from 271

Ref. [3]), k1 = 1.6 10−9m2 and φ = 0.63 (both measured 272

in a similar model in Ref. [5]), we find 273

ft =
1

2πtc
=

k1a
2

2πκφµL1
=⇒ ft ≈ 2.6 10−2Hz , (14)
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not far from the transition frequency ft = 1.5 10−2Hz274

shown in Fig. 7. The overestimation comes from the terms275

R2 and R3 in Eq. (6), ignored in the calculation above.276

Finally, notice also the existence of a single isolated277

point in the very low frequency part of the PSD, falling far278

from the scaling region (extreme left for all experiments279

in Fig. 6). This point is not an outlier in the data: its280

existence signals the very slow positive drift of the pres-281

sure signal, which occurs since the capillary pressure has282

to increase to allow the invasion of narrower pores [3, 56].283

Comparison with a system driven under a CWR284

boundary condition. – In order to test the effect of285

the boundary conditions in the PSD, we have run a con-286

trolled withdrawal rate (CWR) experiment using model287

(1). The resulting PSD is shown in the inset of Fig. 7.288

The PSD still presents an interesting scaling, but with dif-289

ferent scaling regimes: 1/f1.5, for lower frequencies, and290

1/f3.5, for intermediate frequencies. The 1/f region is291

only observed for systems driven under the CIP boundary292

condition. The fact that the exponents for CWR differ293

from CIP is not surprising, since the pressure relaxation294

in that case no longer exponential, but linear, see Ref. [3].295

Connection between the measured pressure and296

the capillary pressure. – The pressure sensor mea-297

sures the difference between the pressure in the air and the298

liquid at the outlet, i.e., pm = pnw − poutw . The measured299

signal is not exactly the capillary pressure pc = pnw − pw300

across the liquid-air interface, since pw 6= poutw given that301

viscous losses occur between the liquid-air interface and302

the outlet, thus generally making pw > poutw . Those losses303

occur in the porous medium itself and in the filter at the304

outlet of the model (numbers 1 and 2 in Fig. 1). The305

connection between pm and pc is pm = pc + u (R1 +R2),306

where R1 and R2 are the resistance terms from the porous307

network and the filter. Using Eqs. (7) and (8), we have308

pm = ρgh+ C

(
1− R1 +R2

R1 +R2 +R3

)
e−t/tc . (15)

Therefore, by comparing Eqs. (8) and (15), we see that309

pm differs from pc only in the amplitude of the pulses, but310

not in their characteristic exponential decay. Since our311

analysis depended only on the distribution of the decay312

rates, the differences between pm and pc are not crucial.313

Further generalizations of the PSD analytical314

framework. – One possible generalization of the model315

would be to consider a system with a distribution of am-316

plitudes A instead of a single value (as we might expect317

from Fig. 5). In this case the scaling properties of the318

PSD would still be left unchanged but the constant A2 in319

Eq. (12) and (13) would be replaced by the expected value320

of A2. Another possibility would be to consider a distri-321

bution for λ of the form ξ(λ) ∝ λ−δ. Here the 1/f2 region322

is still left unchanged but the 1/f scaling is changed to323

10-3 10-2 10-1

100

102

104
CIP-1 (experiment)

CIP-1 (theory)

10-3 10-2 10-1

100

105

CWR-1 (experiment)

α = 1

α = 2

α = 1.5

α = 3.5

Fig. 7: (color online) Comparison between theoretical predic-
tion and experiments. The analytical result (thin blue line) is
given by Eq. (12), where ft = 1.5 10−2Hz (vertical dashed red
line) and A2r = 1.5Pa2/s. The analytical prediction match the
experimental measurements (green crosses, experiment CIP-1)
well. On the inset we show the PSD for experiment CWR-1.

1/f (1+δ) [69]. As previously noted, the distribution of de- 324

caying rates λ is the crucial figure behind the 1/f scaling. 325

Conclusions. – We have analyzed the burst dynam- 326

ics from slow drainage experiments in porous media. We 327

showed that this dynamics presents many features com- 328

monly associated to critical systems. Intermittent bursts 329

of activity were observed over many time and length scales 330

and a theoretical expression for their size distribution scal- 331

ing, Eq. (1), was verified experimentally. The pressure 332

signal of the invasion presented an interesting PSD scal- 333

ing, with a 1/f scaling region which further transitions to 334

1/f2 in the case of the CIP boundary condition. We have 335

employed an analytical framework [65] which satisfactorily 336

reproduces the scaling properties of the PSD. The deriva- 337

tion of closed expressions relating the pressure signal PSD 338

to properties of the porous medium and the fluids can lead 339

to new techniques for indirectly probing such systems. For 340

example, if one has access to the PSD only and not to the 341

full pressure signal, the transition frequency ft can still be 342

measured and information on the ratio k1/φ between the 343

permeability and the porosity of the medium can be found 344

via Eq. (14). If the PSD and ft are known, Eq. (12) can be 345

fitted to measure the product A2r between the amplitudes 346

and rate of occurrence of bursts. 347
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[34] Måløy K. J., Santucci S., Schmittbuhl J. and Tou-414

ssaint R., Phys. Rev. Lett., 96 (2006) 045501. 415

[35] Grob M. et al., Pure Appl. Geophys., 166 (2009) 777. 416

[36] Tallakstad K. T., Toussaint R., Santucci S., 417
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[55] Herault J., Pétrélis F. and Fauve S., EPL, 111 451

(2015) 44002. 452

[56] Moura M., Fiorentino E.-A., Måløy K. J., Schäfer 453
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