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come    

ical and economical systems, such as the stick-slip motion 16 of a block on an inclined plane [33], the propagation of a fracture front in a disordered material [34][35][36], the number 18 of mutations in models of biological evolution [37], acoustic emissions from fracturing [38,39], variations in stock mar-20 kets [40], and the rate of energy transfer between scales in 21 fully developed turbulence [41,42]. Intermittent phenom-22 ena arise irrespective of the (certainly different) specific 23 details of each system. In the particular case of porous 24 media flows, it is caused by the interplay between an ex-25 ternal load (for example, an imposed pressure difference 26 across the system) and the internal random resistance due 27 to the broader or narrower pore-throats.
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In the present work we show experimental results on 29 the burst dynamics during drainage in artificial porous media and investigate the question of how the pressure fluctuations (due to the burst activity) can encode useful information about the system. The flows studied are slow enough to be in the capillary regime, in which capillary forces are typically much stronger than viscous ones [START_REF] Måløy | [END_REF]43]. We have employed synthetic quasi-2D systems driven by a controlled imposed pressure (CIP) boundary condition. This boundary condition differs from the controlled withdrawal rate (CWR), more commonly used [START_REF] Måløy | [END_REF]9]. The dynamics is characterized both via direct imaging of the flow and by local pressure measurements. We present results related to the statistics of bursts, their morphology and orientation within the medium, and the power spectral density (PSD) associated with the fluctuations in the measured pressure signal. In particular, we show that for systems driven by the CIP boundary condition, the PSD presents a 1/f scaling regime. The presence of 1/f α power spectra is a widespread feature occurring in a myriad of contexts [44][START_REF] Mandelbrot | The fractal geometry of nature[END_REF][START_REF] Schroeder | Fractals, chaos, power laws: minutes from an infinite paradise[END_REF], commonly signaling the collective dynamics of critical systems. Some examples are the early measurements of flicker noise in vacuum tubes [START_REF] Johnson | [END_REF], fluctuations in neuronal activity in the brain [48], quantum dots fluorescence [49], loudness in music and speech [50,51] and fluctuations in the interplanetary magnetic field [52]. Although 1/f α power spectra have also been observed in some fluid systems, such as simulations and experiments on hydrodynamic and magnetohydrodynamic turbulence [53,54] and quasi-2D turbulence in electromag-netically forced flows [55], to the best of our knowledge the results reported here provide the first experimental observations of 1/f α power spectra in porous media flows.

Methodology. -Fig. 1 shows a schematic representation of the setup employed (additional details in Ref. [56]). . This mechanism guarantees that the pressure is only increased when the system is in a quasi-equilibrium situation (details in [56]). By slowly increasing the imposed pressure (via small steps in the height of the reservoir dh = 10µm =⇒ dp = ρgdh = 0.12 P a, where g is the acceleration of gravity), new pore-throats may become available to invasion. The value of dh was chosen to satisfy the accuracy condition that the height would typically have to be increased several times before new pores are invaded. As long as this condition is satisfied, the results obtained should be independent of the particular value of dh.

Burst size distribution. -We begin by analyzing the size distribution of invasion bursts in a CIP experiment. A burst is understood as any connected set of pores invaded in the interval Θ = t 2 -t 1 between two consecutive time instants, t 1 and t 2 , at which the imposed pressure was increased (i.e., the imposed pressure is constant during the interval Θ, being changed only at its extremes t 1 and t 2 ). Fig. 2 shows the individual bursts for experiment CIP-1 (the number identifies the model), colored according to their area (top) and randomly (bottom), the latter being done to aid the visualization of separate bursts. Only bursts having their centroids in the mid 90% of the model's length are considered, to avoid possible boundary effects [56]. A great deal of information can be obtained from this image. Initially, one can observe the homogeneity and isotropicality of the dynamics: the bursts don't seem to follow a well defined size gradient (the top image does not seem to transition from blue to red following a specific direction), nor have they a clear preferred orientation (they are not particularly elongated in any direction). It is hard, if not impossible, to say from this image in which direction the invasion takes place (it is from left to right). A reflection (vertical or horizontal) or a 180 • rotation would also not be clearly identified. The box counting fractal dimension [START_REF] Feder | Fractals[END_REF][START_REF] Stauffer | Introduction to percolation theory[END_REF] of the invading cluster was measured to be D = 1.76 ± 0.05. Fig. 3 shows the burst size distribution N (n) for 3 separate experiments (the number of pores n being measured by normalizing the burst area by a typical pore area ≈ 0.3mm 2 ). The system exhibits the scaling N (n) ∝ n -τ , with τ = 1.37 ± 0.08, over at least two decades. The burst dynamics is therefore spatially selfsimilar, a feature commonly associated with systems close to a critical transition [START_REF] Schroeder | Fractals, chaos, power laws: minutes from an infinite paradise[END_REF][START_REF] Feder | Fractals[END_REF]. The exponent τ has been calculated via maximum likelihood estimation (MLE) [START_REF] Clauset | [END_REF] using the data from Fig. 2 for burst sizes in the interval 1 pore < n < 150 pores. MLE was used in order to avoid possible biases from data binning (MLE is a binning free method), see also [60]. The scaling is shown in Fig. 3 on top of the logarithmically binned histogram of the data for the sake of visualization. Experiment CIP-4 was left out of the analysis because boundary effects rendered the results unreliable (model 4 is too narrow). The measured exponent is consistent with the value τ = 1.30 ± 0.05 predicted by numerical simulations and percolation theory [21,[START_REF] Stauffer | Introduction to percolation theory[END_REF]. Martys et al. [21] derived the analytical form

τ = 1 + D e -1/ν D , (1) 
where D and D e are respectively the fractal dimensions 104 of the growing cluster and its external perimeter and ν = 105 4/3 is the exponent characterizing the divergence of the 106
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Bursts colored randomly correlation length [START_REF] Feder | Fractals[END_REF][START_REF] Stauffer | Introduction to percolation theory[END_REF]. Using the values D = 1.76

and D e = 4/3 [14], we obtain τ = 1.33, very close to the measured value τ = 1.37 ± 0.08 shown in Fig. 3. Our measurements provide a direct experimental verification of Eq. ( 1), proposed in Ref. [21].

Crandall et al. [61] performed measurements in a CWR system finding the exponent τ = 1.53, which is compared to the theoretical prediction of τ = 1.527 from Roux

and Guyon [62]. Nevertheless, Maslov [63] pointed out an inconsistency in this theoretical prediction, the correct expression being given in Eq. ( 1). Modified invasion percolation simulations and pressure measurements [START_REF] Måløy | [END_REF]4] have shown that, in a CWR, system very large bursts are split into smaller ones. A burst size distribution was observed, with exponent τ = 1.3 ± 0.05 for the simulations and τ = 1.45 ± 0.10 for the experiments (consistent with Eq. (1)), followed by an exponential cutoff [START_REF] Måløy | [END_REF]4]. In the CIP case large bursts can happen because the displaced liquid can freely flow out of the model but in the CWR case this is not possible since the available volume for the displaced liquid is bounded by the outlet syringe volume.

Burst time distribution. -Let us now focus on the distribution G(Θ) of time intervals Θ between two successive increments in the imposed pressure during which invasion bursts have occurred. Fig. 4 shows this distribution, produced for all bursts with Θ > 120s, a cutoff related to the minimum time difference for proceeding the image analysis used in the feedback mechanism [56]. It scales as G(Θ) ∝ Θ -γ with γ = 2.04±0.15 (exponent was also computed via MLE [START_REF] Clauset | [END_REF]). In the inset we show the distribution of inverse intervals g(1/Θ), which is nearly uniform, since

it is related to G(Θ) by g(1/Θ) = G(Θ)Θ 2 ∝ Θ 2-γ .
The uniformity of g(1/Θ) will play an important role further burst is proportional to its number of pores n (see Fig. 3), 154 it follows that p(s) ∝ s -τ . Therefore, 

155 G(Θ) ∝ s -τ ds/dΘ =⇒ G(Θ) ∝ Θ -γ , (3) 
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Fluctuations in the measured pressure signal. -Next, we analyze the fluctuations in the pressure signal, following the pore invasion events. In Fig. 5, we show the typical pressure signature in a CIP experiment. The observed pressure pulses present a characteristic exponential relaxation. We also observe that a pulse can trigger In the inset we show the nearly uniform distribution g(1/Θ).

others and even give rise to large avalanches with the invasion of several pores. A pulse can be divided into two phases: an initial fast drop in the capillary pressure p c and a slower exponential relaxation back to the pressure level ρgh set externally (see Fig. 1). The fast drop in p c occurs as the liquid is displaced (following the invasion of one or more pores) and subsequently redistributed to the surrounding menisci, causing a back-contraction of the interface [START_REF] Måløy | [END_REF]4,18]. The relaxation phase occurs as the liquid-air interface readjusts itself inside the available pore-throats and the liquid volume displaced from the pores flows out of the model. The fluid motion sets in viscous pressure drops which are reflected in the measured pressure, as seen in Fig. 5. These drops occur (see Fig. 1): 1) in the porous medium itself, 2) in the filter at the model's outlet and 3) in the external tubing (the numbers are in correspondence with Fig. 1). The height difference h between the surface of the liquid in the reservoir and the model level accounts for a hydrostatic component ρgh. Adding these contributions and assuming that the flow is governed by Darcy's equation, we have

p w -u µL 1 k 1 -u µL 2 k 2 -u S 1 µL 3 S 3 k 3 + ρgh = p 0 , (4) 
where p w is the pressure in the wetting phase (liquid) just Since the capillary pressure across the liquid-air interface 174 is p c = p nw -p w = p 0 -p w , Eq. ( 4) becomes

p c + uR -ρgh = 0 , (5) 
where is equivalent to an effective resistance to the flow. The volumetric flux in a pore is dV /dt = ua 2 /φ, where a is a characteristic pore length scale (for example the bead diameter) and φ is the porosity of the model. By introducing the concept of a capacitive volume κ = dV /dp c (used first in Ref. [START_REF] Måløy | [END_REF]), where dV is the liquid volume displaced from a pore throat in response to a change dp c in capillary pressure, we have

R = R 1 + R 2 + R 3 =⇒ R = µL 1 k 1 + µL 2 k 2 + S 1 µL 3 S 3 k 3 , (6) 
dV dt = ua 2 φ =⇒ u = κφ a 2 dp c dt . (7) 
Plugging this equation into Eq. ( 5),

κφR a 2 dp c dt + p c -ρgh = 0 =⇒ p c (t) = ρgh + Ce -t/tc , ( 8 
)
thus producing the exponential behavior seen in Fig. 5. C = p c (0) -ρgh < 0 is a constant associated to how much the capillary pressure decreases during the invasion of a set of pores before it starts to rise again. The characteristic time scale of the exponential decay is

t c = κφR a 2 . ( 9 
)
The invasion of one pore quite frequently triggers the invasion of others, in such a manner that before an exponential pulse decays completely, another one is seen in the pressure signal, see Fig. 5. This mechanism delays the complete relaxation of the pressure, effectively increasing the decay time from t c to t * ≥ t c . Indeed, if this relaxation-delaying mechanism was absent, the burst time distribution G(Θ) shown in Fig. 4 should be peaked around the value Θ = t c . Since we have shown that G(Θ) ∝ Θ -γ we expect the effective exponential decay time t * to follow the same distribution and, in particular, the effective decay rate λ = 1/t * should be uniformly distributed in an interval [λ min , λ max ] following the same distribution as 1/Θ (see inset of Fig. 4). λ max is related to the minimum decay time t * , i.e., λ max = 1/t c and we will sensor and unimportant to our analysis). We see from 214 Fig. 6 that the scaling properties of the power spectrum, 215 in particular the occurrence of 1/f noise, seem to remain 216 unchanged despite the changes in both sample dimensions 217 and pore-size distribution (the samples were rebuilt before 218 each experiment, thus changing the pore-size distribution 219 [56]). The 1/f regime is associated with events having fre-220 quency f < 10 -2 Hz, or alternatively, periods T > 100s.
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From Fig. 5, we see that this corresponds to the charac- [START_REF] Johnson | [END_REF] (see also [66] and [67]). Apart from a nearly 232 constant offset, the pressure signal can be modeled as a 233 train of exponentially decaying pulses located at randomly

234 distributed discrete times t j , 235 p λ (t) = j AH(t -t j )e -λ(t-tj ) , (10) 
where λ > 0 and A < 0 are initially taken to be constants (the characteristic decay rate and amplitude of the pulses) and H(t -t j ) is the Heaviside step function, i.e., H(tt j ) = 0 if t < t j and H(t -t j ) = 1 if t ≥ t j . Let P λ (f ) be the Fourier transform of p λ (t). The PSD S λ (f ) is

S λ (f ) = lim T →∞ 1 T |P λ (f )| 2 = A 2 r λ 2 + 4π 2 f 2 , ( 11 
)
where r is the average rate of occurrence of pulses and the brackets are the expected value operator (since in practice one does not have access to an ensemble of measurements, we have employed Welch's method [64] to estimate the PSD, which is based on the concept of a periodogram [START_REF] Press | Numerical recipes in FORTRAN: the art of scientific computing[END_REF]). The PSD shown in Eq. ( 11) is a Lorentzian curve which is approximately constant for lower frequencies (f λ/2π) and decays as 1/f 2 for higher frequencies (f λ/2π).

A model with a single constant decay rate λ cannot incorporate the 1/f region but, as previously argued, we expect λ to follow the uniform distribution ξ(λ) = 1/λ max in the interval [0, λ max ]. Taking this distribution into account and writing λ max = 2 π f t , we have

S(f ) = λt 0 S λ (f )ξ(λ)dλ = A 2 r 4π 2 f t f arctan f t f . (12) 
Eq. ( 12) has the asymptotic behavior

S(f ) = A 2 r 8πft 1 f if f f t A 2 r 4π 2 1 f 2 if f f t , (13) 
thus presenting the 1/f to 1/f 2 transition observed in the experiments. The transition frequency f t in experiment CIP-1 is roughly f t = 1.5 10 -2 Hz (see Fig. 6). By using the constant A 2 r as a fitting parameter we can compare the measured PSD with the theoretical prediction in Eq. (12). Fig. 7 shows the resulting comparison produced using A 2 r = 1.5 P a 2 /s. The dashed red vertical line marks the transition frequency f t . The analytical result reproduces the experimental findings very well, scaling as 1/f for f f t and as 1/f 2 for f f t . Indeed, this theory not only captures the 1/f and 1/f 2 domains but also fits the data well for the crossover region between these domains.

The transition frequency f t can be estimated using Eq. ( 9) and the resistance R from Eq. ( 6). As a first order approximation, let us consider only the contribution to R from the term R 1 relative to the resistance in the porous medium itself. Using µ = ρν = 5.1 10 -2 P a.s, L 1 = 0.27m, a = 10 -3 m, κ = 1.1 10 -12 m 3 /P a (from Ref. [START_REF] Måløy | [END_REF]), k 1 = 1.6 10 -9 m 2 and φ = 0.63 (both measured in a similar model in Ref. [5]), we find

f t = 1 2πt c = k 1 a 2 2πκφµL 1 =⇒ f t ≈ 2.6 10 -2 Hz , (14) 
not far from the transition frequency f t = 1.5 10 -2 Hz shown in Fig. 7. The overestimation comes from the terms R 2 and R 3 in Eq. ( 6), ignored in the calculation above.

Finally, notice also the existence of a single isolated point in the very low frequency part of the PSD, falling far from the scaling region (extreme left for all experiments in Fig. 6). This point is not an outlier in the data: its 

= p c + u (R 1 + R 2 ),
where R 1 and R 2 are the resistance terms from the porous network and the filter. Using Eqs. ( 7) and ( 8), we have

p m = ρgh + C 1 - R 1 + R 2 R 1 + R 2 + R 3 e -t/tc . (15) 
Therefore, by comparing Eqs. ( 8) and ( 15), we see that p m differs from p c only in the amplitude of the pulses, but not in their characteristic exponential decay. Since our analysis depended only on the distribution of the decay rates, the differences between p m and p c are not crucial.

Further generalizations of the PSD analytical framework. -One possible generalization of the model would be to consider a system with a distribution of amplitudes A instead of a single value (as we might expect from Fig. 5). In this case the scaling properties of the PSD would still be left unchanged but the constant A 2 in Eq. ( 12) and ( 13) would be replaced by the expected value of A 2 . Another possibility would be to consider a distribution for λ of the form ξ(λ) ∝ λ -δ . Here the 1/f 2 region is still left unchanged but the 1/f scaling is changed to 1/f (1+δ) [START_REF] Butz | [END_REF]. As previously noted, the distribution of de-324 caying rates λ is the crucial figure behind the 1/f scaling. 325

Conclusions. -We have analyzed the burst dynam-326 ics from slow drainage experiments in porous media. We 327 showed that this dynamics presents many features com-328 monly associated to critical systems. Intermittent bursts 329 of activity were observed over many time and length scales 330 and a theoretical expression for their size distribution scal-331 ing, Eq. ( 1), was verified experimentally. The pressure 332 signal of the invasion presented an interesting PSD scal-333 ing, with a 1/f scaling region which further transitions to 334 1/f 2 in the case of the CIP boundary condition. We have 335 employed an analytical framework [65] which satisfactorily 336 reproduces the scaling properties of the PSD. The deriva-337 tion of closed expressions relating the pressure signal PSD 338 to properties of the porous medium and the fluids can lead 339 to new techniques for indirectly probing such systems. For 340 example, if one has access to the PSD only and not to the 341 full pressure signal, the transition frequency f t can still be 342 measured and information on the ratio k 1 /φ between the 343 permeability and the porosity of the medium can be found 344 via Eq. ( 14). If the PSD and f t are known, Eq. ( 12) can be 345 fitted to measure the product A 2 r between the amplitudes 346 and rate of occurrence of bursts.

  The quasi-2D porous network is formed by a modified Hele-Shaw cell filled with a monolayer of glass beads having diameters a in the range 1.0mm < a < 1.2mm. The beads are kept in place by a pressurized cushion placed on the bottom plate of the cell. A spongeous filter with pores much smaller than those in the medium is placed between the porous network and the outlet of the model. This filter allows the dynamics to continue inside the medium even after breakthrough [56]. Pressure measurements are taken at the outlet with an electronic pressure sensor (Honeywell 26PCAFG6G) that records the difference between the air pressure (non-wetting phase) and the liquid pressure (wetting phase) at the outlet, i.e., p m = p nw -p out w . Since the inlet is open to the atmosphere, p nw = p 0 in all experiments, where p 0 is the atmospheric pressure. The porous matrix was initially filled with a mixture of glycerol (80% in weight) and water (20% in weight) having kinematic viscosity ν = 4.25 10 -5 m 2 /s, density ρ = 1.205 g/cm 3 and surface tension γ = 0.064 N.m -1 . We have performed experiments on 4 different porous media with dimensions: (1) 27.3cm x 11.0cm, (2) 14.0cm x 11.5cm, (3) 32.8cm x 14.6cm and (4) 32.0cm x 4.5cm, where the first number corresponds to the length (inlet-outlet direction) and the second to the width. The outlet of the model is connected to an external reservoir. The height difference h between the surface of the liquid in this reservoir and the model is used to control the imposed pressure via an adaptive feedback mechanism (CIP boundary condition)

Fig. 1 :

 1 Fig. 1: (color online) Diagram of the experimental setup and boundary conditions (CIP or CWR). The numbers (1), (2) and (3) denote the porous medium, filter and external tubing.

Fig. 2 :

 2 Fig. 2: (color online) Individual bursts for experiment CIP-1. The flow is from left to right, during ≈ 82h. Bursts color coded by their size normalized by a typical pore area (top) and randomly (bottom). The vast blue areas in the top image contain many smaller bursts (detail).

Fig. 3 :

 3 Fig.3: (color online) Burst size distribution N (n). The line shows the scaling N (n) ∝ n -τ , with τ = 1.37 ± 0.08, which is consistent with the theoretical value τ = 1.30 ± 0.05 predicted by numerical simulations and percolation theory[21,[START_REF] Stauffer | Introduction to percolation theory[END_REF]. The data has been shifted vertically to aid visualization.

  with γ = (τ -1 + β) /β = (τ -D e /D) / (1 -D e /D). Us-156 ing the literature values τ = 1.3[21,[START_REF] Stauffer | Introduction to percolation theory[END_REF], D e = 1.33 157 and D = 1.82[START_REF] Stauffer | Introduction to percolation theory[END_REF], we find γ = 2.11, quite close to the 158 measured value γ = 2.04 seen in Fig.4. As an imme-159 diate consequence of Eq. (3), the distribution of inverse 160 intervals scales as g(1/Θ) ∝ Θ -η , with η = γ -2 = 161 (τ -2 + D e /D) / (1 -D e /D). Using the literature values 162 above we find η = 0.11, which is in agreement with the 163 experimentally observed value η = γ -2 = 0.04 ± 0.15 164 -i.e. these theoretical considerations explain the nearly 165 uniform distribution observed in the inset of Fig.4.

Fig. 4 :

 4 Fig. 4: (color online) Burst time distribution G(Θ). The scaling (red line) corresponds to G(Θ) ∝ Θ -γ with γ = 2.04 ± 0.15.In the inset we show the nearly uniform distribution g(1/Θ).
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  after the liquid-air interface, u is the average Darcy ve-168 locity of the flow in the porous network, µ = ρν is the 169 liquid's dynamic viscosity, L i and k i with i = {1, 2, 3} 170 are the length and permeability respectively of the porous 171 network, filter and the tubing and S 1 and S 3 are the 172 respective cross sections of the model and the tubing.
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Fig. 5 :

 5 Fig. 5: (color online) Typical exponential relaxation signature of pressure pulses. A pulse can trigger others and even give rise to a large avalanche (shown in the inset).

Fig. 6 :

 6 Fig. 6: (color online) Power spectral density comparison for CIP experiments (model's numbers in the legend). Guide-toeye lines are shown for the scaling S(f ) ∝ f -α , with α = 1 for lower frequencies and α = 2 for intermediate frequencies.
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  teristic time intervals between the pressure pulses, thus 223 indicating that they are associated with the presence of 224 the 1/f scaling in the PSD. 225 Analytical modeling of the pressure signal and 226 PSD scaling explanation. -The non-trivial scaling 227 of the CIP power spectral density can be explained by the 228 following mathematical framework, which is an adaptation 229 of an argument proposed in [65] to explain a similar 1/f 230 to 1/f 2 transition in the very first reported observation of 231 1/f noise

  existence signals the very slow positive drift of the pressure signal, which occurs since the capillary pressure has to increase to allow the invasion of narrower pores[START_REF] Måløy | [END_REF]56].Comparison with a system driven under a CWR boundary condition. -In order to test the effect of the boundary conditions in the PSD, we have run a controlled withdrawal rate (CWR) experiment using model(1). The resulting PSD is shown in the inset of Fig.7.The PSD still presents an interesting scaling, but with different scaling regimes: 1/f 1.5 , for lower frequencies, and 1/f 3.5 , for intermediate frequencies. The 1/f region is only observed for systems driven under the CIP boundary condition. The fact that the exponents for CWR differ from CIP is not surprising, since the pressure relaxation in that case no longer exponential, but linear, see Ref.[START_REF] Måløy | [END_REF].Connection between the measured pressure and the capillary pressure. -The pressure sensor measures the difference between the pressure in the air and the liquid at the outlet, i.e., p m = p nw -p out w . The measured signal is not exactly the capillary pressure p c = p nw -p w across the liquid-air interface, since p w = p out w given that viscous losses occur between the liquid-air interface and the outlet, thus generally making p w > p out w . Those losses occur in the porous medium itself and in the filter at the outlet of the model (numbers 1 and 2 in Fig.1). The connection between p m and p c is p m

Fig. 7 :

 7 Fig. 7: (color online) Comparison between theoretical prediction and experiments. The analytical result (thin blue line) is given by Eq. (12), where ft = 1.5 10 -2 Hz (vertical dashed red line) and A 2 r = 1.5P a 2 /s. The analytical prediction match the experimental measurements (green crosses, experiment CIP-1) well. On the inset we show the PSD for experiment CWR-1.
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