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In this letter we give experimental grounding for the remarkable observation made by Furuberg
et al. in Ref. [1] of an unusual dynamic scaling for the pair correlation function N(r, t) during the
slow drainage of a porous medium. The authors of that paper have used an invasion percolation
algorithm to show numerically that the probability of invasion of a pore at a distance r away and
after a time t from the invasion of another pore, scales as N(r, t) ∝ r−1f

(
rD/t

)
, where D is the

fractal dimension of the invading cluster and the function f(u) ∝ u1.4, for u� 1 and f(u) ∝ u−0.6,
for u � 1. Our experimental setup allows us to have full access to the spatiotemporal evolution
of the invasion, which was used to directly verify this scaling. Additionally, we have connected
two important theoretical contributions from the literature to explain the functional dependency of
N(r, t) and the scaling exponent for the short-time regime (t � rD). A new theoretical argument
was developed to explain the long-time regime exponent (t� rD).

PACS numbers: 47.55.-t, 47.15.gp, 64.60.Ht

The slow drainage of a porous medium is characterized
by a rich intermittent dynamics of invasion bursts, typ-
ically occurring at several time and length scales [2–4].
Similar intermittent activity is observed in a wide vari-
ety of physical, biological and social systems [5–18]. The
ubiquity of intermittent phenomena is an indication that
its origin is not expected to depend on specific system-
dependent details. It is generally associated to the com-
petition between an adaptive external driving force and
an internal random resistance against that force [3, 19].
Energy is slowly injected by the external force during
stable periods which are abruptly interrupted by sudden
dissipative events occurring at a much faster time scale
[20–22]. In the case of two-phase flows in porous media,
the external force could come from a syringe pump or an
applied pressure difference across the sample, while the
internal resistance is caused by the pore-throats that are
invaded during the flow [2–4].

The balance between viscous, capillary and gravita-
tional forces [23–26] generates several interesting inva-
sion patterns in porous media flows, ranging from com-
pact invasion [27–29] to fractal structures [30–33]. Al-
though the pattern morphology has been well studied,
very few studies have focused on its dynamical features
[3, 4, 19, 34, 35], due in part to the difficulty of simultane-
ously analyzing detailed invasion data in both temporal
and spatial domains. Single pore invasion events in rocks
have only recently been imaged in real-time via modern
X-ray microtomography techniques [34, 36], but extend-
ing those techniques to study pattern formations in rocks
at the larger scales, while keeping single-pore resolution,
remains a challenge.

The experimental constraints fueled the development
of several numerical algorithms. Invasion percolation
(IP) [37, 38], diffusion-limited aggregation (DLA) [30, 39,
40] and anti-DLA [40] have been employed in the simula-
tion of, respectively, slow drainage (capillary fingering),
fast drainage (viscous fingering) and stable imbibition
(compact growth) [41]. In the standard IP model the in-
vasion happens one pore at a time, always at the widest
available pore-throat (with the smallest capillary pres-
sure threshold). Using an IP model, Furuberg et al. [1]
have addressed the following question: given that a ref-
erence pore located at position r0 is invaded at a time
t0, what is the probability that a second pore located at
position r1 is invaded at some later time t1? After the
vanishing of transitional effects, the probability should
only be a function of the relative quantities r = |r1 − r0|
and t = t1 − t0. The authors have defined a pair cor-
relation function N(r, t), such that N(r, t)drdt gives the
answer to the question, i.e., it is the probability of in-
vasion of a pore located between distances r and r + dr
and at a time between t and t + dt with respect to the
invasion of the reference pore. By considering theoretical
arguments related to the normalizaion of N(r, t) and the
connection between N(r, t) and the pair connectedness
function, the authors have suggested the form

N(r, t) = r−1f

(
rD

t

)
, (1)

where the dynamic exponent D corresponds to the fractal
dimension of the invaded front [42, 43]. The IP simula-
tions employed in that study confirmed the validity of
Eq. (1) numerically and found out additionally that the
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FIG. 1. (color online) Diagram of the experimental setup. On
top we show an image of the flow and in the detail a zoom
in section of the porous network, the defending wetting phase
(liquid, blue) and the invading non-wetting phase (air, white).

function f(u) presents the unusual scaling

f(u) ∝

{
u1.4 if u� 1

u−0.6 if u� 1
. (2)

In the current work, we have demonstrated these results
experimentally, almost 30 years after the original findings
of Furuberg et al. [1].

Fig. 1 shows a diagram of the experimental setup.
A quasi-2D porous network is formed by a mono-
layer of glass beads, with diameters a in the range
1.0mm < a < 1.2mm, randomly placed in the gap of a
modified Hele-Shaw cell. The beads are kept in place by
a pressurized cushion on the bottom plate of the cell. The
porous medium is initially saturated with a viscous liquid
(wetting phase), composed of glycerol (80% in weight)
and water (20% in weight), having kinematic viscosity
ν = 4.25·10−5 m2/s, density ρ = 1.205 g/cm3 and surface
tension γ = 0.064 N/m (see Ref. [44] for additional de-
tails). The outlet channel is connected to a syringe pump,
from which liquid can be slowly withdrawn at a constant
rate of q = 0.0050 ml/min ≈ 0.14 pore/s, thus assuring
that the dynamics happens in the capillary regime, in
which capillary forces dominate over viscous ones [33].
Air (non-wetting phase) enters from a width-spanning in-
let channel, which is kept open to the atmosphere. Once
the capillary pressure (difference in pressure between the
non-wetting and wetting phases) is large enough to over-
come the threshold associated with a given pore-throat,
the invasion of one or more pores happens, and viscous
pressure drops are triggered within the medium, thus dis-
sipating energy [3, 45]. Pictures are taken every 34 s
which leads to an average number of K ≈ 4.7 invaded
pores per image (average pore invasion time of tp = 7.2 s).
The capillary number is, Ca = ρνq/Σγ = 6.1 · 10−7,
where Σ = 1.1 ·10−4 m2 is the cross section of the model.

FIG. 2. (color online) Spatiotemporal map of the invasion
up to breakthrough (the average flow direction is from left to
right). The colormap shows the elapsed time for the invasion
of a given pore (in seconds). The experiment lasts ≈ 33h.

The choice of a slow constant withdrawal rate reflects
the fact that in the IP algorithm employed in Ref. [1],
viscous pressure drops are neglected and exactly 1 pore
(numerical site) is invaded per time step.

Fig. 2 shows the spatiotemporal map of the invasion.
The flow is from left to right but statistically similar re-
sults should be found if the flow were in the opposite
direction since the model is prepared randomly. The ex-
periment stops at breakthrough, i.e., when the air phase
first percolates (equivalent to the infinite cluster in IP).
Only the central 90% of the model’s length (inlet–outlet
direction) is considered, in order to avoid boundary ef-
fects which have been observed close to the inlet and
outlet [44]. The information content in this map is sim-
ilar to that in the IP simulations, namely the position
and invasion times of all pores, thus allowing the compu-
tation of the pair correlation function N(r, t). In order
to precisely locate the pores, we performed a Delaunay
triangulation [46] of the points marking the centers of all
glass beads and then identified the centroid of each De-
launay triangle as a pore center. In the IP simulations
[1], the time t is naturally measured as the number of
invaded pores, whereas in our experiments it is given by
the image number tI . The conversion between tI and t
is tI = t/K, where K is the average number of pores
invaded per image. This linear conversion works best for
large times (several pore invasions) since the intermit-
tency of the Haines jumps [2] is relevant for short times.

For a given reference pore, one can produce a his-
togram of the euclidean distances r of all pores invaded
between times tI and tI + ∆tI after its own invasion. By
treating each invaded pore in the system as a reference for
the production of one such histogram and adding them
up, we obtain the function N(r, t) (apart from a nor-
malization factor). We have chosen ∆tI = 2 images to
guarantee that a small number of pore invasions (given
on average by ∆tIK ≈ 9.4) would be present on each his-
togram. Different values of ∆tI in the range 1 ≤ ∆tI ≤ 5
were tested and the results presented did not change sig-
nificantly, since the experiment duration (≈ 33 h) is much
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FIG. 3. (color online) Pair correlation function N(r, t) as a
function of the distance r for 9 times t (shown in the legend).

longer than the time between images (≈ 34 s). It is worth
mentioning that, due to the fast nature of the Haines
jumps [2], if one wants to capture the exact invasion time
of a pore, one would need to rely on high-speed imaging,
which would then dramatically constrain the total dura-
tion of the experiment. Such level of accuracy was not
needed in this study.

The measured function N(r, t) is shown in Fig. 3 for 9
fixed values of time t/K = tI (shown in the legend). The
distance r is measured in pore length units (euclidean
distance divided by a characteristic interpore distance
rp = 0.92 mm). N(r, t) presents a peak indicating a max-
imum probability of invasion at a certain relative distance
rt which increases with time (since the air-liquid inter-
face had more time to move, pores farther away can be
invaded). The validity of Eq. (1) is proved by using this
equation to collapse the data from Fig. 3. The result,
shown in Fig. 4, indicates that the product N(r, t) r is
indeed a function only of the reduced variable u = rD/t
and not of r and t separately (the fractal dimension of the
invasion cluster was measured to be D = 1.75). This con-
firms the validity of the dynamic scaling in Eq. (1). The
fact that the product N(r, t)r is peaked around rD/t = 1
(with r and t measured in terms of pore length and av-
erage pore invasion time units) indicates that the most
probable place for invasion occurs at a distance r = t1/D,
as noted in [1]. If one chooses another set of measuring
units, the maximum changes to rDp /tp, where rp and tp
are the typical interpore distance and pore invasion time
in the new units. The scaling behavior of N(r, t) could
not be easily inferred from the separate curves in Fig. 3,
due to the limited statistics, but becomes more visible af-
ter the data collapse in Fig. 4. Both scaling regimes, u1.4

for u � 1 and u−0.6 for u � 1, are well reproduced by
the experiments (guide-to-eye thick solid lines). Indeed,
even the deviation from the scaling observed as the drop-
ping curves for large times and u� 1 (due to finite-size

FIG. 4. (color online) Data collapse for the product N(r, t)r
as a function of the reduced variable u = rD/t for 9 different
fixed times (see legend). The scaling regimes for u � 1 and
u � 1 as reported in Ref. [1] (thick solid lines) and their
theoretical predictions (thick dashed lines) are also shown.

effects) are also in agreement with the simulations in [1].
Next we analyze the origin of this scaling behavior.

In the work of Roux and Guyon [47], the distribution of
temporal avalanches in the time series of threshold values
from an IP model was used to propose an analytical pre-
diction for the unusual scaling presented in Eqs. (1) and
(2). Later on, Maslov [48] pointed out some inconsisten-
cies in the assumptions used in Ref. [47], which interfered
with their estimation for the exponents in Eq. (2). Never-
theless, the reasoning in Ref. [47] to justify the functional
form behind Eqs. (1) and (2) still applies. By taking into
account the results of Maslov [48], into the analysis per-
formed by Roux and Guyon [47], we obtain a consistent
value for the short-time exponent in Eq. (2) (for u � 1
or t� rD). The analysis for the long-time exponent (for
u � 1 or t � rD) will require some additional consider-
ations, as shown later.

Following Ref. [47], for a given time interval t, the dis-
tribution of backwards temporal avalanches Θ (as defined
in [47] and also in [48]) that are larger than t is assumed
to follow the power law

Pt(Θ) ∝ 1

t

(
Θ

t

)−τallb

H (Θ− t) , (3)

where H(x) = 1 for x > 0 and H(x) = 0 otherwise.
The dependency on t in the prefactor follows from the
normalization in the interval t < Θ <∞ [47]. We remind
that in the IP model, the time corresponds to the size
(mass) of the invaded cluster, measured in number of
pores. For a cluster of size Θ, the distribution QΘ(r) of
distances r between pores in that cluster is also assumed
to follow a power law,

QΘ(r) ∝ Θ−(1+α)/D rαH
(

Θ1/D − r
)
, (4)
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for r in the interval 0 < r < Θ1/D, where again the
dependency on Θ in the prefactor is obtained by the nor-
malization in the interval 0 < r < Θ1/D [47]. The pair
correlation function N(r, t) is then given by

N(r, t) =

∫ ∞
0

Pt(Θ)QΘ(r)dΘ , (5)

which, using Eqs. (3) and (4) leads to

N(r, t)r = f

(
rD

t

)
=


(
rD

t

) 1+α
D

if rD

t � 1(
rD

t

)1−τallb

if rD

t � 1

. (6)

The insightful argumentation provided by Roux and
Guyon [47] naturally generates the correct functional
form of Eqs. (1) and (2). Nevertheless their analy-
sis for the numerical values of the exponents presents
some inconsistent assumptions, as noted by Maslov [48].
The exponent τallb characterizing the distribution of all
backwards avalanches was shown [48] to be given by
τallb = 3 − τ , where τ = 1 + (De − 1/ν) /D is the clus-
ter size distribution exponent (first derived in [49], and
verified experimentally in [50]), D and De are respec-
tively the fractal dimensions of the growing cluster and
its boundary and ν = 4/3 is the exponent characterizing
the divergence of the correlation length [38, 43]. Using
the values D = 1.82 and De = 4/3 (external perimeter
growth) [38, 43], we find that the short-time exponent is

1−τallb = −1+

(
De − 1/ν

D

)
=⇒ 1−τallb = −0.68 , (7)

which is consistent with our measurements and very close
to the value −0.6 reported in Ref. [1], see Fig. 4.

The computation of the long-time exponent brings ad-
ditional challenges due to the difficulty in estimating the
exponent α in Eq. (4) [47]. With that in mind, we take
an alternative approach here. Consider the situation in
which a pore-throat that gives access to a pore at posi-
tion r1 has been reached by the liquid air interface at a
time t∗. From that moment on, that pore-throat and the
pore-body at r1 are available to the invasion. Let us fo-
cus here on the case in which this particular pore-throat
has a relatively high value of capillary pressure threshold,
such that its invasion will typically take a long time to
occur. This type of event lies in the long-time regime, for
which t � rD, and we are interested in addressing their
relative probability of occurrence.

For the invasion of the pore at r1 to happen exactly
at time t = t1, a set of two well defined conditions must
be verified at that time: 1) the capillary pressure must
reach a historically high value since time t = t∗ and 2)
the pore-throat at r1 must have the lowest value of cap-
illary pressure threshold (i.e., be the widest pore-throat)

among those that belong to the liquid air interface. Let
us initially address condition 1). Consider the capillary
pressure signal as the discrete time series formed by the
sequence of the capillary pressure thresholds p (t) asso-
ciated with the invasion of successive pore-throats. If
the system is in a statistical steady state (say, the flow
has been going for a long time and happens in a long
rectangular cell of large but finite width), p (t) fluctuates
around some well defined average and the historical max-
imum is equally likely to occur anywhere in the interval
t∗ < t ≤ t1. The probability that it occurs at the extreme
point t = t1 is then proportional to 1/ (t1 − t∗). Once
the capillary pressure reaches the historical maximum at
t = t1, the invasion at r1 can happen. Next, we consider
condition 2) and calculate the probability that the par-
ticular pore-throat in question is the one with the lowest
threshold. Since the capillary pressure at time t = t1
has reached a historical maximum, it is the first time
that the pore-throats on the interface have been tested
against such a high value of capillary pressure, and at
this pressure they all have the same invasion probability.
The number of sites NI that belong to the interface of
the cluster that has grown since time t = t0 (when the
reference pore at r0 was invaded) scales as NI ∝ tDe/D.
The probability that the particular pore-throat at r1 is
the widest is simply given by 1/NI . (We have made the
assumption that the invasion of the pore at r1 does not
depend on invasion events that happened earlier than the
invasion at r0. In the limit t = t1− t0 →∞, this approx-
imation becomes exact). By considering the probability
of simultaneously satisfying conditions 1) and 2), we have

N(r, t) ∝ 1

(t1 − t∗)
1

tDe/D
≈ 1

tξ
, (8)

where ξ = 1 + De/D and, in the limit of large times,
t1 − t∗ ≈ t1 − t0 = t. The r dependence in the previous
equation is obtained by considering again Eq. (1). Since
the product N(r, t)r is a function only of the reduced
variable rD/t, we have that in the long-time regime,

N(r, t) ∝ 1

r

(
rD

t

)ξ
. (9)

Using the literature values D = 1.82 and De = 4/3 [38,
43], we find ξ = 1.73. This value is higher than the
exponent ξ = 1.4 reported by Furuberg et al. [1], but
is consistent with the experimental data, particularly in
the extreme left region of Fig. 4, where t � rD and the
approximations of the model should hold best.

After the aged (hard) site at r1 is invaded, we could in
principle have the invasion of easier pores in its vicinity
that would also contribute to the counting in the long-
time regime ofN(r, t). Although the argument made here
counts explicitly only the aged (hard) sites, the invasion
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of easier ones in the long-time regime is conditioned to
the prior invasion of an aged site and therefore should
not change the temporal scaling of Eq. (8).

In this work we have given experimental validation to
the unusual dynamic scaling for the pair correlation func-
tion N(r, t) during the slow drainage of a porous medium,
first observed by Furuberg et al. [1] nearly 30 years ago.
Although this important result has been reproduced in
other numerical works [51], to the best of our knowledge,
the experimental verification presented here is new. By
linking two important contributions to the literature, the
works of Roux and Guyon [47] and Maslov [48], we found
out that both approaches lead to the same predictions
for the short-time exponent of N(r, t), which agrees well
with our measurements. A new theoretical explanation
for the long-time exponent has also been provided, with
good agreement with the experimental data. Possible
extensions of the work include other flow regimes and
geometries (e.g. radial injection). While N(r, t) proba-
bly varies for faster flows, it possibly remains unchanged
for slow drainage in a 2D radial geometry, once transient
effects from the point inlet are dissipated.
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