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We perform experiments where air is injected at a constant overpressure Pin, ranging from 5 to
250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup
allows us to explore compacted configurations by preventing decompaction at the outer boundary,
i.e. the cell outlet has a semi-permeable filter such that beads are stopped while air can pass.
We study the emerging patterns and dynamic growth of channels in the granular media due to
fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify
4 qualitatively different flow regimes, depending on the imposed overpressure, ranging from no
channel formation for Pin below 10 kPa, to large thick channels formed by erosion and fingers
merging for high Pin around 200 kPa. The flow regimes where channels form are characterized by
typical finger thickness, final depth into the medium and growth dynamics. The shape of the finger
tips during growth is studied by looking at the finger width w as function of distance d from the tip.
The tip profile is found to follow w(d) ∝ dβ , where β = 0.68 is a typical value for all experiments,
also over time. This indicates a singularity in the curvature d2d/dw2 ∼ κ ∼ d1−2β , but not of the
slope dw/dd ∼ dβ−1, i.e. more rounded tips rather than pointy cusps, as they would be for the case
β > 1. For increasing Pin, the channels generally grow faster and deeper into the medium. We show
that the channel length along the flow direction has a linear growth with time initially, followed by
a power law decay of growth velocity with time as the channel approaches its final length. A closer

look reveal that the initial growth velocity v0 is found to scale with injection pressure as v0 ∝ P
3
2
in,

while at a critical time tc there is a cross-over to the behavior v(t) ∝ t−α where α is close to 2.5 for all
experiments. Finally, we explore the fractal dimension of the fully developed patterns. For example
for patterns resulting from intermediate Pin around 100-150 kPa, we find that the box-counting di-
mensions lie within the range DB ∈ [1.53, 1.62], similar to viscous fingering fractals in porous media.

PACS numbers: 83.60.Wc, 81.05.Rm, 47.20.Ma

I. INTRODUCTION

Several processes in engineering, industry and earth
sciences involve pneumatic (gas) or hydraulic (liquid)
fracturing of the soil, which occurs when fluids in the
ground are driven to high enough pressures to deform,
fracture and generate porosity in the surrounding soil or
rock. For example in environmental engineering, pneu-
matic or hydraulic fracturing is done to enhance the re-
moval of hazardous contaminants in the vadose zone (soil
remediation) [1, 2], for soil stabilization injection to en-
sure a solid foundation for structures [3], or in packer
tests for project planning, risk assessment and safe con-
struction of dams and tunnels [4]. In industry, hydraulic
fracturing is done to enhance oil and gas recovery [5–7],
CO2 sequestration [8], water well- and geothermal en-
ergy production [9–11]. Related natural processes such
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as subsurface sediment mobilization are studied in earth
sciences, where sand injectites, mud diapirs and mud vol-
canoes are formed due to pore-fluid overpressure [12–17].
For example, the Lusi mud volcano in Indonesia is the
biggest and most damaging mud volcano in the world
[18], having displaced 40 000 people from their homes,
and has been active since May 2006. There is an on-
going debate about how it was triggered, i.e. whether it
formed naturally by an earthquake or geothermal process
[19–22], or that it is a man-made consequence of a nearby
drilling operation by a company probing for natural gas
[23].

Fluid injections into granular media has been exten-
sively studied in laboratory experiments and simulations,
where a common method to simplify the problem is to
confine the experiment within a quasi-2-dimensional ge-
ometry, i.e. a Hele-Shaw cell. In [24, 25], the decom-
paction, fluidization regimes, and coupling between air
and granular flow was studied in dry granular media in
open circular and rectangular cells during air injection
at different overpressures. Similar behavior was seen for
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liquid saturated granular material injected with the same
liquid [26], so it is reasonable to assume that studies of
pneumatic fracturing also have qualitative relevance to
hydraulic fracturing. The two cases are similar in the
sense that no interface tension and viscosity difference
exist between the invading and interstitial fluids. In sys-
tems where gravity is felt significantly, as in inclined or
vertical systems, the density of the fluid is a notable dif-
ference, and buoyancy forces on the grains are significant
for liquids, but usually negligible for gases. In horizon-
tal layers and thin compacted systems, where gravity is
perpendicular to the system and plays no major role on
the horizontal motion of such quasi two-dimensional sys-
tems, the main difference in an experiment where a liquid
is used instead of a gas is that the compressibility is lower
such that the overpressure imposed at the boundary dif-
fuses much faster [27]. However, near the invading chan-
nels, the pressure gradients are found to be qualitatively
similar in both cases [28], leading to similar growth mech-
anisms for the channels [26]. Further, the compressibility
felt in water on the scale of a ∼ 100 m reservoir is similar
to the compressibility felt in air on the scale of a∼ 1 m ex-
periment, and therefore the effect of pressure diffusion is
included when air is used in ∼ 1 m model reservoirs. An-
other difference is that for a given pore pressure gradient
and grain configuration (permeability), the fluid velocity
between the grains is inversely proportional to the vis-
cosity force. The stress thresholds allowing to overcome
friction with the confining plates depends mainly on the
solid fraction, and does not change in order of magni-
tude between cases where the interstitial fluid is a gas or
a liquid [26]. Consequently, for similar channel geome-
tries and grain packings, the pressure difference between
inlet and outlet that lead to grain motion are similar in
the two systems. However, the grain mobility is observed
to be essentially inversely proportional to the pore fluid
viscosity, i.e. the observed dynamics are similar in terms
of a reduced time corresponding to time multiplied by
the pore fluid viscosity [26]. The patterns observed are
also close to each other [26]. The patterns formed during
fluid injection into a granular medium, and evolution of
the fluid-solid interface, have been found to resemble Dif-
fusion Limited Aggregation patterns (DLA) and viscous
fingering [29], a fingering instability that occurs when
a less viscous liquid is injected into a porous medium
containing a more viscous liquid with which it cannot
mix [30]. As mentioned in [25], the main difference be-
tween the viscous- and granular fingering instabilities is
the absence of interfacial tension in the granular case.
For example, the stabilizing forces in viscous fingering
are surface forces, while in granular fingering it is the
build-up of friction between particles and against the con-
finement. However, both instabilities are driven by the
pressure gradient across the defending medium, which is
largest on the longest finger tips, making more advanced
fingers grow on expense of the less advanced ones. A no-
table difference between air injection into a dry granular
medium and a saturated one is that the overpressure ini-

tially diffuses into the packing in the dry case, while it
is already a steady-state Laplace field over the defending
liquid in the saturated case. This difference arises from
the compressibility of the defending phase.

Further, during air injection into liquid saturated gran-
ular media and suspensions, the characteristics of emerg-
ing patterns and behavior of the media depend on injec-
tion rate, and the competition between mobilized friction
and surface forces [31–44]. For example, one observes
flow regimes such as two phase flow in rigid porous me-
dia [40–44], capillary fracturing, stick-slip bubbles and
labyrinth patterns [31–39]. In the opposite case, dur-
ing liquid injection into dry granular media [45], for a
given imposed flux, the flow behavior goes from stable
invasion towards saturated granular fingers for increas-
ing flow rate and viscosity of the invading fluid. These
fingering patterns are thought to form due to the per-
meability contrast between the channels empty of grains
and the granular medium, and are in this sense similar to
viscous fingering, with a lower viscous pressure drop in
empty channels than in the porous medium, as in classi-
cal viscous fingering systems where the viscosity contrast
leads to a similar effect, i.e. where the invading fluid has
a lower viscosity than the invaded one [30, 42, 46]. An
important difference with classical viscous fingering is the
presence of solid stresses and solid friction in the granular
material. This is a stabilizing phenomenon absent from
systems with two Newtonian fluids: A threshold arising
from friction with the system boundaries has to be over-
come in viscous fluid drag to allow for grain motion. The
same trend is shown in numerical studies for gas injection
into granular media containing the same gas [47].

Granular fingering instabilities have also been studied
in closed vertical cells, where gravity drives the flow as
heavier beads fall down from a granular layer at the top
of a lighter fluid layer [48–53]. When the beads detach
at the front, they form fingers of falling granular mate-
rial surrounding finger-like bubbles of rising fluid. These
fingers are found to coarsen over time until they reach
a typical wavelength depending on the interstitial fluid
and bead size.

Typically, in all processes involving fluid injection into
granular media, there are flow regimes where the medium
has either solid-like behavior or fluid-like behavior. This
is one of the special properties of granular materials,
which also show gas-like behavior in some cases [54].

In this paper, we present an experimental study on flow
regimes and pattern formation during air injection into
confined granular media, while the surrounding deforma-
tion and pore-pressure evolution is studied in a related
article [28]. More specifically, we inject air at constant
overpressure into a dry granular medium inside a Hele-
Shaw cell, where air escapes at the outlet while beads
cannot. The motivation of this setup is to study the gran-
ular Saffman-Taylor instability in compacting granular
media, and the coupling between compaction and flow.
A similar, but smaller system has been studied in numer-
ical simulations by Niebling et al. [47, 55]. During air
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injection at different overpressures they found that frac-
tures grow faster, longer, as well as coarsen with increas-
ing injection pressure. There, the fracture propagation
velocity is roughly constant initially and scales with the
square root of the injection pressure. Further, by vary-
ing the interstitial fluid viscosity, two flow regimes were
identified; one with finely dispersing bubbles and large
scale collective motion of particles, the other one with
build-up of a compaction front and fracturing. These
flow regimes depend, respectively, on whether the par-
ticles are primarily accelerated by the imposed pressure
gradient in the fluid, or interactions through particle con-
tacts. This in turn depends on the diffusivity of the inter-
stitial fluid pressure in the granular medium. We analyze
our findings in light of these results, to investigate what
is similar and what is different in our roughly 10 times
larger cell with the same cell gap. As opposed to sim-
ilar experiments, with open outer boundary conditions,
after the flow compacts the medium there is no decom-
paction. We thus expect the material behavior (at high
enough overpressure to displace beads) to have a transi-
tion from fluid-like to solid-like during experiments, and
that eventual invasion patterns will initially resemble vis-
cous fingering in the fluid-like regime, crossing over to
stick-slip fracture propagation as the medium becomes
more solid-like, until it reaches a final structure as the
compacted medium has reached a completely solid-like
behavior. What is less obvious, is how the flow patterns
in this system change with the injection pressure. By
varying the imposed overpressure, we identify and de-
scribe the different flow regimes. Due to the confined
nature of the experiment, it is thought to be a labo-
ratory analog to pneumatic and hydraulic fracturing of
tight rock reservoirs where the free boundary at the sur-
face is very distant from the injection zone. Therefore,
new insight into this problem may have industrial appli-
cations in addition to increase the understanding of flow
and transformations in porous media.

It is also worth to mention a closely related project
[56], where acoustic emissions recorded during the ex-
periments are analyzed. There, it is shown that different
stages of the invasion process can be identified acousti-
cally in terms of characteristic frequencies and distinct
microseismic events.

II. METHODS

A. Experimental setup

The experimental setup is a linear Hele-Shaw cell, par-
tially filled with Ugelstad spheres [57], i.e. dry, non-
expanded polystyrene beads with a diameter of 80 µm
± 1 %. The cell is made out of two rectangular glass
plates (80×40×1 cm in length, width and thickness re-
spectively) clamped together on top of each other with an
aluminum spacer controlled separation of 1 mm. A cell
volume (76×32×0.1 cm) is formed between the plates by
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FIG. 1. Sketch of the experimental setup. (a) Top-down
view of the prepared cell: The granular medium is confined
inside the cell by three impermeable boundaries and an air-
permeable boundary on the outlet side. The granular medium
is placed against the outlet boundary such that it has a linear
interface against a region empty of beads on the sealed inlet
side, where pressurized air can be injected. (b) Side view
of the setup showing the high speed camera placed above.
The glass plates are clamped together with aluminum framing
while the cell gap is controlled with spacers, which are not
shown here.

an impermeable sealing tape as shown in figure 1, with
one of the short sides left open (outlet). Next, beads are
filled into the cell by pouring them through the open side
until the packing occupy about 90 % of the cell volume,
followed by closing the open side with a semi-permeable
filter (a 50 µm steel mesh) to keep beads inside the cell
while allowing air to escape. The cell is then flipped ver-
tically to place the granular medium against the semi-
permeable outlet by using gravity, resulting in a volume
packing fraction of approximately ρs = 0.44 ± 0.04, as-
sumed to be more or less uniform across the medium
(in a quasi-2D system of ∼ 10 beads thickness, the con-
fining plates cause a frustrated system with lower pack-
ing fraction [58], as observed previously in similar sys-
tems where ρs = 0.44 [24] and ρs = 0.42 [47]). This
leaves a volume empty of beads on the sealed side of the
cell, opposite to the semi-permeable outlet, with a lin-
ear air-solid interface. An inlet hole on the sealed side
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FIG. 2. Example of image processing. (a): The initial granular medium, (b): A snapshot during the experiment, (c): The
resulting binary image where the pattern has been segmented. The segmentation is done by setting all pixels having 30 % less
grayscale intensity in a snapshot compared to the initial image to the value 1 while the other pixels are set to the value 0.

of the cell is connected to a pressurized air tank which
lets us inject air at a constant and maintained overpres-
sure, Pin = Pabs,in−P0 (absolute pressure - atmospheric
pressure), ranging from 5 to 250 kPa. This will force
air to move through the granular medium, towards the
semi-permeable outlet, where Pabs,out = P0 = 100 kPa,
or in terms of overpressure above the atmospheric one,
Pout = 0.

During experiments, the prepared cell is positioned
horizontally. A selected overpressure is set at the pres-
sure tank outlet and verified by a Honeywell pressure
sensor with an accuracy of ±4 kPa. The tubing between
the pressure tank and the cell inlet is equipped with an
electronic valve such that the air injection is started with
a digital trigger signal. Positioned above, with a top-
down view of the cell, a Photron SA5 high speed camera
is started with the same trigger signal, recording the air
invasion at a framerate of 1000 images/s and a resolu-
tion of 1024×1024 pixels (1 pixel ≈ 0.7 mm in the cell).
Light from a 400 W Dedolight studio lamp provides uni-
form and flicker-free illumination onto the white beads
of the medium. A small fraction of the beads (< 10 %)
are dyed black with ink to create tracer particles that
are used for tracking frame-to-frame deformation in the
granular medium, which is studied in another article [28]
(note that in figures 2, 3 and 6, there are some darker
areas creating patterns in the initial packing. This is
due to a higher concentration of dyed beads, which is re-
lated to the initial preparation process and the packing
method. It does not seem to have any influence on the
experiments). The experiments are run for 10 s, but typ-
ically the fracturing and/or compaction of the granular
medium takes less than 5 s.

B. Image processing

In analysis of the images from the high speed camera,
we investigate flow regimes, characteristics and evolution
of the fingering patterns formed. We perform image pro-
cessing with Matlab to obtain the information contained
in the images. Quantitative analysis of the invasion pat-
terns is done by converting the grayscale raw data into bi-
nary images, i.e. images with either black or white pixels,
where the white pixels (value=1) represent the pattern
and the black pixels (value=0) represent the background,

or the bead-filled region. We obtain such binary image
sequences from the raw data by thresholding each frame
with the initial image, such that the pixels having a value
less than 30% of the corresponding initial value becomes
white and the rest remain black, as shown in figure 2 (c).
In addition, once a pixel is invaded (and made white) it
will remain white for the rest of the experiment to cor-
rect for mobilized beads flowing inside channels, which
occurs due to erosion and fingers merging in some exper-
iments. From the binary images we extract information
such as invasion depth over time, average finger thickness
as function of depth, and fractal dimensions.

III. RESULTS

Depending on injection pressure (and friction related
to packing fraction) we observe the granular medium to
exhibit either a solid-like behavior, or a transition from
fluid-like to solid-like behavior during air injection. In the
solid-like regime, there is no apparent deformation (bead
displacements), and the air is reaching the cell outlet by
seeping through the network of pores between beads. On
the other hand, in the fluid-like regime we observe sig-
nificant deformation, where beads are displaced by an
amount corresponding to several bead sizes, by momen-
tum exchange between air molecules and beads. At suf-
ficient overpressure the granular medium has a behavior
much like a viscous liquid being invaded by air, as the flow
opens up channels empty of beads, a Saffman-Taylor like
instability [30] resulting in dendritic invasion patterns.
A stabilizing mechanism of this flow instability is the
build-up of friction and stress chains between beads dur-
ing compaction, so due to the boundary conditions in our
experiments we always end up with a solid-like medium
towards the end of an experiment. Since the channels
empty of beads display patterns with finger-like features,
and that the air-solid interface expands similarly to a fin-
gering instability, we refer to the branches of the chan-
nels as fingers when we characterize the patterns. At the
same time, the fingers have a long and slender morphol-
ogy which is fracture-like, and during growth frictional
”bonds” between the compacting grains and the con-
fining plates are broken in order to open the channels.
Therefore we consider the channel growth as fracturing,
although there are no cohesive bonds broken as in the
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TABLE I. The flow categories with related pressure values;
mean overpressure within two standard deviations Pin ± 2σ,
as well as the number of experiments N analyzed per category.

Category Pin ± 2σ [kPa] N
1 9± 5 3
2 26± 18 5
3a 64± 50 5
3b 110± 44 6
4a 134± 43 10
4b 213± 50 4

traditional sense of fracturing.

A. Flow regimes

To explore the various flow regimes we have systemat-
ically varied the air injection pressure within the range
of 5 kPa to 250 kPa, and we have identified 4 quali-
tatively different flow regimes occurring in this range.
Within certain flow regimes, the pattern characteristics
gradually change with increasing injection pressure, so
we have grouped the experimental results into six cat-
egories defined by final pattern characteristics and how
the channels expand. The categories are chosen in order
to obtain average results from similar experiments, and
are defined in the list below. Typical final structures are
shown for each category in figure 3, and the associated
range of injection pressure is listed in table I. Videos of
channels formed in categories 3a,b and 4a,b are found in
the supplementary material [60–63].

• Category 1 - No deformation:
The porous medium appears rigid (solid-like), with
no significant bead displacement or invasion pat-
tern formed. This is flow regime #1, where the pore
pressure gradient does not overcome the threshold
for bead displacement which arise from granular
stress, friction between the beads and bead-plate
friction.

• Category 2 - Initial compaction without channels:
The medium is initially compacted during a col-
lective displacement of beads towards the outlet
side, without the formation of invasion channels.
This is flow regime #2, where the pore pressure
gradient is initially high enough to overcome the
granular stress threshold arising from the friction
with the plates. Then, as the pore pressure dif-
fuses into the medium, the pore pressure gradient
drops below the bead displacement threshold and
the deformation stops before channels are formed.
During the short time beads are displaced, they are
primarily moved by the pore pressure gradient, i.e.
stress from the fluid injection transmitted through
solid contacts (compacting zone) does not signifi-
cantly extend beyond the influence of the overpres-

sure (skin depth), leading to collective bead dis-
placement rather than the formation of fractures
[47].

• Categories 3a and 3b - Thin branched channels are
formed:
After the initial compaction, a dendritic invasion
pattern is formed with an average finger thickness
less than 2 cm. This is flow regime #3, where
the pressure gradient is high enough to deform the
medium, also after the compacting zone reaches
beyond the influence of the pore pressure gradi-
ent. This leads to random perturbations in the air-
solid interface and fracture channels begin to form
[47]. At later times, the channel growth stops as
the medium is compacted, i.e. the solid stress and
friction increase such that the bead displacement
threshold eventually becomes too large for further
deformation. In this flow regime, the channels be-
come longer with increasing injection pressure, so
we define arbitrarily (in order to perform statisti-
cal analyses on groups of experiments) category 3a
as when the final length of the channel is less than
50% of L = 70 cm, the initial length of the granular
medium, and category 3b as when the final length
of the channel is more than 50% of L.

• Categories 4a and 4b - Branched channels are
formed and eroded:
After the initial compaction, a long dendritic inva-
sion pattern is formed (as in category 3b) with a
main channel thicker than the branch fingers, due
to erosion inside the channel. This is flow regime
#4, where the high pressure gradients at the most
advanced channel tips cause a large enough fluid
flux inside the channels to re-mobilize beads along
with the flow. The width of the main channel
increases by erosion (i.e. motion of beads non-
perpendicular to the channel interface, but with a
major tangential component along it). For higher
pressures, side channels and branches may also
merge into the main channel. In this case, the high
flow velocity in the main channel might reduce the
fluid pressure slightly such that adjacent channels
grow into it. In this flow regime, the degree of ero-
sion increases gradually with increasing injection
pressure, so we define two categories. Category 4a
is defined as when there is only erosion, where the
average finger thickness of the final structure is typ-
ically between 2 cm and 4 cm. The erosion is not
persistent, and rarely occurs more than 15 cm be-
hind the most advanced tip. Category 4b is defined
as when there is both erosion and channels merging,
where the average finger thickness of the final struc-
ture is typically more than 4 cm. Erosion and chan-
nel merging is observed to occur even at distances
of 30-40 cm behind the most advanced tip. Again,
the erosion is not persistent and stops around the
point when the channel structure reaches 90 % of



6

20 cm

Pin = 6 kPa Cat. 1 Cat. 2 Pin = 30 kPa Cat. 3a Pin = 50 kPa 

Cat. 3b Pin = 100 kPa Cat. 4a Pin = 150 kPa Cat. 4b Pin = 200 kPa 

FIG. 3. Typical final structures per category, where the granular medium is gray and areas empty of beads are black, showing
that for increasing Pin the fingers become longer and thicker. A full-size figure of the patterns shown here is found in the
supplementary material [59].

its final length.

As one can expect due to the heterogeneous nature of
the grain packings, and the variability of the grain assem-
bly between experiments, a significant dispersion of the
resulting patterns is observed for experiments at similar
imposed pressures, and consequently, the pressure ranges
for the categories overlap (see table I). The distribution
of new growth dA behind the longest fingers at differ-
ent intervals is shown in figure 4 for typical experiments
in the categories 3a,b and 4a,b. The new growth dA
refers to the change in channel area between two succes-
sive snapshots. The new growth in figure 4 is found by
subtracting successive binary images A of the patterns
pixel by pixel, i.e. dA = A(t + ∆t) − A(t), where ∆t
is the time between snapshots where the channels grow
by 10 % increments of their final lengths (this method
of selecting ∆t is done in order to determine where the
channels are growing at different stages, and thus to plot
distributions of dA with comparable space integrals at
different times of the experiment, since the growth rate
decreases at later times). In the plots, the distribution of
new growth over the distance d behind the most advanced
finger is represented by a normalized value ndA(d), which
is the mass of the new growth dA at the depth d, divided
by the width of the cell such that ndA(d) is a dimen-
sionless number ∈ [0, 1] indicating the fraction of the cell
width at position d that contains new growth. For cate-
gories 3a,b and 4a the growth typically extends in a re-
gion of 10-15 cm behind the most advanced tip, whereas
for category 4b the growth extends along the whole chan-
nel length. The category 4b channels have a rapid and
large volume change compared to the other ones, with a
high air flow velocity resulting in erosion along the entire
channel. In addition, the rapid expansion could let the
channel pressure remain somewhat lower than Pin during
growth, such that when it stops the pressure rises to Pin.
If it is so, pressure gradients could form at the solid-air
interface far behind the most advanced finger explaining
the small growth there. The displacement of the granular

medium outside the channels is similar for all categories;
Beads are pushed in front of the channels and compacted
until the system is jammed. Beads are also pushed out
from the side of the advancing channel tips, opening up
for branches.

In the rest of the paper, we focus on the categories 3a,b
and 4a,b, which are in flow regimes #3 and #4 where
invasion channels are formed. For these flow regimes, we
discuss the typical characteristics of the patterns formed
and their growth dynamics.
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FIG. 4. Distribution of new growth over the distance behind the most advanced finger tip, at different intervals, during typical
experiments in categories 3a,b and 4a,b. The new growth is measured on intervals between successive snapshots where the
channel length grows 10 % of the final channel length for each snapshot. The large initial new growth (0 % - 10 %) in all plots
corresponds to the initial bulge that forms before the channeling instability begins. The plots indicate the depth of the active
growth zone, which goes from very narrow for category 3a (the growth is focused on the most advanced tips), to the whole
channel length for category 4b.

B. Finger characteristics

In figure 5 we see the average finger thickness w of the
final structures as function of depth x into the granular
medium, measured from the initial boundary position.
The average finger thickness of a pattern at a given depth
into the granular medium is found by intersecting the bi-
nary image of the pattern with a line perpendicular to
the average flow direction at that depth, and count the
total number of white pixels intersected. In other words,
the total width of the pattern is measured followed by
dividing it by the number of connected pixel groups, i.e.
the number of fingers. This is done for each experiment
and the results are averaged within each category. We see
that the patterns in categories 3a and 3b have roughly

the same thickness, averaging around 1.4 cm and is more
or less constant as function of depth. We do not observe
erosion inside these channels, so a finger thickness around
1.4 cm seems typical when there is no erosion. The cat-
egory 4a patterns show initially thicker fingers along the
first half of the structures, here with an average thickness
of 3.3 cm, which then decreases down towards the typ-
ical thickness seen for categories 3a and 3b. The larger
initial finger thickness is due to erosion inside the main
channel, meaning that beads near the channel walls are
re-mobilized in the flow direction after the initial growth,
making the channel grow perpendicular to it. As average
thicknesses here suggest, this effect typically increase the
channel width by an amount of around 2 cm. The cate-
gory 4b patterns typically have thick fingers throughout
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FIG. 5. Average finger thickness w as function of depth x into
the medium for the final structures, averaged per category
where channels occur. We see that for the structures in Cat.
4a (erosion) and Cat. 4b (erosion and finger merging) the
fingers are thicker - all the way up to the finger tip for Cat.
4b.

their entire length up to the tips, with an average of 5.3
cm. This thickness is achieved both by erosion inside the
main channel, and with fingers merging together. Af-
ter fingers merge and trap clusters of beads, these beads
are mobilized in the flow direction. In general we see an
increase in finger thickness and length for increasing pres-
sures. Some examples of both erosion and finger merging
are shown in figure 6 for an experiment with Pin = 200
kPa.

The plot in figure 7 shows the average number of fin-
gers Nf as function of depth x into the medium (found as
the number of connected pixel groups on vertical cross-
sections, as explained for figure 5) for the final struc-
tures in each category. For patterns in the categories 3a
and 3b, the number of fingers increase at lower depths
than for patterns in the categories 4a and 4b, where
there is a more pronounced initial region with fewer fin-
gers, crossing over to more fingers during the last half
of their length. This could indicate that channels with
few branches form when the friction is low compared to
the driving force ∝ ∇P , with a cross-over to the patterns
branching out with more fingers as the friction is becom-
ing comparable to the driving force due to compaction.
The sudden drop in Nf at the deepest parts of the pat-
terns is due to the finite size of the structures, where only
a few of the longest fingers reach.

To get a description of the shape of finger tips, we look
at how the finger thickness w grow as function of distance
d from the finger tip, which is found to follow a power
law within the length of the tip region [29] (where the
finger thickness increase with d before it saturates):

t = 480 ms

t = 680 ms

t = 370 ms

t = 425 ms

20 cm

t = 280 ms

t = 125 ms

t = 150 ms

t = 175 ms

t = 200 ms

t = 250 ms

280 370 425 480 680

5 cm

125 150 175 200 250

5 cm
time [ms]

time [ms]

FIG. 6. Snapshots from an experiment with Pin = 200 kPa,
showing examples of erosion and finger merging. The green
rectangle indicates the area cut out and enlarged in the bot-
tom right inset: Here we see erosion inside the channel as
beads (gray area) are removed over time. The white arrows
point at fingers that will merge into the main channel in
the following snapshot, carving out trapped clusters of beads
which are then mobilized in the flow direction. A full-size
version of this figure is found in the supplementary material
[64].

w(d) ∝ dβ . (1)

When w is plotted as a function of d in a log-log plot,
the slope β for w(d) within the tip region reveal informa-
tion about the shape of the tip; it has a more rounded
shape for β < 1, while it has a pointy cusp-shape for
β > 1. We have averaged w(d) over time for each exper-
iment, i.e. obtaining the average finger tip shape during
flow in each experiment. Figure 8 (a) shows a log-log
plot of the finger thickness as function of distance from
the finger tip, averaged per category. The collapsed av-
erage slopes from all experiments seem to fall along the
same line with β = 0.68, indicating more rounded finger
tips with the same shape in all experiments. However,
a purely round profile would give β = 0.5, so the fact
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FIG. 7. The average number of fingersNf as function of depth
x into the granular medium, averaged over the final patterns
in the same category. The plot indicates that for increasing
injection pressure, an initial region with fewer fingers extends
deeper into the medium before an increase in Nf towards the
final depth. This suggests more branching of the channels as
the beads become harder to displace. The sudden drop in Nf
close to the tips is due to the finite size of the patterns.

that we measure a bigger value means that there still is a
singularity in curvature towards the tip - even if it is not
a spike shape. The singularity can be shown as follows,
where

w ∼ dβ ⇒ d ∼ w
1
β ⇒ dd

dw
∼ w

1
β−1, (2)

gives the slope of the front. From this we find the
expression for the curvature as,

κ ∼ d2d

dw2
∼ w

1
β−2 (or d1−2β). (3)

If β > 0.5, 1
β − 2 < 0 and κ diverges at the tip where

w (and d) → 0. At the same time, if β < 1, the slope
does not diverge at d = 0, and yields a more rounded
profile.

We have not observed any cusps as reported in [29]
with β = 1.43 ± 0.2, consistent with theory on fluid fin-
gering in the zero-surface tension limit. The evolution of
β over time is plotted in figure 8 (b), which shows that
for all experiments, β fluctuates around the estimated
value β = 0.68 over time, indicating that the tip shapes
does not seem to change significantly during the different
stages of the experiments.
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FIG. 8. (a) The finger thickness w plotted in a log-log plot
as function of the distance d from the finger tip. The data
shown is the average of about 50 measurements in time for
each experiment, averaged again for each category. The data
is collapsed by the finger thickness at the base of the tips wb
found as the average finger thickness where w has reached
a more or less constant level, which seems to be a typical
length scale for the tip region. The average slope at different
times during several experiments is β = 0.68, indicating a
more rounded shape of the tips. In the inset: Snapshot of
typical finger tips together with profiles corresponding to β =
0.68 (yellow lines). (b) The slope β averaged per category as
function of time during experiments. The plot shows that the
slope for the tip profile fluctuates around β = 0.68 over time
during the experiments, suggesting that the tips are more
rounded than cusp-like at all times.

C. Fractal analysis

By looking at the invasion patterns, we notice that
they have self-similar features, e.g. a smaller branch re-
semble the whole larger pattern. To characterize this fea-
ture we analyze fractal dimensions of the final patterns in
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three different ways. The box-counting dimension DB is
found for each final structure by covering the binary im-
age with boxes, i.e. dividing the image into equal squares
of sides s, and count the number N of squares that con-
tain a white pixel as function of box size s. For a fractal,
the relationship between the number of boxes covering
the pattern and their size follow a power law

N(s) ∝ s−DB , (4)

such that the box-counting dimension DB is found as
the negative value of the slope of N(s) in a log-log plot
[31, 46, 65, 66]. By obtaining box-counting data over a
range of sizes s, we estimate DB from the slope of lin-
ear fits between an upper cutoff s = 32 cm (cell width)
and a lower cutoff s = 1 cm (typical for thinner fingers).
In addition, we obtain the box-counting dimension DF

of the front (air-solid interface). This is found in the
same way as the box dimension, but with binary images
where only pixels on the perimeter of the patterns are
white. Finally, we estimate local fractal dimensions DL

as function of depth along the structures. To get the lo-
cal fractal dimension at a given depth, we intersect the
structure at that depth with a vertical line (perpendic-
ular to the flow direction) and do a 1-dimensional box
counting along that line, i.e. divide the line into pieces
of equal length l and count the number N of line seg-
ments containing white pixels as function of l. Again, for
a fractal we have the power law

N(l) ∝ l−DL , (5)

and we find the local fractal dimensions at given depths
from slopes of linear fits between l = 16 cm and l = 1
cm. To compare DL with DB we use one of Mandelbrot’s
rules of thumb [66, 67]. It states that the codimension of
an intersected set equals the sum of the codimensions of
the individual intersecting sets, here given by

E2 −DL = (E2 − E1) + (E2 −D)

⇓
D = DL + 1,

(6)

where D is the fractal dimension of the pattern, E1 = 1
is the dimension of the line intersecting it, and E2 = 2 is
the dimension of the image plane containing the sets.

The box-counting dimensions are averaged per flow
category and plotted in figure 9. We see that the box
dimension for the less developed category 3a patterns is
DB = 1.41. For categories 3b and 4a, the box dimensions
are DB = 1.54 and DB = 1.53 respectively. For category
4b patterns, we observe DB = 1.63. Patterns in cate-
gory 3b and 4a have box dimensions within the range of
fractal dimensions found for viscous fingers in saturated
porous media, i.e. D = 1.53 - 1.62 [31, 46, 68].
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FIG. 9. Average box-counting slopes per category, the lower
and upper limits are indicated with the vertical lines and mark
the typical thickness of the thinnest fingers (1 cm) up to the
cell width (32 cm). In the inset: Box-counting fractal di-
mensions DB averaged per category, the error bars show 2
standard deviations. Patterns in categories 3b and 4a with
DB = 1.53 and DB = 1.54 are within the range of earlier
measured fractal dimensions for viscous fingers in saturated
porous media (between the dashed lines). The less developed
patterns in category 3a is below this range, with DB = 1.41,
and the thicker category 4b patterns are close above with
DB = 1.63. The solid line indicates DB = 1.71 for Diffusion
Limited Aggregation patterns.
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cal thickness of the thinnest fingers (1 cm) up to the cell width
(32 cm). In the inset: Box-counting fractal dimensions DF
of the solid-air interface per category. The error bars show 2
standard deviations.
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FIG. 11. Top: Local fractal dimensions (DL + 1) as function
of depth into the medium for the final structures averaged per
category. We see that the patterns in all categories have more
or less constant and well defined local dimensions as functions
of depth. The main parts of the patterns in categories 3a,b
and 4a have local dimensions corresponding to established val-
ues for viscous fingers in saturated porous media (between the
dashed lines). For patterns in category 4b, the local dimen-
sions correspond to values closer to the fractal dimension for
DLA patterns and flow patterns in a saturated Hele-Shaw cell
(solid line). Bottom: Examples of local box-counting slopes
at different depths of the same experiment.

Figure 10 shows the results of box-counting the air-
solid interface of the final structures, averaged per cat-
egory. We see that categories 3a,b and 4a have inter-
face dimensions DF = 1.40, 1.52, 1.48 respectively which
are close to their corresponding box-counting dimensions,
while category 4b patterns have DF = 1.41 which is
about 0.2 less than the corresponding box dimension.
This can be interpreted in terms of finger thickness, i.e.
the front becomes more similar to the structure for de-
creasing finger thickness.

Figure 11 shows the local fractal dimensions DL as
function of depth into the granular medium. For all flow
categories, the curves show a more or less constant be-
havior over most of the depths (the initial high dimension
is due to a larger initial area empty of beads, and the fi-
nal lower dimension is due to finite size effects of the
patterns), which indicates that the patterns have con-
sistent local fractal dimensions over a range of x. The
categories 3a,b and 4a patterns have typical local dimen-
sions of 1.53, 1.58, 1.60, respectively. This is within the
range of dimensions seen for viscous fingers in saturated
porous media (D = 1.53 - 1.62), while for the category
4b patterns the local dimension is higher with a typical
value of 1.76, which is closer to the dimensions seen for
DLA clusters and viscous fingers in an empty saturated
Hele-Shaw cell (D = 1.71).

D. Growth dynamics

In figure 12 (a), the finger tip position averaged per
category is plotted as function of time, which is found
by recording the maximum depth of the patterns in the
binary images at each snapshot. We see that for all ex-
periments, the channel length grows linearly with time
initially before it decelerates towards a final length, and
that both the growth velocity and final depth of the in-
vasion structures increase with increasing injection pres-
sure. The initial constant growth rate seems to scale with

the injection pressure as P
3
2
in. In figure 12 (b), the finger

tip positions per category is divided by P
3
2
in to show that

they fall along the same line initially. In the simulations
done by Niebling et al. [47, 55] of a similar, but smaller
system they too observe an initial linear growth velocity
crossing over to decay over time, however we here observe

the initial growth velocity to scale with Pin as v ∝ P
3/2
in

instead of v ∝ P
1/2
in as found in these simulations. In

figure 13 (a), the log-log plot of the finger tip velocity

v(t)/(P
3/2
in ) as function of time indicates that when the

finger tip velocity begins to decrease, it follows a power
law equation with time, v(t) ∝ t−α, where α = 2.5± 0.2.
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dashed vertical line.
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E. Scaled growth model

As we have shown in figures 12 and 13, the growth
of the channel length is linear with time initially until
it crosses over to decay towards a final channel length.
More specifically, the growth velocity is constant initially,
before it crosses over to a power law decay with time. The
constant initial velocity v0 is found to scale with injection
pressure Pin as

v0 = C · P
3
2
in, (7)

where C ≈ 10−
3
2 cm/(s·kPa

3
2 ) is found from the initial

part of the collapsed curves v(t)/P
3
2
in along the ordinate

axis in figure 13 (a). By inserting the value for C into
equation (7), we can instead collapse the curves along the
ordinate axis with v(t)/v0 resulting in dimensionless and
normalized units for the velocity. In order to collapse the
curves along the time axis, we define a critical time t = tc
as the time when the growth velocity crosses over from
being constant to follow a power law decay with time. At
the critical time, the finger tip position can be described
mathematically as

xc = x(tc) = v0 · tc, (8)

which gives the relation

tc =
xc
v0

=
xc

C · P
3
2
in

(9)

for the critical time.
Since we can easily measure xf , the final length of the

channel, we check if xc can be described as a typical
fraction R of xf , such that xc = R · xf , which gives

tc =
R · xf
C · P

3
2
in

= R · xf
v0
. (10)

By plotting v(t∗)/v0 as function of t∗ = t · (v0/xf ) =
R · (t/tc) in a log-log plot, we do indeed find that the
curves collapse along the time axis with a crossover point
corresponding to R ≈ 0.6 (read from the knee point in
figure 13 (b)). Since we now have the constants C and
R, we can calculate v0 and tc for individual experiments
by inserting the respective Pin and xf into equations (7)
and (10). Figure 14 shows log-log plots of v′ = v(t′)/v0
as function of t′ = t/tc for individual experiments with
injection pressures in the range of 50 - 250 kPa, which
follow the same dimensionless curve given by the function

fv(t
′) =

{
1, if t′ ≤ 1

t′−α, if t′ > 1, where α = 2.5.
(11)

Similarly, we collapse the fingertip position x′ =
x(t′)/xc and plot it as function of t′ = t/tc for the same
individual experiments, also shown in figure 14 (Note
that the data is from single experiments, i.e. not the
average values as in figure 13, explaining the increased
amount of noise). Here, the collapsed data follow the
curve given by the function

fx(t′) =

{
t′, if t′ ≤ 1
1

1−α t
′1−α + α

α−1 , if t′ > 1,
(12)

which is obtained by integrating each part of equation
(11), requiring that fx(t′ > 1)→ 1 when t′ → 1. Further,
fx(∞) = α/(α − 1) = xf/xc = 1/R, giving R = (α −
1)/α = 0.6, which fits very well with our observation in
figure 13 (b). By substituting α into equation (10) we
get,

tc =
α− 1

α
· xf

C · P
3
2
in

. (13)

With equations (7 - 13) we propose a description of
the fundamental dynamics of the system. Since we have
experimentally estimated α and equation (7) relating the
initial growth velocity to injection pressure, we can es-
timate the evolution of the channel length during the
invasion for a given injection pressure and final channel
length.
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function fv(t′). Recall that the parameters used for the collapse are given by the injection pressure, as v0 = C · P
3
2
in and

tc = ((α− 1)/α) · (xf/v0(Pin)), where C = 10−
3
2 cm/(s·kPa

3
2 ) and α = −2.5.

IV. DISCUSSION AND CONCLUSION

The channel formations seen in our experiments result
in patterns very similar to other natural patterns aris-
ing from Laplacian growth, e.g. DLA clusters, viscous
fingers in empty Hele-Shaw cells, manganese dendrites,
or lightning bolts. In such systems, ramified structures
expand at a rate proportional to the gradient of a Lapla-
cian (∇2φ = 0) potential field. This type of patterns is
in the DLA universality class, where a fractal dimension
of D = 1.71 is expected [42, 46]. However, the fractal
dimensions found for our patterns mainly take values of
D ∈ [1.53−1.60], which is more similar to viscous fingers
in porous Hele-Shaw cells [42, 46]. It has been estab-
lished that flow in porous media is better described by
another Laplacian model, i.e. the Dielectric Breakdown
Model (DBM), where the interfacial growth rate is pro-
portional to the pressure gradient of a power η higher
than 1, i.e. v ∝ (∇P )η, where η = 2 for viscous fingers
in porous media [42, 46]. In our system the potential
field is the overpressure in the medium, which diffuses
into the medium initially (not Laplacian). However, nu-
merical simulations show that the diffusing pressure field
quickly approaches the Laplace solution outside finger
tips (after 0.4-0.5 s), and in the entire cell on the order
of a second [28]. In addition, we observe a feature of the
channel growth which is typical for Laplacian growth sys-
tems, i.e. there is an active growth zone outside a frozen
structure, due to screening of the potential gradient by
the most advanced parts of the structure.

The resulting channels in our experiments are differ-

ent than channels formed in similar systems having open
outer boundaries, such as in [24–26]. In the open systems,
the channels are generally much smoother and does not
have more than 1-2 branches, while in the closed system
we see ramified structures. This is thought to be a conse-
quence of the outer boundary conditions which directly
influence how the medium can be deformed. In both
systems, the beads are compacted and pushed in front
of the growing channel, but in the open system there is
also a decompaction front moving inwards from the open
outlet, easing the further displacement of beads. On the
other hand, in the closed system, after the compaction
front hits the outer boundary (which happens between
t = 150 − 300 ms [28]) further deformation is more dif-
ficult due to compaction. Thus, the local configuration
of the pressure field on the tips could play a larger role
on where the channels grow in this case. In addition, the
overpressures imposed for channeling in our experiments
(Pin = 40-250 kPa) are one order of magnitude larger
than the ones for these open systems (Pin = 2-20 kPa).
Although the cells in [24, 26] are smaller than ours, the
one in [25] is of comparable dimensions.

The average fluid drag per unit area on the granular
medium of height h is given by ∇P · h, and the average
threshold for bead displacement is given by [25]

σyield = µ(1− φ)ρgh = µρsρgh, (14)

where µ is the Coulomb friction coefficient, ρs is the solid
fraction of the granular medium, ρ is the density of the
bead material, and g is the acceleration of gravity. Equa-
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tion (14) is found by considering the weight and friction
of the granular medium on the bottom plate while ne-
glecting forces transmitted through solid contacts, i.e.
in-plane stress and friction at the top plate, which is
reasonable for the initial medium. Then, we have the
requirement for bead displacement as

∇P · h ≥ σyield ⇒ ∇P ≥ µρsρg, (15)

which indicates that the pressure gradient necessary to
deform the initial granular medium increases with the
friction coefficient, solid fraction and the bulk density
of beads. In a system where the injected fluid can be
considered compressible (like air in our experiment), the
overpressure diffuses into the medium with a diffusion
constant [28, 47]

D =
κ

(1− ρs)cµf
=
d2(1− ρs)2

180ρscµf
, (16)

where κ is the permeability estimated with the Carman-
Kozeny expression, d is the bead diameter, c is the fluid
compressibility and µf is the fluid viscosity. By assuming
a solid fraction close to 0.5 for the initial medium, we see
that the diffusivity of the overpressure is related to the
bead size as

D ∼ d2

cµf
. (17)

Thus, the bead size and cell length influence whether
the fluid injection acts as a body force on the medium
or more like a surface force on the air-solid interface,
i.e. channels do not form with large enough beads or
short enough cell because the effective range of the pres-
sure gradient (skin depth) exceeds the system length,
such that beads are primarily displaced by the fluid [47].
Smaller beads or longer cells lead to a more localized skin
depth such that beads are primarily displaced through
solid contacts (the zone of mobilized beads eventually
exceeds the skin depth) and channels form.

Further, the cell length limits the maximum length of
eventual channels formed [28] (longer cells accommodate
longer channels). A wider cell leads to an increase in the
average number of fingers [47], but not necessarily an in-
crease in the finger width [25, 26]. However, the channels
could become thicker with increased cell width for flow
category 4b since a higher number of fingers could merge
together. A decrease in cell gap has a similar effect as an
increase in cell width, which leads to a higher number of
fingers, and an increase in the cell gap above 2 mm usu-
ally introduces 3D effects where the fluid tends to flow
mostly in the top layer of the granular medium, and to
displace grains preferentially there.

For the growth dynamics, the dependency of v0 on Pin,
and the exponent α could be system dependent, i.e. the
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FIG. 15. The final channel length xf is plotted as function
of Pin − Pcat,1, where Pcat,1 = 9 kPa is the average injection
pressure for category 1, where xf = 0. We see that there
is a rather scattered (due to randomness in the initial bead
configuration from experiment to experiment), but increasing
trend in xf for increasing Pin, but also that the final chan-
nel length for the highest injection pressures is limited by the
closed outer boundary. The fit (Pin − Pcat,1)0.68 was found
from the averaged xf per pressure for Pin ∈ [20, 150] kPa and
suggest a power-law relationship. Alternatively, the linear fit
0.46 · (Pin−Pcat,1) fits equally well. The average limiting line
xmax,avg was found by averaging xf over the experiments with
Pin ≥ 200 kPa, to indicate the influence of the cell bound-
ary. Thus, the results from our experiments indicate that xf
increase more or less proportionally with Pin until a limiting
length xmax,avg ≈ 59 cm is reached due to the presence of the
outer boundary.

parameters could depend on e.g. bead size and confine-
ment. Thus, it is of interest to investigate further how
the dynamics are changing in various confined granular
media, and see how the Eqs. (7 - 13) apply in those cases.
The dependency of xf on Pin is also of interest to inves-
tigate further, such that if system dependent parameters
are known, the expected result of an air injection could
be estimated by the injection pressure alone. A brief dis-
cussion of what we could find from our experiments is
presented in figure 15. Another interesting feature found
to be common for all experiments in the system is the typ-
ical profile of the finger tips, corresponding to a growth
in finger thickness w as function of distance d behind the
tip as w ∝ dβ where β = 0.68 on average.

As shown in figure 11, the fractal dimension of the
channels is found to be fairly stable along the main part
of the structures, even for the thick fingers in category
4b. The local box-counting method indicates that when
there is little or no erosion, as is the case for categories
3a,b and 4a, the final structures end up with typical
fractal dimensions between D = 1.53 and 1.60. This
range is similar to the one observed for viscous fingers
in saturated porous media, i.e. D = 1.53 - 1.62, sug-
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gesting that the channels formed in our experiments are
in the DBM universality class of patterns where the in-
terface expands at a rate proportional to (∇P )2. The
thicker category 4b structures have a fractal dimension
of D = 1.76, which is closer to DLA-patterns and viscous
fingering in empty saturated Hele-Shaw cells (D = 1.71).
However, the higher fractal dimension is probably also an
effect of box-counting inside the main channel which is
rather space filling compared to the system size, and this
makes the box-counting slopes for category 4b more un-
certain than for thinner fingers. Furthermore, the global
box-counting dimensions DB are slightly lower than the
locally estimated fractal dimensions, which could be a fi-
nite size effect since less developed outer parts are also
taken into account. However, for the most developed and
best preserved channels (Cat. 3b and 4a), we find that
DB = 1.53 and 1.54, which is still in good agreement with
the fractal dimensions for viscous fingers in porous me-
dia. Finally, the fractal dimensions of the front is found
to lie between DF = 1.41 and 1.52 for all categories. This
indicates that even if the structures themselves appear to
change with increasing injection pressure, the roughness

of the air-solid interface seems to be more or less the
same.
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