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E-mail: eafiorentino@unistra.fr

Accepted 2016 November 3. Received 2016 October 11; in original form 2016 April 22

S U M M A R Y
The streaming potential phenomenon is an electrokinetic effect that occurs in porous media.
It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate
the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-
D capillary channel. The multiphase flow is simulated with the model of Shan & Chen.
The Poisson–Boltzmann equation is solved by implementing the model of Chai & Shi. The
streaming potential response shows a non-monotonous behaviour due to the combination of
the increase of charge density and decrease of flow velocity with decreasing water saturation.
Using a ζ potential of −20 mV at the air–water interface, an enhancement of a factor 5–30 of
the EK coefficient, compared to the saturated state, can be observed due to the positive charge
excess at this interface which is magnified by the fluid velocity away from the rock surface.
This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of
these bubbles, moving or entrapped in the crevices of the channel.

Key words: Numerical solutions; Electrical properties; Hydrogeophysics.

1 I N T RO D U C T I O N

The streaming potential (SP) phenomenon is an electrokinetic effect
which arises when an electrolyte flows in a porous medium. When
the surface of the solid material composing the matrix of the porous
medium is electrically charged, the presence of an electrical double
layer at the interface between the fluid and the solid phase creates a
streaming current, counterbalanced by a conduction current, leading
to a measurable electrical voltage. This electrokinetic coupling is at
the origin of the self-potential and seismo-electromagnetic conver-
sions used in earth sciences as geophysical tools for the subsurface
imaging. These methods offer a non-invasive structure characteri-
zation of the near-surface in terms of fluids (water, oil, gas), and
are developed for characterizing water resources, monitoring con-
taminated aquifers, and monitoring natural hazards which can be
controlled by the role of water and ice.

The self-potential method is a passive geophysical method which
consists in measuring the natural electric field on the earth sur-
face, whereas the seismo-electromagnetic conversions are detected
by measuring the electromagnetic field induced by a seismic wave
propagation. These techniques have a variety of geophysical ap-
plications related to multiphase flows such as the study of the
vadose zone (Thony et al. 1997; Warden et al. 2013; Jougnot
et al. 2015), the estimate of the water retention parameters
(Darnet & Marquis 2004), the estimate of the dispersivity (Straface
& De Biase 2013), the monitoring of ground water flow (Perrier
et al. 1998; Jouniaux et al. 1999; Doussan et al. 2002), the de-
tection of deep fluid flow after stimulation of geothermal reservoir
(Darnet et al. 2006), or the daily SP variations produced by capillary

flow in the non-saturated zone (Perrier & Morat 2000). Groundwa-
ter flow paths and hydraulic properties of an aquifer can be inferred
by SP measurements during pumping tests, especially the hydraulic
conductivity, the aquifer thickness and the electrokinetic coupling
(Darnet et al. 2003; Rizzo et al. 2004; Maineult et al. 2008; Straface
et al. 2010; Chidichimo et al. 2015). On active volcanic areas, the
upward hydrothermal flow can be characterized through SP obser-
vations usually showing positive anomalous electric signals (Hase
et al. 2005; Mauri et al. 2010; Brothelande et al. 2014). These
techniques are also of high interest for the hydrocarbon recovery
(Saunders et al. 2006; Forté & Bentley 2013), the detection of
contaminated aquifers (Naudet et al. 2004; Maineult et al. 2006;
Minsley et al. 2007; Giampaolo et al. 2014), the monitoring of CO2

storage (Zyserman et al. 2015), the prospection of ice-water inter-
faces (Kallay et al. 2003; Kulessa et al. 2006), and the mapping of
water flow below glaciers (Kulessa et al. 2003). The knowledge of
the unsaturated electrokinetic coupling is therefore essential, so that
it can be included in the models for a better understanding of the
observations.

The electrical double layer, which is at the origin of these phe-
nomena, stems from the charge of the mineral when an electrolyte is
in contact with the rock (Davis et al. 1978). This potential is negative
for quartz at pH >3. The local electroneutrality in the immediate
vicinity of the rock is satisfied thanks to an excess of positive ions
adsorbed and immobile. The amount of positive charges in the elec-
trolyte decays as getting away from the surface of the capillary, until
both negative and positive species are found in equal proportion.
The portion of capillary containing the positive charge excess is
called the diffuse layer.

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1139
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The SP phenomenon is characterized thanks to an electrokinetic
(EK) coefficient, that is equal to the ratio of the potential difference
δV created by the displacement of the positive charge excess, on the
pressure difference δP that allows to generate the flow

CEK = δV

δP
. (1)

The behaviour of the EK coefficient in unsaturated conditions is
a debated question which is the topic of numerous studies. Wurm-
stich & Morgan (1994) proposed an enhancement factor of the EK
coefficient with decreasing water saturation, by assuming that air
forms bubbles in the medium. They assumed for this, that the bub-
bles decrease much less the water flow (streaming current) than
they affect the conduction current through the decrease of electrical
conductivity. The presence of bubbles was investigated theoretically
and experimentally by Sherwood (2007), Xie et al. (2010), Sher-
wood et al. (2013), who measured an enhancement of the output
power caused by an increase of resistivity and streaming current.
Perrier & Morat (2000) suggested that the EK coefficient could
scale with the relative permeability and with the inverse of rel-
ative conductivity, leading to a decreasing trend with decreasing
water saturation. This scaling was further developed by Linde et al.
(2007) and Revil et al. (2007) who introduced a scaling of the charge
density with the inverse of the saturation. Using a volume-average
approach, they obtained a monotonous decreasing trend with de-
creasing water saturation. Laboratory measurements at various sat-
urations (Guichet et al. 2003; Revil & Cerepi 2004; Revil et al. 2007;
Vinogradov & Jackson 2011) lead to a constant or decreasing trend
with decreasing water saturation. Continuous records of the EK co-
efficient as a function of water saturation made by Allègre et al.
(2010) exhibited a non-monotonous behaviour, with a great en-
hancement compared to the saturated state, coherent with other data
(Allègre et al. 2011). Allègre et al. (2012) modelled Richards’ equa-
tion for the hydrodynamics and Poisson’s equation for the electrical
potential with a 1-D finite element method, and concluded, based
on their previous experiments, that the unsaturated electrokinetic
coefficient should be non-monotonous. An extension of the model
of capillary tubes of Ishido & Mizutani (1981) to the case where
each capillary can have a different radius was developed by Jackson
(2008, 2010). This model predicts a monotonous decreasing EK co-
efficient with decreasing water saturation in the water-wet case and
a non-monotonous and enhanced behaviour of the EK coefficient
in the oil-wet case if the diffuse layer is not negligible compared
to the capillary radius. Considering the same scaling of the charge
density as the one used by Linde et al. (2007) and Revil et al.
(2007), but using a flux-averaging approach, Jougnot et al. (2012)
obtained an enhancement of three to four orders of magnitude of
the steaming potential response of a rainfall event, thanks to a better
consideration of the charge density and velocity distributions in the
pore space. Their model predicts a non-monotonous behaviour of
the EK coefficient with an enhancement from two to five times the
value at water saturation under certain conditions.

Most of these models have in common (i) to assume that the
phases are continuous at the scale of a representative elementary
volume, and (ii) to neglect the charge density associated to the
air–water interface. Recently, some studies suggested that the po-
larization of this air–water interface could play a key role in the
SP response (Allègre et al. 2014, 2015). The aim of this paper
is to investigate the behaviour of the EK coefficient using Lattice
Boltzmann (LB) simulations, when the non-wetting phase is dis-
continuous at the scale of the capillary, and when the contribution

of the air–water interface is not considered as negligible compared
to the charge density associated to the fluid-rock interface.

The LB method is a computational fluid dynamics technique that
allows to simulate advection and diffusion phenomena. It is an in-
creasingly popular technique allowing to accurately mimic the mul-
tiphase dynamics at the pore scale, without need to track the inter-
face between the fluids in a dynamic calculation (Yang et al. 2001b;
Van der Graaf et al. 2006; Pride et al. 2008; Aursjø et al. 2011). As
in monophasic conditions, the LB simulations of multiphase flows
can be coupled to the LB resolution of electric, thermal or chemi-
cal problems (Zhang & Kwok 2005; Gong et al. 2010; Parmigiani
et al. 2011; Misztal et al. 2015). In this study, EK coefficients are
simulated for various saturations using two independent LB algo-
rithms solving the fluid velocity, and the potential resulting from the
conduction currents, taking into account the fluid-rock and fluid-
fluid interfaces. We will focus on a two-phase flow problem where
one of the phases, like air, is an electrical insulator. The EK coef-
ficient will be assessed when air remains trapped in the crevices of
the irregularly shaped pore, and when air flows by forming bubbles
dragged with the flow.

2 M E T H O D

The algorithm implemented to simulate the SP phenomenon was
presented by Fiorentino et al. (2016) in monophasic conditions.
The basic idea is to simulate the flow of the electrolyte using a LB
algorithm, the charge density deriving from the potential given by
the Poisson–Boltzmann equation using another LB algorithm, and
to multiply these quantities through the computation of the electric
field at each site of the lattice. The improvement brought in this
paper is the adjunction of an immiscible phase. The literature reports
three main families of methods allowing to model multiphase/multi-
component flows using LB principles: the colour gradient model
(Gunstensen et al. 1991), the Shan-Chen model (Shan & Chen 1993)
and the free energy model (Swift et al. 1995, 1996). The Shan-Chen
model appears to be the most employed one due to its simplicity and
computational efficiency. It is thus very well documented. As in one-
phase conditions, the electrical potential is solved by implementing
the model of Chai & Shi (2008). The following sections introduce
the equations constituting these models and how they are used to
compute the electrical field giving the EK coefficient in unsaturated
conditions.

2.1 Modelling of the two-phase flow

The fundamental principle of the LB method is the use of numer-
ical fluid particles that propagate and collide in a fixed number of
directions. In a 2-D system, the number of directions needed to
reproduce the behaviour of a fluid amounts to 9. The matrix of the
particles velocities along these directions reads

cV = cV

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
(2)

where cV = dxV/dtV is the ratio between the space and the time steps.
The time step is provided by the relationship dtV = νad

ν
dx2

V , where
ν is the kinematic viscosity of the fluid and νad is the adimensional
kinematic viscosity, fixed by the user. The space step is the distance
between two lattice sites, given by dxV = 2R/(nyV − 1) if R is
the radius of the channel and nyV the number sites discretizing the
capillary diameter. The number of sites in the direction parallel to
the flow is nxV. Starting from now and until the end of this section,
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all the quantities are adimensional (see Table A1 in the Appendix
for a summary of the variables). Times will be expressed in time
steps (ts), lengths in lattice units (lu) and masses in mass units (mu).
The physical mass is obtained by multiplying the mass in mu by
μ0 dx3

V where μ0 is a reference volumetric mass density, chosen
here as the water mass density.

Let f λ
i be the probability of presence of a particle of the fluid

component λ in the direction i. The local adimensional density of λ

is defined as

ρλ =
∑

i

f λ
i (3)

and the local momentum of λ as

ρλuλ =
∑

i

cV i f λ
i . (4)

Each distribution f λ
i evolves following the propagation-relaxation

equation

f λ
i (x + cV i dt, t + dt) − f λ

i (x, t) = �(x, t) (5)

where �(x, t) = − 1
τλ

( f λ
i (x, t) − f λ,eq

i (x, t)). This equation ex-
presses that at each time step the distribution at x is advected to a
position x + cV i dtV , and interacts with the other particles to con-
verge towards equilibrium. The left-hand side is generally called
the streaming step, and the right-hand side the collision step. τλ

is a relaxation time related to the kinematic viscosity through the
relationship τ λ = 3νad + 0.5 (Wolf-Gladrow 2005). τ λ controls the
amount of collisions between the particles, and thus the rheology
of the fluid. It must be >0.5 to have a positive viscosity, and avoid
stability problems.

The equilibrium distribution function f λ,eq
i is expressed as a

function of an equilibrium velocity ueq
λ

f λ,eq
i = wiρλ

[
1 + 3

cV i · ueq
λ

c2
V

+ 9

2

(cV i · ueq
λ )2

c4
V

− 3

2

ueq
λ

2

c2
V

]
(6)

with wi = 4/9 for i = 0, wi = 1/9 for i = {1,2,3,4} and wi =
1/36 for i = {5,6,7,8}. The equilibrium velocity ueq

λ is the sum of
a composite macroscopic velocity of the mixture denoted u′ and an
interaction force term Fλ = Fcoh

λ + Fads
λ which is the sum of the

fluid–fluid and fluid–solid interaction forces:

ueq
λ = u′ + τλ Fλ

ρλ

(7)

with

u′ =
∑

λ
ρλuλ

τλ∑
λ

ρλ

τλ

. (8)

Fcoh
λ is an interparticle force allowing to introduce the cohesion

of the phases. The force exercised locally by the fluid component λ̄

on the fluid component λ is proportional to the local density of λ

multiplied by the sum of the densities of λ̄ over the 8 neighbouring
sites:

Fcoh
λ (x, t) = −ρλ(x, t)Gcoh

∑
i

wiρλ̄(x + cV i dtV , t)cV i . (9)

The parameter Gcoh controls the magnitude of the repulsion between
λ and λ̄, and thus the interfacial tension between the phases. If Gcoh is
too low, the phase separation does not occur. A high Gcoh decreases
the solubility of the fluids within each other and allows to minimize
the thickness of the fluid interface. However, stability problems
occur when it is too high.

The force allowing to create the fluid-solid adhesion is similar
to the force creating the interparticle interaction, but instead of
summing the density of the neighbouring sites, the force is computed
by summing a flag variable si such as si = 1 if x + cV i dtV is solid,
and si = 0 otherwise (Martys & Chen 1996):

Fads
λ (x, t) = −ρλ(x, t)Gads

λ

∑
i

wi si (x + cV i dtV , t)cV i . (10)

The difference Gads
λ − Gads

λ̄
allows to tune the wetting properties of

the fluids. Gads is generally chosen positive for the wetting fluid and
negative for the non-wetting fluid. Huang et al. (2007) proposed a
straightforward translation of Young’s equation using the interfacial
tensions and a density factor [ρλ − ρλ̄]/2:

cos θ = Gads
λ̄

− Gads
λ

Gcoh ρλ−ρλ̄

2

. (11)

They found that Gads
λ and Gads

λ̄
can be chosen in equal magnitude,

but that the correspondence between the contact angle computed
from eq. (11) and the contact angle measured graphically is slightly
more accurate with Gads

λ ≈ −Gads
λ̄

+ 0.1.
Due to the diffusive nature of the interfaces modelled with the

interparticle force, a fraction of each phase is present at each lattice
site, even if one is always dominant far from the interfacial area.
The local total density of the mixture is given by

ρ =
∑

λ

ρλ (12)

and the total velocity by

u = 1

ρ

[∑
λ

∑
i

cV i f λ
i + 1

2

∑
λ

Fλ

]
. (13)

The physical velocity of the fluid is obtained by multiplying u with
the lattice velocity cV.

In the following simulations, the two fluids are given the same
viscosity η = 1.002 mPa s (water viscosity) and same mass density
μ = 103 kg m−3 (water mass density). Indeed, the high density and
viscosity contrasts that occur when modelling liquid-gas mixtures
constitute a challenge in the LB community that is out of the scope
of this paper. Both phases will be given the same viscosity, and thus,
the same relaxation times τ λ (see for instance, Yang et al. 2001b;
Zhang & Kwok 2005; Qian et al. 2006; Gong et al. 2010). Merely,
the component representing water will be the wetting component
and the phase representing air the non-wetting component.

2.2 Driving force

The driving force in the Shan-Chen model is classically incorporated
in the equilibrium velocity with the other forces responsible for the
separation of the phases. It has been argued, however, that this way
to create the flow is strictly valid for τ = 1 (e.g., Yang & Boek 2013).
The flow is here generated by incorporating a term �′ at the right-
hand side of eq. (5) (see Wolf-Gladrow (2005) and also Buick &
Greated (2000)):

�′
i (x, t) = dtV cV i

12c2
V μ0

[K (x, t) + K (x + cV i dtV , t + dtV )] (14)

where K = ∇P is the pressure gradient in physical units. ‖∇P‖ =
δP/L where L is the channel’s length in m, and δP the pressure drop
along the channel in Pa. δP determines the strength of the flow.

In this study the flow velocity is used to counteract an artefact
that plagues the multiphase LB simulations. This artefact, called the
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spurious currents, is the occurrence of non-physical velocities at the
interface between the immiscible fluids. This phenomenon has been
extensively studied in the literature (see Connington & Lee (2012)
for a review). Many efforts have been made to understand it, but it is
still very hard or impossible to remove completely. A possible means
to decrease the impact of these spurious currents is to generate a
flow that is sufficiently rapid to make the relative importance of
these anomalous velocities not too big (e.g. Bao & Schaefer 2013).
In this study, the δP will be set to very large values so that the main
current’s magnitude will minimize the contribution of the spurious
currents.

2.3 Computation of the electrical potential

The electrical potential, denoted ψ , is computed by implementing
the model of Chai & Shi (2008), in a lattice of nyP sites along the
distance between the rock surfaces, and nxP sites in the direction
parallel to these surfaces. The resolution of the Poisson–Boltzmann
equation is similar to the resolution of a diffusion equation, for
which the number of directions available to the particles amounts
to 5. The matrix of the particle velocities along these directions is

cP = cP

[
0 1 0 −1 0

0 0 1 0 −1

]
, (15)

where cP = dxP/dtP is the lattice velocity, dtP is the time step and
dxP = 2R/(nyP − 1) the space step.

By denoting hi the particle distributions allowing to compute the
electrical potential, ψ is given by

ψ(x, t) =
∑

i

hi (x, t). (16)

The particle distributions hi follow the same propagation-relaxation
equation as eq. (5)

hi (x + cP i dt, t + dt) − hi (x, t) = �i (x, t) + �′
i (x, t). (17)

The collision operator �i defined as

�i (x, t) = − 1

τP
(hi (x, t) − heq

i (x, t)), (18)

is a function of the equilibrium distributions heq
i

heq
i (x, t) =

{
w0−1
1−w0

∑5
i=1 hi (x, t) if i = 0

wi
1−w0

∑5
i=1 hi (x, t) if i = {1, 2, 3, 4} (19)

where the wi are wi = 0 for i = 0 and wi = 1/4 for i = {1, 2, 3, 4}.
The term �′

i introduces the electrical source

�′
i (x, t) = dtPwi�(x, t)D. (20)

D is an artificial diffusion coefficient given by

D = αc2
P

(
1

2
− τ

)
dtP (21)

with α = 1
2 in this 2-D system. � is the right-hand side of the

Poisson–Boltzmann equation:

�(x, t) = ρe(x, t)

εrε0
. (22)

We calculate the value of ρe thanks to the local concentrations of
the species denoted Ci (x, t):

ρe(x, t) =
n∑
i

ρi (x, t) =
n∑
i

ezi Ci (x, t), (23)

where e = 1.6021 10−19 C is the fundamental charge, zi is the valence
of the species i and Ci its concentration in ions m−3. The species
concentrations are functions of the local value of the electrical
potential:

Ci (x, t) = C∞
i exp

(
− zi eψ(x, t)

kBT

)
, (24)

where kB = 1.3806 10−23 J K−1 is the Boltzmann constant, T is the
temperature in K and C∞

i is the species concentration when ψ = 0,
like out of the rock sample of far from the rock surfaces.

To sum up, the medium is initialized by setting ρe(x, t) =∑n
i ezi C∞

i everywhere. The electrical potential ψ is calculated as
a function of ρe thanks to eqs (16)–(22). The concentrations are
calculated as a function of ψ using eq. (24). Then ρe is updated
with the new values of Ci according to eq. (23). At each time step
the potential evolves because some sites have a fixed potential (rock
and fluid-fluid interfaces) which ‘diffuse’ to the neighbouring sites.
To assign a fixed potential ζ to a particular point x, the particle
distributions of point x are forced to keep the value

hi (x, t) = ζwi . (25)

The procedure is repeated until the electrical potential is stabilized
(see next section).

It can be shown easily by combining eqs (20) and (21) that the time
step dtP simplifies with cP, so that no tuning of dtP is needed. The
space step dxP is fixed so as to describe the diffuse layer precisely.
A good precision is reached when d/dxP ∼ 60 (see Fiorentino
et al. 2016). The dimensionless relaxation time is fixed at τP = 1
like in the simulation tests carried out by Chai & Shi (2008). The
calculation is directly made in physical units, with double precision
variables.

2.4 Computation of the EK coefficient

In the monophasic situation, both algorithms (flow velocity and
potential) were computed at the same time. The convergence of the
algorithm was evaluated by calculating the relative change of CEK

between each 10 steps. The origin of the electrical potential was
located in the rock sites, which had a fixed position. In this study,
the EK coefficient is computed in the presence of two phases in three
situations: (i) the phases flow in parallel, (ii) the non-wetting phase is
entrapped in the crevices of the pore, and (iii) the non-wetting phase
flows as one or several bubbles. The source of the potential is located
not only in the rock, but also at the fluid-fluid interfaces which do
not have a fixed position. The Poisson–Boltzmann equation cannot
converge if the source of the potential moves at each time step.
Both parts of the algorithm (velocity and potential) cannot be solved
simultaneously.

In this study, the velocity field is calculated in a preliminary
stage. At the initial state, the medium is immobile. Then the velocity
increases until an equilibrium is reached. The convergence of the
velocity is assessed using the relative change of the fluid velocity
averaged over the whole medium. Once the average velocity is
stabilized, a ‘snapshot’ of the interfaces locations is made. The fluid-
fluid interfaces are tracked by searching the sites where ρair + ρwat

is less than a threshold that varies between 1.5 and 1.8 depending
on the geometry of the phases distribution.

Once the velocity field at equilibrium is calculated and once
the corresponding interfaces positions are mapped, the potential is
computed following the equations described in Section 2.3. The
potential keeps the constant values ψ = ζ M and ψ = ζ I at the sites
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representing the rock matrix and the air–water interface respec-
tively. The convergence of the potential is assessed thanks to the
EK coefficient value, which is obtained by calculating the electrical
field. The local electrical field is defined as

E(x, t) = −ρe(x, t)u(x, t)cV

σ f
. (26)

where σ f is the fluid conductivity. A common expression for σ f is

σ f =
n∑
i

(ezi )
2bi C

∞
i (27)

where bi = 1
6πηRi

is the mobility of the species i, and Ri its ef-
fective ionic radius. It could be noted that the use of eq. (27)
to compute eq. (26) amounts to consider that there is no varia-
tion of σ f within the medium. The influence of the local varia-
tions of σ f on the EK coefficient has been assessed in the previ-
ous study (Fiorentino et al. 2016), and is small for |ζ | values less
than ∼25 mV.

The physical size of the medium must fulfil the condition
2R/d > 120 so that the diffuse layer’s thickness can be consid-
ered as negligible compared to the channel’s diameter. The number
of nodes describing the potential in the direction perpendicular to
the flow is then nyP = 2R

d
d

dxP
= 7200 with d/dxP = 60, which is a

lot more than the number of nodes required to simulate the fluid ve-
locity. The velocity used in eq. (26) is thus transposed from the grid
used for the velocity computation to the grid used for the potential
computation by bilinear interpolation. During this procedure, the
position of the zero velocity must be assessed. Indeed, the bounce
back condition applied on the solid sites makes the effective posi-
tion of the wall, where the flow is zero, shift half way between the
solid site and the first neighbouring fluid site. The position of the
zero velocity is linearly interpolated with the two first neighbouring
nodes of the hydric grid.

The macroscopic potential δV is obtained by averaging E over
the whole medium. The simulated EK coefficient is obtained using
the definition of eq. (1), with the δP that was used to simulate the
flow in the preliminary stage. This computation is considered as
stabilized when the relative change between two EK coefficients is
less than a value ε which is small (see next sections). The water
saturation Sw is calculated by dividing the number of sites contain-
ing water at the end of the simulation by the total number of sites
constituting the pore space. The sites representing the air–water
interface are excluded from the computations of Sw and EK coeffi-
cient because of the non-physical value of the velocity at this place
(see Section 2.2).

3 VA L I DAT I O N O F T H E P RO C E D U R E

3.1 Validation of the Young-Laplace Law

The validation of the Young-Laplace law is checked so as to verify
that the Shan-Chen model is correctly implemented. The domain
is initialized with a bubble at rest. A periodic boundary condition
is applied to all sides of the lattice, which means that everything
that flows out through one side is reinjected at the opposite side.
The pressure at the position x can be determined using (Huang
et al. 2007)

Pad(x) = [ρλ(x) + ρλ̄(x)]/3 + Gcohρλ(x)ρλ̄(x)/3 (28)

where Pad is the adimensional pressure in mu H−1 ts−2 and ρ is
the density in mu lu−2 H−1 with H the out of plane thickness of the

Figure 1. Pressure difference between inside and outside the bubble
as a function of 1/rB. The adimensional surface tension amounts to
γ = 0.236 mu lu H−1 ts−2.

system represented by the 2-D flow. The pressure difference between
inside and outside the bubble at rest is related to the surface tension
γ between the fluids through the Young-Laplace law:[

Pad(xinside) − Pad(xoutside)
] = γ /rB (29)

with rB the radius of the bubble at equilibrium.
The initial size of the bubble radius must be chosen carefully due

to the phenomenon of bubble shrinkage. The bubble shrinkage is a
spontaneous non-physical density collapse of the droplet due to the
diffusive nature of the fluid interfaces. This artefact was examined
numerically and analytically by Zheng et al. (2014), who showed
that there is a critical radius below which the bubble shrinks until a
complete vanishing. This critical radius depends on two parameters
that are the ratio of the interface thickness on the radius of the initial
bubble, and the ratio of the volume of the computational domain on
the volume of the initial droplet. Both of them must be small. To
avoid the density shift (bubble shrinkage), the relative importance
of the interface thickness compared to the bubble radius must be
small, and the relative importance of the bubble volume must not be
too low compared to the total volume of the domain. On the other
hand, if the droplet is very large, its interface can interfere with
itself through the periodic condition at the boundaries, and break
the bubble geometry.

Fig. 1 shows the pressure difference between inside and outside
the bubble at rest as a function of 1/rB. The domain is a square
lattice of side 1.16 × 10−6 m discretized with nxV = nyV = 50. The
medium is initialized such as ρλ = ρ0 and ρλ̄ = 0 inside the bubble
and ρλ = 0 and ρλ̄ = ρ0 outside. The thickness of the interface
is fixed by the parameter Gcoh which controls the surface tension.
Huang et al. (2007) report that a good compromise between stabil-
ity and interface thickness is found for 1.6 ≤ ρ0Gcoh ≤ 2.0. The
interparticle force is set such as Gcohρ0 = 2 with ρ0 = 2. The tested
bubble sizes range from the critical radius described above until the
radius at which the bubble starts to interact through the boundaries.
According to Sukop & Thorne Jr (2006), the low resolution of the
domain increases the interface thickness and complicates the ques-
tion of where to measure the densities of each fluid in the vicinity
of the interface. This problem yields a non-zero plot intercept of
the order of 0.005, which remains acceptable compared to value of
0.001 they obtain for a 200 × 200 domain. The linear trend confirms
the ability of the code to reproduce the Young-Laplace law.
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In these simulations, the two fluids have the same density and
the same viscosity fixed by τ = 1. The surface tension is measured
to be γ = 0.236 mu lu H−1 ts−2, which corresponds to a physical
value of 0.360 N m−1 using H = dx. This value is greater than the
real air–water surface tension of 0.072 N m−1 and is barely tunable,
because it is not possible, with the Shan-Chen method, to adjust
the surface tension independently from the density and viscosity
ratios (Ahrenholz et al. 2008). The consequences of a surface ten-
sion that is different from the air–water one is discussed later in
Section 4.3.

3.2 Flows in parallel

The procedure is validated by calculating an analytical solution
when both phases flow in parallel. Air occupies a corridor at the
centre of the capillary and water flows on either side between the
air and the rock walls.

3.2.1 Analytical solution

The geometry of parallel flows is sufficiently simple to compute an
analytical expression of the EK coefficient as a function of Sw . The
charge density of the electrolyte is given by eq. (23). The species
concentrations obey a Boltzmann distribution given by eq. (24).
With the assumption that the fluids have the same dynamic vis-
cosities, the velocity of the electrolyte should follow a Poiseuille
profile

v(χ ) = 1

2η

δP

L
(χ (2R − χ )) (30)

with χ the distance from the rock surface. The potential gradient
along the capillary is expressed as

δV

L
= −〈E〉 = −〈vρe〉

σ f
(31)

where σ f is the electrolyte conductivity defined by eq. (27). This
gives, with the definition of CEK and using eqs (23) and (30):

CEK = δV

δP
= e2C∞

ηkBT σ f
I (32)

where

I = 1

2R

∫ 2R

0
χ (2R − χ )ψ(χ )dχ. (33)

The Debye-Hückel approximation (Pride 1994) allows to express
the potential as

ψ(χ ) = ζe− χ
d (34)

where d is a characteristic lengthscale termed the Debye length
which measures the thickness of the diffuse layer:

1

d2
=

n∑
i

(ezi )2C∞
i

ε0εr kBT
(35)

with ε0 = 8.8531 10−12 F m−1 the vacuum permittivity and εr the
relative permittivity of water, equal to 80.1 at 20 ◦C for a salinity
<0.1 mol L−1. Using eq. (34), I can be split into two contributions,
the contribution from the potential of the capillary walls denoted
Irock

Irock = ζM

2R

∫ 2R

0
χ (2R − χ )[e− χ

d + e− −(2R−χ)
d ]dχ (36)

and the contribution from the potential of the fluid–fluid interfaces
denoted Iflow

Iflow = ζI

2R

∫ h1

0
χ (2R − χ )[e− (h1−χ)

d + e− (h2−χ)
d ]dχ

+ ζI

2R

∫ h2

h1

χ (2R − χ )[e− (χ−h1)
d + e− (h2−χ)

d ]dχ

+ ζI

2R

∫ 2R

h2

χ (2R − χ )[e− (χ−h1)
d + e− (χ−h2)

d ]dχ, (37)

where h1 and h2 are the positions of the fluid–fluid interfaces. With
the assumption that these interfaces are symmetrical with respect
to the central axis parallel to the flow, they can be rewritten as a
function of the water saturation Sw like

h1 = RSw and h2 = 2R(1 − Sw/2) (38)

where Sw varies between 0 (no water) and 1 (no air). By remarking
that the potential is non-zero only in the very close vicinity of the
interface and that the velocity in this area can be approximated to
the velocity of the interface, eq. (37) simplifies to

Iflow = αζI
dh1(2R − h1)

2R
= αζI

d R2

2R
Sw(2 − Sw) (39)

with α = 4. By remarking that the velocity of the fluid-fluid inter-
face is much more important than the velocity near the rock, the
contribution Irock can be neglected and CEK can be approximated
to

CEK = α
e2C∞ζI

2ηkBT σ f
d RSw(2 − Sw). (40)

3.2.2 Simulations

The medium is initialized by setting the air phase at the centre of the
capillary and the water phase on either side of the corridor formed by
the air. Starting from now and until the end of this paper, the density
is initialized such as ρair = ρ0 and ρwat = 0 in the phase representing
air, ρair = 0 and ρwat = ρ0 in the phase representing water, and
ρair = ρwat = ρ0/2 at the sites representing the rock, meaning that
the total density is initialized to ρair + ρwat = ρ0 in the whole
medium. Gcoh is fixed such as Gcohρ0 = 2 with ρ0 = 2. A periodic
condition is applied at the boundaries perpendicular to the flow, and
a bounce back condition is applied at the boundaries parallel to flow,
meaning that all the particles that reach these boundaries are sent
back in the opposite direction.

The velocity is computed until the relative change between 100
computations is less than 10−9. The convergence is reached af-
ter ∼100 000 ts. The concentration of the electrolyte is fixed at
10−3 mol L, and the channel’s diameter is 1.16 × 10−6 m so that
the criterion 2R/d > 120 is verified. Both phases have the viscosity
νad = 0.1666 giving the same relaxation time τ = 1. The size of
the velocity grid is nyV = 100, nxV = 10. The lattice speed is cV =
514 m s−1. The dxP of the potential grid must fulfil the condition
d/dxP ∼ 60, giving nyP = 7200 and nxP = 655. The computation
of the potential stops when the relative change between 10 compu-
tations of CEK is less than 10−8. The convergence of the potential
is achieved after ∼130 000 iterations, which takes 2 hr, parallelized
on a 16 cores computer. The imposed pressure difference δP is
6.7 × 104 Pa. The potentials of the air–water and fluid-rock inter-
faces ζ I and ζ M are both set to −20 mV.

In Fig. 2(a), the simulated velocity is compared to the theoretical
Poiseuille profile. The peaks located at the interfaces positions h1
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Figure 2. (a) Left: density of the water phase in a lattice 10 × 100.
Right: simulated velocity profile (solid line) and theoretical Poiseuille pro-
file (dashed line). The spurious velocities can be observed at the interfaces
placed at h1 and h2. The velocity is in lattice units. The physical velocity
is obtained using cV = 513 m s−1. (b) EK coefficient as a function of Sw :
comparison between eq. (32) (solid lines), eq. (40) (dashed lines) and the
simulations (dots). For the comparison with Cw

EK, eq. (32) is adapted by re-
moving the second integral in eq. (37) and eq. (40) is obtained using α = 2.
(c) Simulated EK coefficient against analytical calculation: Call

EK on the left,
Cw

EK on the right.

and h2 are the so-called spurious currents, whose magnitude can
be obtained by subtracting the Poiseuille velocity to the simula-
tions. This magnitude varies between 0.009 lu ts−1 and 0.027 lu ts−1

from the lowest to the highest tested Sw . This is below the value
of 0.059 lu ts−1 obtained by Hou et al. (1997) for a rounded
bubble.

Two EK coefficients are calculated: an EK coefficient denoted
Call

EK which involves all the sites of the domain, and another one,

denoted Cw
EK, which excludes the sites belonging to the air phase,

at the centre of the capillary. Only the second one has a physical
meaning, since the first one would be the result for conductive
air. The sites containing air are caught by tracking the sites where
ρair > 1. As mentioned in Section 2.4, the lattice sites located at the
interface are excluded from the computation of the EK coefficient
so as to remove, at least partly, the artefact caused by the spurious
velocities.

3.2.3 Comparison

Fig. 2(b) shows the comparison between eq. (32) and the simulated
EK coefficient. Fig. 2(c) shows a crossplot of the simulations versus
the analytical solution. The algorithm provides reliable results, as
shown by the unitary slope. The small difference observable in
Fig. 2(b) is attributed to the presence of the spurious velocities.
These spurious currents slightly increase the EK coefficient, but
do not modify its behaviour. The increasing trend of CEK with
increasing Sw is triggered by the positive charge excess associated
to the fluid-fluid interfaces. This positive charge excess is magnified
by the flow velocity. The higher Sw , the closer to the channel’s
centre the positive charge excess, the higher the velocity, and the
higher the enhancement. The EK coefficient is here a continuous,
increasing function of Sw , until the medium is completely filled
with water. When Sw = 1, the fluid-fluid interfaces do not exist
anymore, and the EK coefficient collapses to the value determined
by the Helmholtz–Smoluchowski (HS) equation which gives the
EK coefficient at full water saturation:

CEK = ε0εrζM

ησ f
. (41)

As it could be expected, the values of Cw
EK represent the half of

the values of Call
EK. This relies on the fact that the contribution of the

charge density near the fluid-fluid interface completely overwhelms
the contribution of the capillary walls, due to the increase of the
velocity approaching the centre of the channel. Removing the inner
part of the corridor is like removing one half of the profile close
to the interface, where the potential is not negligible; the rest does
not contribute to the electrokinetic coupling. Starting from now,
the EK coefficient will refer to Cw

EK which corresponds to an air–
water system, the air phase being an electrical insulator that does
not support any conduction current. The good agreement between
eqs (32) and (40) plotted in dashed line in Fig. 2 validates again
that the contribution of the fluid-fluid interface overwhelms the
contribution of the fluid-rock area, since it is one of the hypothesis
used in the derivation of eq. (40).

It should be noted that the example of parallel flows could
not really occur at very high Sw due to the Rayleigh Plateau
instability. It is essentially a useful configuration for compar-
ison with an analytical solution and validation of the code.
In reality, a thin corridor of air would be split into a multi-
ple bubbles configuration, which will be analysed later in this
paper.

3.3 Choice of the ζ potential

For an NaCl electrolyte at pH = 7, the literature reports poten-
tial values of the air–water interface comprised between −20 and
−40 mV (Yang et al. 2001a; Takahashi 2005; Creux et al. 2007;
Leroy et al. 2012). The ζ M potential of the fluid-rock interface is
generally described as a decreasing function of the electrolyte con-
centration (e.g. Kirby & Hasselbrink 2004). Some studies suggest it
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Figure 3. CEK as a function of Sw . The dots represent the HS equation (EK coefficient at the saturated state). (a) Computation with ζ I = −20 mV and ζM =
{−20, −40, −60, −80} mV. (b) Computation with ζ I = {−20, −40, −60, −80} mV and ζM = −20 mV.

can be constant of about −20 mV on sands and sandstones (Jouni-
aux & Ishido 2012) or suggest that this salinity-dependence might
be blurred considering complex porous networks as encountered in
realistic rocks (Lorne et al. 1999b; Fiorentino et al. 2016).

Fig. 3(a) shows eq. (32) computed for ζ I = −20 mV and ζ M =
{−20, −40, −60, −80} mV. The dots represent the HS equation.
We can observe an increase of the EK coefficient with increasing
ζ M, but this increase remains low compared to the general increase
observed from full to partial water saturation. A contrario, when ζ M

is fixed, the variations of ζ I impact the EK coefficient in a quasi-
proportional manner (Fig. 3b). This illustrates again that the SP
response is dominated by the contribution of the gas-water interface,
whose associated charge density is magnified by the local velocity
of the fluid. The value of ζ I appears to be a key parameter controlling
the magnitude of the EK coefficient. The potential of the fluid-rock
interface can thus be set arbitrarily, considering the weakness of its
impact. For the rest of this study, both ζ I and ζ M will keep the value
of −20 mV.

4 R E S U LT S

The behaviour of the EK coefficient is now examined when the
non-wetting phase is discontinuous at the scale of the capillary.
We recall that the simulations of this work are 2-D simulations.
For a monophasic electrolyte, the correspondence between these
simulations and a 3-D analytical solution assuming an axisymmetric
geometry was shown to be valid (Fiorentino et al. 2016). This
question is a bit more complex in biphasic conditions, where the
distribution of the non-wetting phase has more degrees of freedom
in 3-D than in 2-D. This probably induces a certain variability of
the EK coefficient, but we do not think that this modifies the overall
process presented in the following study.

4.1 Entrapped bubbles

In this section, we focus on the behaviour of the EK coefficient
when bubbles are entrapped in anfractuosities. Different configura-
tions are simulated so as to compute the EK coefficient at sev-
eral saturations. The resulting systems are presented in Fig. 4.
The wetting properties are fixed with Gads

wat = 0.3 and Gads
air = −0.2

(cos θ = −0.5). The velocity grid is nyV = 100, nxV = 150.
The channel’s diameter is a bit wider than in Section 3.2.2 so
that the narrowest distance between the channel’s walls is still

>120d. The asperities have a 10 lu width, so that 80 lu represent
1.16 × 10−6 m. This gives a channel diameter 2R = 1.45 × 10−6 m.
With the criterion d/dxP ∼ 60, the potential grid is nyP = 9024,
nxP = 13582. The viscosity of the fluids is νad = 0.1666, giving the
lattice velocity cV = 411 m s−1.

The pressure drop along the capillary is 6.29 × 105 Pa, giving the
pressure gradient ‖∇P‖ = 2.9 × 1011 Pa m−1 with L = 3R. This
value is not representative of pressure gradients that can be found in
realistic geologic media, and is made strong for numerical purposes
only. A strong velocity makes the spurious currents less observable,
and decreases the shrinkage of the small bubbles. It should be noted
however that keeping the same ratio 2R/d, these simulations could
represent an electrolyte with a smaller concentration flowing in a
wider channel, giving a lower pressure gradient, and thus a smaller
velocity. According to eq. (35), a decrease of the concentration
such as C2 = (1/λ)C1 with λ > 0 would yield an increase of
the Debye length d(C2) = √

λd(C1), equivalent to an increase of
the channel’s radius R(C2) = √

λR(C1), giving a velocity increase
v(C2) = λv(C2) according to eq. (30).

The velocity fields show oscillations that do not completely fade
away, so the convergence is assessed over a long period, typically
when the relative change between 10 000 computations of the aver-
age velocity is less than 10−4, which can take up to 65 800 ts. The
convergence of the potential is reached when the relative change be-
tween 10 CEK computations is less than 10−6. This is achieved after
∼72 000 ts, which takes between 24 and 28 hr on a 16 cores parallel
computer. At the end of the simulation, all the sites belonging to the
air phase are zeroed so as to take into account the water phase only,
and the electrical field is averaged over the whole space, giving the
simulated EK coefficient.

The charge density is averaged over the number of sites belonging
to the water phase, and is compared in Fig. 5(a) to the interface area,
i.e. the number of lattice sites constituting the gas-water frontier.
Both of them are decreasing functions of Sw . The velocity averaged
over the whole medium (excluding the sites constituting the inter-
face that are non-physical) is an increasing function of Sw (Fig. 5b).
This is consistent with the analysis of Sherwood (2007); Sherwood
et al. (2013) who showed that for a given pressure gradient, the injec-
tion of bubbles modifies the relationship between the total flow rate
and the pressure drop. This behaviour corresponds to the decrease
of relative permeability with increasing air saturation invoked by
the models of Perrier & Morat (2000), Linde et al. (2007), Revil
et al. (2007), Jackson (2008, 2010), Jougnot et al. (2012). The EK
coefficient (Fig. 5c) exhibits a non-monotonous trend, that results
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Figure 4. Bubbles trapped in asperities for several saturations. Rock in grey, air in black, water in white.

Figure 5. Trapped bubbles configuration (see Fig. 4). (a) Charge density averaged over the number of water sites, and interface area versus Sw . (b) Velocity
of the electrolyte averaged over the whole pore space versus Sw . (c) EK coefficient versus Sw . The solid circle is the Helmholtz–Smoluchowski reference, the
star is the configuration Sw = 0.84 with the bubbles replaced with rock.

from the combination of the decrease of velocity with the increase
of total volumic charge density at decreasing Sw .

For any saturation, the EK coefficient is stronger than the value
at full saturation given by the HS equation. An increase by a factor
four to five can be observed compared to the saturated state. This
enhancement is explained by the presence of an excess charge at
the gas-water interface, which increases the average charge density.
Another reason for that is the fact that when the walls of the capillary
harbour bubbles, the velocity of the electrolyte approaching the
capillary surface is non zero, due to the continuity of the tangential
component of the velocity at the fluid-fluid interface. The velocity
in the bubble being non-zero, the velocity at the frontier between
air and water is greater than the velocity if the bubble area were
made of solid rock. This phenomenon is illustrated by Fig. 6 which
shows the velocity field of the configuration Sw = 0.84, and the
velocity field computed by replacing the air phase with rock. In
the presence of bubbles, the average velocity is 24 m s−1, against
21 m s−1 in the monophasic situation. The resulting EK coefficient
is −9.61 × 10−7 V Pa−1 in the single-phase case (denoted by a star

Figure 6. (a) Velocity field in the configuration Sw = 0.84 (trapped bubbles,
Fig. 4). (b) Velocity field obtained by replacing the bubbles with rock.

in Fig. 5c), and increases to −4.62 × 10−6 V Pa−1 in the two-phase
situation, for the same average charge density of 3 kC m−3.

As side remark, we can notice that the EK coefficient computed at
full water saturation is −7.71 × 10−7 V Pa−1, which is lower than the
HS forecast of −1.08 × 10−6 V Pa−1. This shows again (Fiorentino
et al. (2016), appendix) that the presence of anfractuosities, which
breach the smooth capillary assumption on which the HS equation
is based, results in a decrease of the magnitude of the EK coefficient.
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Figure 7. Bubbles flowing at different saturations. Rock in grey, air in black, water in white.

4.2 Flowing bubbles

An air injection is simulated by imposing ρair = ρ0 and ρwat

= 0 on a portion of sites, in the centre of the channel for
several steps at the beginning of the simulation (e.g. Parmi-
giani et al. 2011). The quantity of air injected in the system
is tuned by varying the duration, the position and the period
of injection. The injection is made between t = 5000 ts and
t = 6200 ts for the highest Sw , and t = 25 000 ts for the lowest
Sw . The resulting systems are presented in Fig. 7. The associated
contour line plots of the velocity field are shown in Fig. A1 (see the
Appendix). The fact that the bubbles are not created with the same
injection time, before the establishment of the steady state explains
why the bubbles have different sizes. The configuration ‘bis’ at Sw

= 0.82, and later denoted S∗
82, has an interface area 75 per cent

greater than the two-bubble configuration at the same saturation.
It allows to assess the impact of the fractioning of the non-wetting
phase.

The wetting properties are set using Gads
wat = 0.5 and Gads

air = −0.4
(cos θ = −0.9), so that there is a strong repulsion between the phase
representing air and the capillary walls. The channel’s diameter is
1.16 × 10−6 m. The dimensions of the velocity grid are nyV = 100,
nxV = 150. The convergence of the flow is reached when the relative
change of the mean velocity is less than 10−5 over 100 ts, which
can take up to 50 600 ts. The dimensions of the potential grid are
nyP = 7200, nxP = 10 836. Both fluids have the viscosity νad = 0.4.
The lattice velocity cV is 214 m s−1. The convergence of the potential
is achieved when the relative change between 10 CEK computations
is less than 10−6. The simulations stop after ∼72 000 ts, which rep-
resents between 15 and 19 hr of calculation on a 16 cores parallel
computer. The same pressure gradient as the trapped bubbles con-
figuration is applied, which yields a pressure drop of 5.03 × 105 Pa
along the capillary using L = 3R.

The assumption that the charge density scales with the inverse of
Sw implies that there is no positive charge excess associated to the
gas-water interface. For comparison, the corresponding situation is
simulated by setting ζ I = 0 V in the computation of the potential and
using the same flow configurations. The resulting average charge
density is plotted together with the average charge density of the
simulations with ζ I = −20 mV in Fig. 8(a). A significant divergence

can be observed with decreasing Sw , with a factor close to 2 at the
lowest tested saturation. The interface area shows a good correlation
with the average charge density computed with a non-zero ζ I: it
increases with decreasing Sw and drops when the bubbles merge.

Similarly to what was observed in the entrapped bubbles case, the
average velocity of the flow decreases with decreasing Sw (Fig. 8b).
The EK coefficient shows a non-monotonous behaviour, with an
enhancement up to a factor 30 compared to the saturated state
(Fig. 8c, circles). The EK coefficients computed with ζ I = 0 V
(crosses) are shown for comparison: in that case, the EK coefficient
is constant or slightly decreasing with decreasing Sw .

The configuration S∗
82 yields a charge density increase of

41 per cent and a velocity decrease of 7 per cent compared to
the two-bubbles configuration at the same saturation. The corre-
sponding EK coefficient is represented by a star in Fig. 8(c) and
amounts to −3.72 × 10−5 V Pa−1 against −2.38 × 10−5 V Pa−1 for
the two-bubbles case, which is a significant difference. For a given
saturation, increasing the fractioning of the gas phase results in an
increase of the EK coefficient, which illustrates again the correlation
between charge density and interface area.

4.3 Influence of the pressure gradient

The expression used to validate the simulations in a situation where
the phases flow in parallel (eq. 32), is independent of the pressure
gradient. However, it could be expected that when the non-wetting
phase forms discontinuous bubbles, the pressure gradient is able to
influence the EK coefficient.

The configuration Sw = 0.91 in Fig. 7 is computed with a pres-
sure gradient ‖∇P‖ = 1.2 × 1012 Pa m−1, which is 4 times larger
than the pressure gradient ‖∇P‖ = 2.9 × 1011 Pa m−1 that was
used in Section 4.2. The simulated EK coefficients are −2.58 ×
10−5 V Pa−1 in the first case and −2.60 × 10−5 V Pa−1 in the latter.
The slight discrepancy (less than 1 per cent) can be attributed to the
difference in the bubbles spreading, and appears negligible.

In the trapped bubbles configuration Sw = 0.66 presented in Sec-
tion 4.1, the EK coefficient amounts to −4.69 × 10−6 V Pa−1 using
the pressure gradient ‖∇P‖ = 2.9 × 1011 Pa m−1. By imposing a
higher gradient such as 6.0 × 1011 Pa m−1, it is possible to observe
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Figure 8. Flowing bubbles configuration (see Fig. 7). (a) Charge density in the water computed for ζ I = 0 V (diamonds) and ζ I = −20 mV (squares) versus
Sw , with ζM = −20 mV in both cases. Interface area (circles) versus Sw . The simulations in the dark grey box involve a single bubble, the simulations in the
light grey box involve two bubbles, the simulations in the white box involve bubbles that are sufficiently small to avoid merging. (b) Average flow velocity
versus Sw . (c) EK coefficient versus Sw for ζ I = −20 mV (open circles) and ζ I = 0 V (crosses). The configuration S∗

82 (star) allows to assess the impact of the
fractioning of the non-wetting phase. The solid circle denotes the Helmholtz–Smoluchowski value.

Figure 9. (a) View of the medium with entrapped bubbles at saturation
Sw = 0.66 and ‖∇P‖ = 2.9 × 1011 Pa m−1. (b) View of the medium starting
with the same initial conditions with ‖∇P‖ = 6.0 × 1011 Pa m−1.

the release of the entrapped bubbles. The opposite bubbles join the
main flow, merge and switch to a flowing configuration (see Fig. 9).
Once the equilibrium state is reached, the EK coefficient jumps to
−2.63 × 10−5 V Pa−1, which is an increase of a factor 6.

The difference between the EK coefficient value obtained after
the merging of the bubbles and the EK coefficient obtained with
‖∇P‖ = 2.9 × 1011 Pa m−1 in Section 4.2 at a similar saturation
(Fig. 7, Sw = 0.65) is of the order of 2 per cent.

These results mean that increasing the pressure gradient allows
to observe a discontinuity between the two regimes (entrapped and
flowing bubbles), but for a given situation, the value of the pressure
gradient does not modify the SP response. Using a high pressure
gradient allows to switch from a trapped configuration to a flow-
ing configuration, and thus to generate an enhancement of the EK
coefficient, but for a given stable configuration, the pressure gradi-
ent does not influence the SP response. In other words, when the
flow velocity decreases because the pressure gradient is modified,
the change of macroscopic potential difference is proportional to
the change of pressure gradient. According to eq. (1), this change is
cancelled due to the division by δP, and the EK coefficient remains
unchanged. Some small fluctuations can come from the repartition
of the bubbles, or their deformation if the velocity is very high. If
the flow velocity decreases at constant pressure gradient, then the
decrease of δV will not be compensated by δP, and the EK coeffi-
cient will decrease. In that case, the decrease of the flow velocity

is due to the increasing presence of the non-wetting phase which
decreases the relative permeability of the medium. The dynamic
state of the non-wetting phase has a significant impact on the EK
coefficient notably because it is related to the relative permeability.
The two regimes corresponding to the flowing and entrapped bub-
bles represent two different levels of relative permeability, and this
is one of the reasons why the switching from one regime to the other
has such spectacular effects.

By balancing the pressure gradient exercised along the entrapped
bubble to the capillary pressure, we can express the critical pres-
sure gradient ‖∇P‖crit needed to overcome the surface force which
maintains the bubble on the rock capillary as

‖∇P‖crit = γ

r 2
B

. (42)

With rB = 35 lu, dxV = 1.46 × 10−8 m and the γ value estimated in
Section 3.1, the calculation gives ‖∇P‖crit = 1.37 × 1012 Pa m−1.
This remains consistent with the ‖∇P‖crit observed in the simula-
tions, comprised in the range 3–6 × 1011 Pa m−1, since eq. (42) does
not take into account the geometry of the asperity and the contact
angle properties. For the present case, the repulsion between the air
phase and the solid phase contributes to the decrease of ‖∇P‖crit. In
this model, the value of ‖∇P‖crit is the only way the surface tension
between the two fluids influences the general mechanism.

Another question related to the pressure gradient is whether the
flow is still in the laminar regime despite the strong imposed pressure
drop. This feature is quantified thanks to the Reynold’s number
defined as

Re = Ul

ν
(43)

where U is a characteristic velocity chosen here as the maximum ve-
locity, and where l is a characteristic length of the medium, typically
the pore diameter. This question matters since according to the study
of Watanabe & Katagishi (2006), the EK coefficient begins to devi-
ate from the HS equation at Reynold’s number >3. The Reynold’s
numbers of the present simulations are much higher. However, the
mechanism proposed by Watanabe & Katagishi (2006) to explain
this deviation, based on the work of Lorne et al. (1999a), is the oc-
currence of counter-flows in the crevices of the irregularly shaped
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Figure 10. Simulation in a channel with asperities. The parameters are
2R = 1.16 × 10−6 m, ‖∇P‖ = 1.2 × 1012 Pa m−1. The maximum velocity
is U = 131 m s−1, giving Re = 152. (a) Velocity directions (red arrows). Rock
in grey, air in black, water in white. (b) Velocity directions superimposed on
the velocity norm (m s−1), zoom on an asperity.

channel, leading to a decrease of the EK coefficient when the flow is
fast. Most of the present simulations take place in a smooth capillary
which is not prone to generate such counter-flows. When the channel
is irregularly shaped we can observe some fluctuations of the veloc-
ity directions in the anfractuosities (see Fig. 10a). However, these
fluctuations correspond to very small velocity amplitudes (less than
1 m s−1, see Fig. 10b) which can be safely neglected compared to
the velocity of the main flow (maximum velocity U = 131 m s−1).
If they were not, they would mask a further increase of the EK
coefficient.

5 D I S C U S S I O N

In this paper, the influence of a non-zero potential at the gas-water
interface has been investigated. The results show that this contri-
bution is a key component of the EK response in unsaturated con-
ditions. The fluid–gas interfaces generate an enhancement of the
EK coefficient not only because they increase the charge density,
but also because they are placed away from the rock surface, where
the related positive charge excess is multiplied by a large veloc-
ity. The distribution of the air phase greatly affects the magnitude
of the streaming potential enhancement. It can be observed in Fig. 11
that the configuration of parallel flows is a kind of maximum en-
velope of the EK coefficient in unsaturated conditions, because in
this case, the interface is located in the area that maximizes the ve-
locity multiplying its associated charge density. When the air takes
the form of bubbles, the flow velocity is slowed, which results,
combined with the increase of charge density with increasing air
saturation, in a non-monotonous behaviour of the EK coefficient.
At high Sw , CEK increases compared to the saturated state because
of the apparition of the polarized air–water interfaces. When Sw

decreases, the related positive charge excess increases, and so does
the EK coefficient. At high Sw , the velocity decrease remains low

Figure 11. Comparison of the EK coefficients simulated with
ζM = ζ I = −20 mV for the three types of air distribution: flow in par-
allel (squares), bubbles flowing (triangles), entrapped bubbles (circles).

and does not prevent CEK from increasing. Below a critical Sw , the
velocity decrease overcomes the charge density increase, leading
to a constant (Fig. 5c) or decreasing (Fig. 8c) EK coefficient. The
velocity decrease reflects the decrease of relative permeability at
low Sw . When the air is entrapped in the crevices of the porous
network, the enhancement is lower, because the interface is placed
in areas where the fluid velocity is lower.

A weakness of this model could be the use of a unitary viscosity
contrast between the air and the water phase. We think nonethe-
less that it does not change the main conclusions of this work. In
the case of the bubbles flowing, the deformation of the bubbles at
Sw < 0.5 (see Fig. 7) is quite similar to what can be observed for real
air bubbles propagating at high speed. The velocity profile inside
the bubble is roughly homogeneous (see Fig. 12), meaning that the
viscosity of the phase representing air is not a sensitive parameter.
Considering the trapped bubble case, we know from Fig. 6 that the
convection movement described by the air phase in the bubble ac-
celerates the water flow compared to the solid case. This convection
cell turns slowerly than if it were real air, because real air is less
viscous than the viscosity used in these simulations. Consequently,
a real air bubble would even more increase the velocity of the elec-
trolyte, which would further increase the EK coefficient value, and
thus reinforce these results.

The mechanisms creating the negative potential of the air–water
interface being not thoroughly understood, an assumption that is
implicitly made in this paper is that the negative charges causing
the ζ I potential are placed in the air. In monophasic conditions,
the negative potential of the rock matrix creates a positive charge
excess that creates an electrical current when these positive ions
are dragged with the flow; this current is counterbalanced by the
conduction current, but is not counteracted by the negative charges
causing ζ M, because these charges stand still at the rock surface.
In multiphase conditions, we made the hypothesis that the negative
charges are placed in the air phase and do not contribute to the
calculation of CEK, since the potential difference δV is measured in
the water. However, if these negative charges were in the water, they
should be taken into account in the calculation of the local electric
charge density. This would not impact the configuration of trapped
bubbles, because in that case the air–water interface does not move,
and the negative charges adsorbed at this interface would not create
any current. In contrast, the flowing bubbles configuration would
be very impacted, because in that case the interface is flowing,
and the negative charges moving with the interface would create
a countercurrent balancing the current associated to the positive
charge excess. The contribution of the air-water interface to δV
would only come from the velocity difference between the negative
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Figure 12. Velocity profiles in m s−1 of the configurations Sw = 0.86, 0.60 and 0.33 (see Fig. 7). Cross-sections at 1/5 from the left of the capillary. Theoretical
Poiseuille profile in dashed line.

charges creating ζ I and the positive charges screening ζ I, which is
small. In that case, the enhancement caused by the bubbles should
be close to zero, and the system should be described with ζ I � 0.
In other words, if the negative charges causing ζ I were in the water,
the enhancement of CEK compared to the saturated state would be
non-zero, as long as the air–water interface would remain fixed. The
dynamic aspect of the EK response would then induce a maximum
enhancement with fixed bubbles, and no enhancement obtained with
flowing bubbles. This is not the case in this article, where we made
the assumption that the negative charges remain in the air, leading
to an EK coefficient which is more increased for flowing bubbles
than for fixed bubbles.

Let us now compare this work to the other models predicting an
enhancement of the EK coefficient. These simulations have allowed
to investigate the contribution of the fluid-gas interface when the
gas phase is distributed in a single capillary. This is a very different
approach from the bundle of capillary tubes model which consid-
ers several capillaries occupied by a single phase. By developing
such model to the case where each capillary can have a different
radius, Jackson (2008, 2010) shows that the excess charge density
transported by the flow depends on the capillary size distribution,
the wettability and the relative importance of the electrical double
layer compared to the capillary radius. In the water-wet case, the EK
coefficient is shown to be a decreasing function of the air saturation,
because the irreducible water in the smaller capillaries contributes
to the electrical conductivity without contributing to the streaming
current. In the oil-wet case, when the diffuse layer is not negligible
compared to the capillary radius, the electrical conductivity is more
impacted by the increasing occupancy of oil than the streaming cur-
rent. In that case, the EK coefficient can be enhanced up to a factor
2 depending on the capillary size distribution, before decreasing
to zero at the irreducible saturation. Under certain conditions, by
expressing the EK coefficient as

CEK = Qek

σrη
(44)

where Qe is the electric charge density and k the rock permeability,
and by using the Archie’s law σr = Sn

w to express the rock electrical
conductivity, Jackson (2010) obtains an enhancement of the EK
coefficient in the water-wet case, but specifies that this approach is
consistent only if the saturation exponent is n = 1, and that it does
not apply to all geologic porous media.

Jougnot et al. (2012) also obtain an enhancement of the EK coef-
ficient with a non-monotonous behaviour. Using eq. (44) extended
at partial saturation to calculate the EK coefficient, they express the
charge density as a flux-averaged quantity, which is defined using
the charge density at water saturation, the velocity of the electrolyte
and a capillary size distribution. The capillary size distribution is in-
ferred from soil properties using either capillary pressure-saturation
relationships or relative permeability functions. Depending on the
soil characteristics (porosity, permeability, irreducible saturation),
they can obtain a decreasing CEK with decreasing Sw or a non-
monotonous trend with an enhancement compared to the saturated
state up to a factor 5, consistent with experimental and field mea-
surements. The enhancement of the EK coefficient is there again
related to the rock texture.

These works allow to capture petrophysical features which are
not possible to study with the present simulations, such as the effect
of irreducible saturation and capillary size distribution. They do not
consider a non-zero ζ I potential at the air–water interface.

Another element, which deserves to be studied if the fluid-gas
interface contribution is considered as significant, is the behaviour
of the interfacial area. In the topology of real porous media, the
interconnected pores of the rock networks offer more possibilities
to the air phase to spread, merge, and be trapped. It has been reported
(Allègre et al. 2015) according to both experimental and numerical
studies (Culligan et al. 2004; Porter et al. 2009) that the air–water
interfacial area during drainage experiments is a non-monotonous
function of Sw . Such behaviour could reinforce the decrease of CEK

at low Sw , which is weak in these single capillary model simulations,
where the interfacial area increases with decreasing Sw or remains
roughly constant.

The pressure gradient does not appear to affect the SP response
per se, but high flow velocities generated by high pressure drops are
able to release entrapped bubbles, and thus modify the EK coeffi-
cient enhancement. The value of pressure drop allowing the release
of bubbles is determined by the pore size, bubbles sizes and sur-
face tension between the fluids (see Section 4.3). In a realistic rock
and for a given pressure drop, the fraction of pores below a critical
radius should be in the trapped bubble configurations, while the
fraction of pores above the critical radius should be in the flowing
bubble configuration, meaning that the impact of the global flow
rate on the SP response may be another element determined by the
pore size distribution. This opens a new perspective to explain the
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change of magnitude in EK coefficient observed in the experiments
of Allègre et al. (2010), where the lower the dipole, the stronger the
SP response. Considering the analysis of the pressures recorded in
these experiments, a change of the interface mobilities going down
in the column corresponding to a transition of bubble configuration
could yield an increase of the SP response. Future work on experi-
mental measurements of the saturation and bubble state during such
experiments is needed to confirm this interpretation.

6 C O N C LU S I O N S

The simulations of this work show that the electrical charge density
associated to the gas-water interfaces is a key element of the EK
response. These interfaces yield an increase of the EK coefficient
compared to the saturated state. With the assumption that the neg-
ative charges causing the ζ I potential are in the air, this increase is
more important for flowing bubbles than entrapped bubbles.

The EK coefficient enhancement generated by fluid-gas inter-
faces should improve the performance of the SP-based geophysi-
cal techniques in unsaturated conditions. This enhancement should
affect the estimate of water flux and unsaturated soil hydraulic
parameters inferred from SP measurements, whose magnitude is
determined by the electrokinetic coupling (Sailhac et al. 2004).
Some SP observations related to pumping tests and showing an un-
explained enhancement of 25 per cent just above the water table
may find an explanation in the enhancement of the EK coefficient
in unsaturated conditions, rather than assuming a decaying expo-
nential behaviour as a function of the decreasing water saturation
(Malama 2014). The transmissivity and storativity inferred from SP
observations may thus be better constrained even for a confined het-
erogeneous aquifer. When using the SP to deduce the hydrothermal
zones on volcanoes, the air–water interface should be taken into ac-
count since air convection can also be present if the porous medium
is sufficiently permeable (Antoine et al. 2009). Finally, these results
should be accounted for the monitoring of the water alternate gas
injections in reservoirs, where the interfaces between injected water
and injected gas could explain the peak of the SP signal associated
to the water front (Anuar et al. 2014).
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Maineult, A., Jouniaux, L. & Bernabé, Y., 2006. Influence of the miner-
alogical composition on the self-potential response to advection of KCl
concentration fronts through sand, Geophys. Res. Lett., 33(24).

Maineult, A., Strobach, E. & Renner, J., 2008. Self-potential sig-
nals induced by periodic pumping, J. geophys. Res., 113, B01203,
doi:10.1029/2007JB005193.

Malama, B., 2014. Theory of transient streaming potentials in coupled un-
confined aquifer-unsaturated zone flow to a well, Water Resour. Res.,
50(4), 2921–2945.

Martys, N.S. & Chen, H., 1996. Simulation of multicomponent fluids in
complex three-dimensional geometries by the Lattice Boltzmann method,
Phys. Rev. E, 53(1), 743, doi:10.1103/PhysRevE.53.743.

Mauri, G., Williams-Jones, G. & Saracco, G., 2010. Depth determinations
of shallow hydrothermal system by self-potential and multi-scale wavelet
tomography, J. Volcanol. Geotherm. Res., 191, 233–244.

Minsley, B.J., Sogade, J. & Morgan, F.D., 2007. Three-dimensional self-
potential inversion for subsurface DNAPL contaminant detection at
the Savannah River Site, South Carolina, Water Resour. Res., 43,
doi:10.1029/2005WR003996.

Misztal, M.K., Hernandez-Garcia, A., Matin, R., Sørensen, H.O. & Math-
iesen, J., 2015. Detailed analysis of the Lattice Boltzmann method on
unstructured grids, J. Comput. Phys., 297, 316–339.

Naudet, V., Revil, A., Rizzo, E., Bottero, J.-Y. & Bégassat, P., 2004.
Groundwater redox conditions and conductivity in a contaminant plume
from geoelectrical investigations, Hydrol. Earth Syst. Sci. Discuss., 8(1),
8–22.

Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B., 2011. Pore-scale
mass and reactant transport in multiphase porous media flows, J. Fluid
Mech., 686, 40–76.

Perrier, F. & Morat, P., 2000. Characterization of electrical daily variations
induced by capillary flow in the non-saturated zone, Pure appl. Geophys.,
157, 785–810.

Perrier, F., Trique, M., Lorne, B., Avouac, J.-P., Hautot, S. & Tarits, P., 1998.
Electric potential variations associated with lake variations, Geophys. Res.
Lett., 25, 1955–1958.

Porter, M.L., Schaap, M.G. & Wildenschild, D., 2009. Lattice-Boltzmann
simulations of the capillary pressure–saturation–interfacial area relation-
ship for porous media, Adv. Water Resour., 32(11), 1632–1640.

Pride, S., 1994. Governing equations for the coupled electromagnetics and
acoustics of porous media, Phys. Rev. B: Condens. Matter Mater. Phys.,
50, 15 678–15 695.

Pride, S.R., Flekkøy, E.G. & Aursjø, O., 2008. Seismic stimulation for
enhanced oil recovery, Geophysics, 73(5), O23–O35.

Qian, D., McLaughlin, J., Sankaranarayanan, K., Sundaresan, S. & Kon-
tomaris, K., 2006. Simulation of bubble breakup dynamics in homoge-
neous turbulence, Chem. Eng. Commun., 193(8), 1038–1063.

Revil, A. & Cerepi, A., 2004. Streaming potentials in two-phase flow con-
ditions, Geophys. Res. Lett., 31(11), doi:10.1029/2004GL020140.

Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S. & Finsterle, S.,
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A P P E N D I X

Figure A1. Contour line plots (m s−1) of the velocity fields corresponding to the bubbles shown in Fig. 7.
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Table A1. Notation.

Symbol Description Unit

Physical variables
CEK Electrokinetic coefficient V Pa−1

Ci Local concentration of species i ions m−3

C∞
i Concentration of species i in the middle of the channel or out of the sample ions m−3

χ Local coordinate measuring the distance to the rock surface m
d Debye length m
δV Macroscopic potential difference V
δP Macroscopic pressure difference Pa
E Local electrical field V m−1

εr Fluid relative permittivity -
η Fluid dynamic viscosity Pa s
k Rock permeability m2

l Flow characteristic length m
L Capillary length m
μ Fluid volumetric mass kg m−3

n Saturation exponent in Archie’s law -
ν Fluid kinetic viscosity m2 s−1

ψ Local electrical potential V
Qe Electrical charge density C m−3

R Capillary radius m
Re Reynold’s number -
Sw Water saturation -
σ r Rock electrical conductivity S m−1

σ f Fluid electrical conductivity S m−1

T Temperature K
θ Contact angle ◦
v Local velocity m s−1

U Flow characteristic velocity m s−1

zi Valence of species i -
ζM Potential of the fluid-rock interface V
ζ I Potential of the fluid-fluid interface V

Modelling variables
c Lattice velocity m s−1

dx Lattice space step m
dt Lattice time step s
D Artificial diffusion coefficient m2 s−1

f λ
i Local particle distribution function of phase λ in direction i for the velocity calculation mu lu−2 H−1

Fλ Interaction force term exercised on component λ mu lu−1 H−1 ts−2

Fads
λ Fluid-solid interaction term in Fλ mu lu−1 H−1 ts−2

Fcoh
λ Fluid-fluid interaction term in Fλ mu lu−1 H−1 ts−2

Gads Parameter allowing to tune the contact angle ts−1

Gcoh Parameter controlling the magnitude of the surface tension lu2 H mu−1 ts−1

γ Surface tension mu lu H−1 ts−2

hi Local particle distribution function in direction i for the potential calculation V
νad Adimensional kinematic viscosity lu2 ts−1

Pad Local adimensional fluid pressure mu.H−1 ts−2

rB Bubble radius at equilibrium lu
ρ Local total density mu lu−2 H−1

ρ0 Initial total density mu lu−2 H−1

ρλ Local density of component λ mu lu−2 H−1

ρe Local electrical charge density C m−3

τλ Relaxation time of component λ ts
uλ Local velocity of component λ lu ts−1

ueq
λ Local velocity used in the equilibrium distribution lu ts−1

u′ Local composite velocity of the mixture lu ts−1

u Local total velocity lu ts−1

si Flag variable of the lattice site i -
wi Weights of the equilibrium distribution -

Physical constants
e Fundamental charge C
ε0 Vacuum permittivity F m−1

kB Boltzmann constant J K−1
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