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Onsager reciprocity relations derive from the fundamental time reversibility of the underlying microscopic
equations of motion. This gives rise to a large set of symmetric cross-coupling phenomena. We here demonstrate
that different reciprocity relations may arise from the notion of mesoscopic time reversibility, i.e., reversibility of
intrinsically coarse-grained equations of motion. We use Brownian dynamics as an example of such a dynamical
description and show how it gives rise to reciprocity in the hydrodynamic dispersion tensor as long as the
background flow velocity is reversed as well.
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I. INTRODUCTION

Onsager reciprocity or symmetry relations [1,2] describe a
wide range of cross-coupling phenomena. Even though they
were most intensely studied in the 1940s to 1960s—see Ref. [3]
for an excellent review—their relevance is still strong in many
fields, and they play the role as a foundation of irreversible
thermodynamics [4]. Well studied cross-coupling phenomena
include the thermomechanical effect (piezoelectrical ele-
ments), the thermoelectric effect, electrokinetic phenomena,
multispecies molecular diffusion, transference in electrolytic
solutions, and thermomagnetism [3]. More recently, the
statistical mechanical arguments of Onsager have also been
applied in a hydrodynamic context [5,6].

Historically, the diffusion of heat in anisotropic solids and
the symmetry of the thermal conductivity tensor have played a
key role. These symmetries were observed as early as 1893 by
Soret [7,8] and, at the time, partly explained by geometrical
arguments pertaining to the symmetries of crystal lattices.
But only with the general theory of Onsager, who also used
heat diffusion as a starting point, were the wide range of
cross-coupling phenomena given a common and fundamental
theoretical basis.

Classical Onsager theory as given by de Groot [4] and by
Onsager himself is based on the notion of the fundamental
time reversibility of the underlying microdynamics. The time-
reversal symmetry is attributed to the microscopic equations
that describe individual particles. In this paper we demonstrate
that the time-reversal symmetry does not have to be attributed
to the microdynamics but may just as well be attributed to a
mesoscopic description in between the microlevel and that of
the linear laws with its transport coefficients and in this case
too Onsager reciprocity relations for the macroscale transport
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coefficients results. This enlarges the scope of irreversible
thermodynamics by opening for the application of the same
analysis to new systems, and therefore the class of reciprocity
relations that results will also be enlarged.

This is exemplified here by a case of flow of two miscible
fluids in a complex medium. This flow is described by a
hydrodynamic dispersion tensor which becomes symmetric
under hydrodynamic flow reversal by virtue of Onsager
reciprocity. This is shown by a mesoscopic approach where
Brownian dynamics is taken as the mesoscopic and lowest
level description. The Brownian particles are simply random
walkers that move along on the hydrodynamic background
field u. This means that we are dealing with three separate
length scales:

(i) the mean free path of the particles,
(ii) the hydrodynamic scale on which the particle motion

may be averaged into velocity and density fields ρ and u, and
(iii) the porous-continuum scale on which averaging over

the geometric heterogeneities and flow field of the porous
medium makes sense.

These different scales are assumed to be sufficiently far
apart.

The end result, which pertains to the porous-continuum
scale show that the tensor, relating the concentration gradients
in the spatial direction i to the diffusive flux in direction j

satisfies the symmetry relation,

Dij (u) = Dji(−u). (1)

In doing so we make contact with the results of Auriault et al.
[9] who showed these relations, albeit on the basis of contin-
uum mechanics and only in the small Péclet (Pe) number limit.

The structure of the derivation proceeds from the equations
of motion of the Brownian particles and the equivalent
Fokker-Planck equation. Then a small numerical simulation
is used to show that particle number fluctuations behave as
in an equilibrium situation, even though our system is not in
equilibrium but in a driven steady state. The standard Onsager
theory may then be applied as soon as the fluxes and forces
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governing the entropy production are identified. The Gibbs
expression for the entropy [10,11] allows this identification in
a straightforward way. The end result of Eq. (1), which belongs
on the largest scale, is thus connected to the time reversibility
on the smallest scale (i).

II. RECIPROCITY DERIVED FROM THE
MESOSCOPIC LEVEL

The link between the microscopic reversibility and the reci-
procity of the transport coefficients is the regression hypoth-
esis, which expresses the idea that spontaneous fluctuations
on the average decay according to the macroscopic laws with
their transport coefficients. This very plausible hypothesis may
also be proved through the fluctuation-dissipation theorem on
the basis of Hamiltonian dynamics [12,13].

However, given this hypothesis, any reversible micrody-
namics will suffice as a basis for Onsager reciprocity. This
includes equations of motions which are normally regarded
as mesoscopic in nature, i.e., an averaged representation of
collections of particles. The Brownian dynamics consists of a
number of mesoscopic particles, labeled n, that are propagated
by simple random shifts to their velocities. Each particle
velocity is given by a prescribed random update along with
a background velocity field u(x). So, adding the random
component δvn, the particle velocity becomes

ṙk = u(rk) + δvk. (2)

Here δvk is picked from a symmetric distribution p(δvk) =
p(−δvk). Note that Eq. (2) may also be written as

drk = u(rk)dt + dW, (3)

where dW is a Wiener process 〈dWidWj 〉 = σ 2δij dt where
the steps dWi are uncorrelated and sampled from a Gaussian
distribution.

The above equation may be derived as the overdamped
inertialess limit of the Langevin equation. This equation,
which describes the balance of dissipative and fluctuating
forces is mesoscopic and probabilistic in nature. It is in itself
not invariant under time reversal. But Eq. (2), which is also
mesoscopic and probabilistic in nature, is.

Time-reversal t → −t implies ∂/∂t → −∂/∂t and ṙk →
−ṙk as well as δvk → −δvk . So, if we combine time reversal
with the reversal of the background field u(x) → −u(x),
Eq. (2) is left invariant. Note that we rely on the symmetric
form of the p(δv) distribution. If solid boundaries are present,
as in a porous medium, their impermeable nature may be
represented by the time-reversible prescription drk → −drk

at the walls. This means that a time-sequence rk(t) with the
background field u(x) will be statistically indistinguishable
from the reverse time-sequence rk(−t) with the background
field −u(x) as is illustrated in Fig. 1. Correspondingly, any
function of a set of forward time sequences {rk(t)}u associated
with the background field u(x) will be statistically invariant if
we make the replacement {rk(t)}u → {rk(−t)}−u.

An immediate consequence of this is that any macroscopic
variables Ni(t) that are functions of the particle positions {rk}
only will have an autocorrelation function that satisfies

〈Nj (τ )Nk(0)〉u = 〈Nj (−τ )Nk(0)〉−u, (4)

u −u1

2

3

4

(a) (b)

1 3

2

4
t      − t

FIG. 1. The effect of time reversal with the implied u → −u
inversion in a porous medium (shaded). The forward time path in (a)
is inverted in (b).

where the average 〈 · · · 〉u and 〈 · · · 〉−u denote ensemble
averages with background fields ±u. In order to define
boundary conditions for the flow while maintaining a total
system which is closed, we introduce reservoirs surrounding
the porous medium. In these reservoirs u = 0. We will take
Ni to be the particle number in one of these surrounding
reservoirs, labeled by i and shown in Fig. 1.

Since Eq. (4) is the basic starting point in the proof of
the Onsager reciprocity relations [4], it may be shown that
the linear laws relating the time evolution of the Ni’s with the
corresponding forces will be defined by coefficients that are
reciprocal.

The flow reversal u → −u is feasible whenever the
Reynolds number is small. The resulting steady states may
be studied directly by computer simulation techniques, which
are well established now but were unknown at the time when
Onsager’s reciprocity relations were established experimen-
tally [3].

III. THE FOKKER-PLANCK EQUATION AND THE
CONTINUUM DESCRIPTION

Since there is no conservation of momentum as in Hamil-
tonian dynamics, our phase space consists of the N particle
positions only, i.e., � = {r1,r2, . . . ,rN }. Following standard
procedures [14] the Fokker-Planck equation, which describes
the distribution �(�,t) in this phase space, may be derived by
the requirement that the linear procedures of taking the time
derivative and the average should commute. This should be
the case for any function f (�) so that 〈df/dt〉 = d〈f 〉/dt or∫

d�
∂�

∂t
dt f (�) =

∫
d� �(�,t)df (�). (5)

Using Eq. (3), the right hand side becomes∫
d� �(�,t)df (�)

=
∫

d� �

(
∂f

∂rk

· ṙkdt + 1

2

∂2f

∂rj ∂rk

dWkdWj

)

=
∫

d� �(�,t)

(
uk · ∂f

∂rk

+ σ 2

2
∇2

k f

)
dt

=
∫

d� f (�)

(
−∇k · (�uk) + σ 2

2
∇2

k �

)
dt, (6)
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where a summation over repeated indices is assumed here and
throughout. In going from the second to the third line above,
Itô’s lemma was applied, and in going to the fourth line, partial
integration was applied. Comparing with Eq. (5) we get the
Fokker-Planck equation,

∂�

∂t
= −∇k · [�(�,t)uk] + σ 2

2
∇2

k �(�,t). (7)

Since this equation is in the form ∂�/∂t = −∇k · Jk , it may
also be considered a Liouville equation that expresses the local
conservation of system numbers in the ensemble. It is easily
observed that Eq. (7) allows the product solution,

�(�,t) =
N∏

k=1

[	V P (rk,t)], (8)

where 	V N is the elementary subvolume that is used to
discretize phase space and the single particle probability
distribution satisfies the advection-diffusion equation,

∂P

∂t
= −∇ · (P u) + D∇2P, (9)

where D = σ 2/2. As the particle density is simply ρ = NP ,
this may be written

∂ρ

∂t
= −∇ · (ρu) + D∇2ρ, (10)

which is indeed the hydrodynamic description on scale (ii)
required to govern the upscaled flow and dispersion.

IV. GIBBS ENTROPY AND THE ENTROPY PRODUCTION

We will calculate the entropy by a standard Gibbs
expression,

S = −kB

∑
�

�(�,t) ln �(�,t), (11)

where we also allow for a time dependence. This expression
was applied by Seifert [10] and Speck et al. [11] who used
it to introduce the entropy of single paths and expanded
the description to include the energy exchange between the
Brownian particle system and the system of the embedding
fluid (the solvent). In doing this, energy conservation and
exchange between the two systems are natural and physical
assumptions. For our purposes, however, we only need to
consider the system of Brownian particles, and in focusing
the description on a subsystem only, we cannot assume energy
conservation. For this reason, thermal diffusion is not part of
the picture either.

Replacing the above sum by an integral,

∑
�

=
∏
k

∫
d3rk

	V
, (12)

and using Eq. (8), the entropy becomes

S = −kB

∏
k

∫
d3rkP (rk,t) ln

(∏
k′

[P (rk′ ,t)	V ]

)

= −kB

∏
k

∫
d3rkP (rk,t)

∑
k′

ln[P (rk′,t)	V ]

= −kB

∑
k′

∫
d3rk′P (rk′ ,t) ln[P (rk′ ,t)	V ]

= −kB

∫
d3x ρ(x,t) ln

(
ρ(x,t)

	V

Ntot

)
. (13)

In going from the first to the second line we have taken the
product out from inside the ln function, and in going from the
second to the third line we have used that all k �= k′ integrals
only produce a factor of 1 due to the normalization of P (rk,t)
and in passing to the last, the fact that the summand is k

independent and the ρ = PNtot relation again. We will write
the entropy as

S =
∫

d3x s(x,t), (14)

where the entropy density,

s(x,t) = −kBρ ln

(
ρ

ρm

)
, (15)

and the upper limit for the density ρm = Ntot/	V would result
from putting all particles in one cell.

A. Numerical evidence for equilibrium distributions
in the steady states

In order to apply Onsager theory it is standard to start out
with the assumption that every microstate is equally probable
and use this to express the relevant probability distributions in
terms of the entropy. Unfortunately, the standard assumption
of local equilibrium [15] may not prove this assumption in a
rigorous way as small local deviations from equilibrium may
in principle add up to create a finite effect on, say, the particle
number in a reservoir.

The standard equilibrium result for the probability distri-
bution in a closed system is that P (Ni) ∝ exp[S(Ni)/kB].
However, in our case, the system is not in equilibrium, and
the particle numbers Ni depend on u through the steady state
solution of our Fokker-Planck equation or more directly on
Eq. (10). The direct generalization of the equilibrium result is
then given by using the entropy of Eq. (13). The probability of
a given reservoir particle number Ni then takes the form

P (Ni,u) ∝ exp[S(Ni,u)/kB], (16)

where S(Ni,u) is the entropy given by Eq. (13). This relation
is a necessary basis for the application of Onsager theory, so
we need to show that this equilibrium result holds for our
nonequilibrium driven system as well.

Fortunately, it is straightforward to show this numerically.
However, in order to do this we need to work out the prediction
that results from the combination of Eqs. (13) and (16). If the
volume integral of Eq. (13) is discretized into a sum over phase
space cells of volume 	Vα , the total entropy of the central cell
and the reservoir, may be written

S

kB

= −
∑

α

Nα ln

(
Nα

Ntot

)

= −
∑

α

(Nα ln Nα − Nα ln Ntot), (17)

022136-3



FLEKKØY, PRIDE, AND TOUSSAINT PHYSICAL REVIEW E 95, 022136 (2017)

where we have introduced the new label α to label the number
of particles Nα = ρ(xα)	Vα located in 	Vα . We may further
split Nα in an average and a fluctuation Nα = Nα + δNα ,
where δNα 	 Nα and Nα = Nα(x,u). Components of S that
are δNα independent, that is, constant terms under variations
of the Nα’s will disappear under the normalization of P (N,u).
We may therefore group any such terms into a constant term
S ′′

0 . In particular, the last term above becomes
∑

α Nα ln Ntot =
Ntot ln Ntot. We may then write

S

kB

= −
∑

α

Nα ln Nα + S ′′
0

kB

= −
∑

α

Nα ln Nα + Nα ln

(
1 + δNα

Nα

)
+ S ′′

0

kB

≈ −
∑

α

{
(Nα + δNα) ln Nα + (Nα + δNα)

×
[

δNα

Nα

− 1

2

(
δNα

Nα

)2
]}

+ S ′
0

kB

= −
∑

α

{
δNα ln Nα + (Nα + δNα)

×
[

δNα

Nα

− 1

2

(
δNα

Nα

)2
]}

+ S0

kB

≈ −
∑

α

(
δNα ln Nα + δN2

α

2Nα

)
+ S0

kB

, (18)

where we have used the facts that
∑

α δNα = 0, the S ′′
0 , S ′

0,
and S0 only differ by δNα-independent terms, the second
order expansion ln(1 + x) ≈ x − x2/2, and finally, that we
may discard a δN3

α term.
The resulting distribution,

P ({Nα},u) ∝
∏
α

exp

(
− δN2

α

2Nα

− δNα ln Nα

)
(19)

factorizes into a simple product of single elementary cell
probabilities.

These elementary cells were introduced to discretize phase
space and belong on the smallest scale (i), whereas we are in
fact interested in the particle populations on the hydrodynamic
scale (ii), which take the form

Ni =
∑

αεm(i)

Nα, (20)

where the notation αεm(i) is to be understood in the sense
that i labels a supercell composed of many elementary cells
and m(i) is the set containing the corresponding α values. In
the following we will assume that in such a supercell there
are M elementary cells of equal size with only negligible
variations in u(x) between them. This assumption resembles
the standard assumption of local equilibrium, both in the fact
that it assumes negligible variations in the hydrodynamic fields
and by the underlying requirement that scales (i) and (ii) are
separated. With these two assumptions we can take the ln Nα

term to be constant under the local αεm(i) sum, and Eq. (19)

may be written in the following way:

P ({Ni},u) ∝
∏

i

exp

⎛
⎝−

∑
αεm(i)

δN2
α

2Nα

+ ln NαδNα

⎞
⎠

=
∏

i

exp

⎡
⎣ln NαδNi −

⎛
⎝ ∑

αεm(i)

δN2
α

2Nα

⎞
⎠

⎤
⎦. (21)

Here the δN2
α term implies that the fluctuations δN2

α ∼ Nα

so that the sum
∑

αεm(i) δN
2
α/(2Nα) ∼ M . On the other hand,

the δNi = ∑
αεm(i) δNα term is a sum of M independently

fluctuating contributions each with a finite variance and
hence, according to the central limit theorem, has a variance
〈δN2

i 〉 ∼ M . For this reason the last term in the exponent is
ln NαδNi ∼ ln Nα

√
M . Taking M 
 1 we see that this term

may be neglected compared to the quadratic term. This gives

P ({Ni},u) ∝
∏

i

exp

⎛
⎝− ln NαδNi −

∑
αεm(i)

δN2
α

2Nα

⎞
⎠ (22)

≈
∏

i

exp

⎛
⎝−

∑
αεm(i)

δN2
α

2Nα

⎞
⎠. (23)

This result has the standard equilibrium form, although it
represents a nonequilibrium generalization by virtue of the
u(x) dependence in Nα . The result of Eq. (23) shows that the
δNi’s are distributed exactly as if they were the sum of M

independent terms, i.e., δNi = ∑
α δNα , which independently

satisfy a Gaussian distribution of variance Nα . The central
limit theorem then tells us that the δNi’s too are given by a
Gaussian distribution with a variance MNα = Ni , that is,

P ({Ni},u) ∝
∏

i

exp

(
−

∑
i

δN2
i

2Ni

)
. (24)

The same argument applies unchanged to further upscaling,
so the Ni’s in Eq. (24) may also be taken to represent
the entire populations of the reservoirs. This means that
in the simulations we may use only two volumes, the one
where the driving takes place u(x) �= 0 and the reservoir where
u(x) = 0. The resulting distribution of the particle number in
any given region is insensitive to the internal variations in
ρ(x). Due to overall conservation of particles, the two average
particle numbers that enter Eq. (19) are Ni and Ntot − Ni (now
i = 1), and the corresponding distribution is

P (N1) ∝ exp

[
−δN2

1

(
1

2N1
+ 1

2(Ntot − N1)

)]
, (25)

which narrows to a δ peak as N1 → Ntot.
To verify this result numerically we simply simulate the

dynamics of 1000 particles that behave according to Eq. (3).
Taking the geometry that is illustrated in Fig. 2 as the proving
ground we measure the distribution of the number N1 of
particles that reside in the reservoir region. For simplicity
there is only one reservoir in this case, and it encloses
the gray region, which is the only region with a nonzero
background velocity field. Three cases of different velocity
fields were studied, and in all the simulations the initial particle
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1

L/2 x

y

L/2

L

L

u(x)

N

VΔ

Central cell

FIG. 2. Illustration of the Brownian dynamics simulation setup.
The background velocity u(x) vanishes outside the central region, and
the particle number N1 outside in the reservoir region is recorded. The
subcells have volume 	V .

distribution was homogeneous. For any particle that arrived
outside the reservoir region, the replacement δrn → −δrn

was performed. The equilibrium case with u = 0 was verified
first before a constant field ux = u0 and a sinusoidal field
ux = u0 sin(2πy/L) were studied. In Fig. 3 the constant field is
observed to reduce the particle number in the central cell more

700 750 800 850 900 950
N1

0

0.01

0.02

0.03

0.04

0.05

P(
N

1)

FIG. 3. The distributions P (N ) for different flow conditions in
the central cell illustrated in Fig. 2. The circles, squares, and triangles
show measurements, and the straight lines show the theoretical
expectation of Eq. (25). The red circles show the distribution that
results from u = 0, the green squares show ux = u0 sin(2πy/L), and
the blue triangles show ux = u0, all with a velocity of u0 = 1. The
Péclet number is Pe = u0L/D = 50 in all cases. The total particle
number is 1000, and the average is taken over 400 000 time steps.

efficiently than the sinusoidal field as one would expect from
the density depletion on the upstream side in the reservoirs.

In the simulations the driving velocity causes the average
particle number in the reservoir to change significantly as is
apparent in Fig. 3. The agreement between simulation and
theory is good as one would expect. In fact, the P (N,u)
distributions adhere quite exactly to the equilibrium prediction.
In the following we will base the derivation of the reciprocity
relations on our numerical demonstration of Eq. (16).

It is instructive to compare our system with the equilibrium
system of a dilute particle suspension in a gravitational or
potential field. In steady state, ∂P/∂t = 0, and Eq. (10)
expresses the local balance between advective and diffusive
currents,

∇ · (ρu − D∇ρ) = 0. (26)

Physically, this local balance is similar to that governing the
suspension. However, the situations are indeed different. In
fact, for the suspension in a potential field one has a Boltzmann
distribution ρ ∝ exp[−φ/(kBT )], where φ is the potential
energy of the Brownian particle and Eq. (26) becomes the basis
for proving the Einstein relation [16]. In this case the velocity is
not given as a background field but as u = −μB∇φ where μB

is the particle mobility. In this case the velocity field is vorticity
free. When the Boltzmann distribution is used, Eq. (26)
takes the form of the stronger condition ρu − D∇ρ = 0, and
particle exchange between two locations A and B will then
be in mutual equilibrium—in other words, detailed balance
may be assumed. In this case, the standard tools of statistical
mechanics are available, and in particular, every microstate
may be taken as equally probable in an ensemble of closed
systems, and the population probabilities will be given by
Eq. (16).

B. Entropy production

The entropy production for any subsystem is obtained by
taking the time derivative of Eq. (13) to get

Ṡ = −k

∫
d3x

∂ρ

∂t

(
ln

ρ 	V

Ntot
+ 1

)
. (27)

Then, using Eq. (10) gives

Ṡ = −kB

∫
d3x ∇ · (−ρu + D∇ρ)

(
ln

ρ 	V

Ntot
+ 1

)

= kB

∫
d3x ∇ ·

(
(ρu − D∇ρ) ln

ρ 	V

Ntot
− D∇ρ

)

+kB

∫
d3x

(
D

(∇ρ)2

ρ
+ ρ∇ · u

)
, (28)

which may also be written

Ṡ =
∫

d3x(σ − ∇ · jS), (29)

with an entropy current,

jS = su + kB

[
ln

(
ρ

ρm

)
+ 1

]
D∇ρ, (30)
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that vanishes on any materially closed surface and an entropy
production per unit volume,

σ = kB

(
D

(∇ρ)2

ρ
+ ρ∇ · u

)
. (31)

The ∇ · u term reflects the entropy changes due to the local
variations in specific volume for the Brownian particles [15].
Without it the entropy would remain constant under a uniform
expansion of the system with ∇ρ fixed. In fact, if we were to
introduce an ideal gas pressure for the particles p = kBT /v,
where v = 1/ρ is the volume per particle, it is straightforward
to show that kBTρ∇ · u = p dv/dt . This means that the
compressibility term is nothing but the familiar work term
[15]. In our case, where u is discontinuous across the reservoir
boundaries, the ∇ · u is nonzero only there [17]. Away from
the boundaries we may take the flow to be incompressible, and
only the bulk term, which we denote σ0, remains

σ0 = kBD
(∇ρ)2

ρ
. (32)

This expression may be written in a more familiar form
by introducing the chemical potential μ. Without energy as a
system variable, the Clausius formula is simply

T dS = −μdN, (33)

and

μ = −T

(
∂S

∂N

)
V

. (34)

So, for the purpose of relating the two intensive thermody-
namic quantities ρ and μ we assume for the moment a constant
ρ value so that the integral in Eq. (13) becomes a factor V .
This gives

μ = kBT ln

(
ρ

ρm

)
. (35)

Note that, since ρm 
 ρ, μ must be large and negative. Hence,
the addition of a particle will always increase the entropy as
it should. Allowing spatial variations again and taking the
gradient then gives

∇ρ

ρ
= ∇μ

kBT
, (36)

which by insertion in Eq. (32) gives

σ0 = −j · ∇
(μ

T

)
, (37)

where the diffusive current is j = −D∇ρ. This simple expres-
sion is the familiar form of the entropy production as given by
de Groot and Mazur [15] when all work and heat terms that are
linked with the conservation of energy are removed. Note that
in the above formulas T is a constant, which is proportional to
the step size variance σ 2.

V. FROM THE PORE LEVEL TO THE COARSE-GRAINED
POROUS-CONTINUUM LEVEL

In order to make contact with the hydrodynamic dispersion
tensor, we need to pass from the continuum description of the
Brownian particles as given in Eq. (10) to the coarse-grained

version of this continuum description [18]. It is only in the
coarse-grained version of this theory in a porous medium that
the diffusivity becomes a tensor D with reciprocity relations
attached.

The hydrodynamic dispersion tensor D describes the
coarse-grained advection-diffusion flow of solute in a porous
media. The medium is divided into cubic cells, centered
at x, with an average concentration ρ0(x), and the porous-
continuum particle current is given as

J = ρ0U − D · ∇ρ0, (38)

where U is the cell averaged flow velocity and ∇ρ0 is defined
by the boundary values so that its components are

(∇ρ0)i = 	Ci

L
, (39)

as shown in Fig. 4. The average value ρ0(x) is centered in the
sense that it will always be the average of the face values.
The dispersion tensor depends on flow velocity so that Dij =
Dij (U).

A. Entropy production on the porous-continuum scale

Having derived the entropy production at the hydrodynamic
scale (ii), we may now integrate it to the porous-continuum
scale. To do so, we first describe the assumptions implicit in
Fig. 4. We assume that the central cell is supporting steady
state transport in which the entropy irreversibly produced in
the transport process is fluxing into the surrounding cells so
that in the central cell Ṡ = 0.

This steady state is really a slowly evolving transient
where the thermodynamic quantities in the reservoirs change
quasistatically. In other words, the flow through the central

1 3

4

C

CC

C

2

2

Δ    /23

Δ    /24

Δ    /21

L A=L2

u

dS

Porous medium
Central cell

+

+

+

ρ +0

ρ0

ρ0

ρ0 Δ    /2

FIG. 4. The porous medium connected to four reservoirs of
given constant temperatures and concentration deviations 	Ci . The
reservoirs are assumed to be in equilibrium, the central cell is in
the steady state, and the concentration deviations are symmetric in
the sense that 	Ci+2 = −	Ci .
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cell must be slow enough for the reservoirs to remain close to
equilibrium. This steady state is thus different from the form
of the steady state, which becomes the equilibrium state when
u = 0, and where the average values of the thermodynamic
quantities no longer change. In the next section we will
consider fluctuations around this equilibrium steady state
which are linked to the present slow transients by the regression
hypothesis.

Since Ṡ = 0 in the central cell, we may integrate Eq. (29)
over this cell only and apply Gauss’s theorem to get∫

d3x σ =
∫

d3x ∇ · jS =
∫

dS · jS, (40)

where the surface element dS points away from the central cell.
In addition, we assume the reservoir cells are in quasistatic
equilibrium, which means they move through equilibrium
states with u = 0 throughout, and the entropy change is given
by the Clausius formula Eq. (33). This means that the entropy
production may be calculated either by Eq. (40) for the central
cell or by the Clausius formula for the reservoirs.

Under these assumptions, we will calculate the total entropy
production of the central cell from the surface integral of
Eq. (40). The condition that u = 0 at the interface with the
reservoir cells means that jS of Eq. (30) simplifies and∫

dS · jS = kBD

∫
dS · ∇ρ

[
ln

(
ρ

ρm

)
+ 1

]

= kBD

∫
dS · ∇ρ ln ρ

= −kB

∫
dS · j ln ρ, (41)

where we have also used the fact that by particle conservation
in the steady state

∫
dS · D∇ρ = 0.

Now, the number of particles passing across each face of
the central cell into the respective reservoir per unit time Ṅi

may be written

Ṅi+2 =
∫

xi=+L/2
dS · j,

(42)

Ṅi =
∫

xi=−L/2
dS · j,

where the partial surface integrals are taken only over the single
cell faces specified by the xi = ±L/2 conditions. Note that
for each of the two Cartesian directions in Fig. 4 (i = 1,2) the
dS elements point in opposite directions. Since the diffusive
current j represents the full current on the reservoir boundaries,
the entropy production of Eq. (41) is then

∫
d3x σ = −kB

4∑
i=1

Ṅi

[
ln ρ0 + ln

(
1 + 	Ci

2ρ0

)]
, (43)

where we have used the reservoir boundary conditions for ρ

given in Fig. 4.
We can connect these definitions of the Ṅi to the porous-

continuum transport current of Eq. (38) as

	Ṅi ≡ Ṅi+2 − Ṅi

2
= AJi, (44)

where A is the area of a face of the central cell. Expanding
ln(1 + x) ≈ x and noting that particle conservation in the
steady state requires

∑4
i=1 Ṅi = 0, we obtain the entropy

production as ∫
d3x σ = kB

2∑
i=1

	Ṅi

	Ci

ρ0
, (45)

where we also have used that 	Ci+2 = −	Ci . This is the
exact same expression as can be obtained from the Clausius
relation given earlier∫

d3x σ =
4∑

i=1

dSi

dt
=

4∑
i=1

−μi

T
Ṅi, (46)

where Si and μi are entropies and chemical potentials in
the reservoir cells i. Using Eq. (35) for μi/T and the same
expansion ln(1 + x) ≈ x, Eq. (46) becomes Eq. (45), which is
a consistency test of the formalism.

Finally, the entropy production can be written in terms of
fluxes ẋi and forces Fi . The entropy production of the total
system, including both the central cell and the reservoirs, is

Ṡtot =
∫

d3x σ =
2∑

i=1

∂Stot

∂xi

ẋi =
2∑

i=1

ẋiFi, (47)

where comparison with Eq. (45) shows that

xi = 	Ni, (48)

Fi = kB

	Ci

ρ0
. (49)

These are the results needed to apply the Onsager theory.

B. The linear laws and the reciprocity relations

In order to obtain the desired reciprocity relations the final
step is to obtain the linear laws expressing the decay of the ẋi’s
in terms of the Fi’s. It follows from Eq. (16) that the average,

〈xiFj 〉u = −kBδij , (50)

where kB is Boltzmann’s constant. This result comes from
a partial integration using the distribution in Eq. (16), see
Ref. [19]. Following standard procedures [4] we argue as
follows: In a steady state where averages no longer change,
there are still stationary nonzero values for 〈	Ni〉u. In the
following we perform the replacement:

	Ni → 	Ni − 〈	Ni〉u, (51)

where for simplicity, we keep the notation 	Ni so that now

〈	Ni〉u = 〈	Ni〉−u = 0. (52)

Since the new variables 	Ni are just as much functions of
{rk(t)}u as the Ni’s, the basic time-reversal symmetry holds
for the new variables too, and we may write

〈	Nj (τ )	Nk(0)〉u = 〈	Nj (−τ )	Nk(0)〉−u. (53)

Now, time translational invariance of an equilibrium average
implies that Eq. (53) may be written

〈	Nj (τ )	Nk(0)〉u = 〈	Nj (0)	Nk(τ )〉−u. (54)
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Subtracting the τ = 0 version of the above equation from
Eq. (53), dividing by τ , and taking the τ → 0 limit gives

〈	Ṅj	Nk〉u = 〈	Ṅk	Nj 〉−u. (55)

We now only need to insert the linear laws governing
the Ṅi’s in terms of the Fi’s to obtain the corresponding
reciprocity relations. Note that the force Fi can be written
in terms of the macroscopic gradient in particle density as
(∇ρ0)i = ρ0Fi/(kBL) so that the linear laws may be obtained
directly from Eq. (38) as

	Ṅi = A

(
ρoU − Dij

ρ0

kBL
Fj

)
. (56)

Inserting this in Eq. (55) gives〈(
ρ0Uj − ρ0

kBL
Dji(u)Fi

)
xk

〉
u

=
〈(

−ρ0Uk − ρ0

kBL
Dki(−u)Fi

)
xj

〉
−u

. (57)

Then, using Eqs. (50) and (52) we are left with

Djk(u) = Dkj (−u). (58)

This is the symmetry suggested by Auriault et al. [9] to hold
in the small Péclet number limit. It is proven here to hold on
the basis of a modified Onsager theory for any values of the
Péclet number.

VI. CONCLUSIONS

To summarize, we have shown that a mesoscopic descrip-
tion suffices as a basis for Onsager reciprocity, in particular, for

the case of hydrodynamic dispersion. But the theory is directly
applicable to other stochastic descriptions with time-reversal
invariance as well: If the particles were taken to represent a
temperature rather than a concentration field, heat conduction
in the solid matrix could be represented by letting the particles
pass through the solid boundaries of the porous medium, and
a different p(δv) distribution could be applied inside the solid.
If it were still symmetric, similar reciprocity relations would
hold. It would also be straightforward to include reversible
chemical reactions between different species of particles.

Since it is also possible to obtain the symmetry relation of
Eq. (58) for arbitrary Pe numbers on the basis of the pore-
level advection-diffusion equation [18], the present statistical
mechanical treatment is not the only route to the result. In
this respect our treatment resembles that of anisotropic heat
conduction where the symmetries were also largely known
beforehand. Rather, the main interest of the result lies in the
conceptual basis for the Onsager theory, which, in particular
opens a route to study processes where a hydrodynamic
velocity field may be assumed as a steady state background.
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