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Abstract Agricultural production systems should evolve fast
to cope with risks induced by climate change. Farmers should
adapt their management strategies to stay competitive and sat-
isfy the societal demand for sustainable food systems. It is
therefore important to understand the decision-making process-
es used by farmers for adaptation. Processes of adaptation are in
particular addressed by bio-economic and bio-decision models.
Here, we review bio-economic and bio-decision models, in
which strategic and tactical decisions are included in dynamic
adaptive and expectation-based processes, in 40 literature arti-
cles. Themajor points are: adaptability, flexibility, and dynamic
processes are common ways to characterize farmers’ decision-
making. Adaptation is either a reactive or a proactive process
depending on farmer flexibility and expectation capabilities.
Various modeling methods are used to model decision stages
in time and space, and some methods can be combined to
represent a sequential decision-making process.

Keywords Farmers’ decision-making . Bio-economic
model . Bio-decisionmodel . Uncertainty . Adaptation
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1 Introduction

Agricultural production systems are facing new challenges
due to a constantly changing global environment that is a
source of risk and uncertainty and in which past experience
is not sufficient to gauge the odds of a future negative event.
Concerning risk, farmers are exposed to production risk most-
ly due to climate and pest conditions, to market risk that im-
pact input and output prices, and institutional risk through
agricultural, environmental, and sanitary regulations
(Hardaker 2004). Farmers may also face uncertainty due to
rare events affecting, e.g., labor, production capital stock, and
extreme climatic conditions, which add difficulties to produc-
ing agricultural goods and calls for reevaluating current pro-
duction practices. To remain competitive, farmers have no
choice but to adapt and adjust their daily management prac-
tices (Hémidy et al. 1996; Hardaker 2004; Darnhofer et al.
2010; Dury 2011; Fig. 1). In the early 1980s, Petit developed
the theory of the “farmer’s adaptive behavior” and claimed
that farmers have a permanent capacity for adaptation (Petit
1978). Adaptation refers to adjustments in agricultural sys-
tems in response to actual or expected stimuli through changes
in practices, processes, and structures and their effects or im-
pacts on moderating potential modifications and benefiting

from new opportunities (Grothmann and Patt 2003; Smit
andWandel 2006). Another important concept in the scientific
literature on adaptation is the concept of adaptive capacity or
capability (Darnhofer 2014). This refers to the capacity of the
system to resist evolving hazards and stresses (Ingrand et al.
2009; Dedieu and Ingrand 2010), and it is the degree to which
the system can adjust its practices, processes, and structures to
moderate or offset damages created by a given change in its
environment (Brooks and Adger 2005; Martin 2015). For au-
thors in the early 1980s such as Petit (1978) and Lev and
Campbell (1987), adaptation is seen as the capacity to chal-
lenge a set of systematic and permanent disturbances.
Moreover, agents integrate long-term considerations when
dealing with short-term changes in production. Both claims
lead to the notion of a permanent need to keep adaptation
capability under uncertainty. Holling (2001) proposed a gen-
eral framework to represent the dynamics of a socio-
ecological system based on both ideas above, in which dy-
namics are represented as a sequence of “adaptive cycles,”
each affected by disturbances. Depending on whether the lat-
ter are moderate or not, farmers may have to reconfigure the
system, but if such redesigning fails, then the production sys-
tem collapses.

Some of the most common dimensions in adaptation re-
search on individual behavior refer to the timing and the tem-
poral and spatial scopes of adaptation (Smit et al. 1999;
Grothmann and Patt 2003). The first dimension distinguishes
proactive vs. reactive adaptation. Proactive adaptation refers
to anticipated adjustment, which is the capacity to anticipate a
shock (change that can disturb farmers’ decision-making

Fig. 1 Adaptation of maize
outputs after drought condition.
At the beginning of the season,
the farmer aims at growing maize
for grain production. Due to dry
conditions and low grass growth,
the farmer has to use forage stocks
to feed the herd, so that the stocks
decrease. To maintain the stocks,
the farmer has to adapt and
change his crop orientation to
maize silage
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processes); it is also called anticipatory or ex ante adaptation.
Reactive adaptation is associated with adaptation performed
after a shock; it is also called responsive or ex-post adaptation
(Attonaty et al. 1999; Brooks and Adger 2005; Smit and
Wandel 2006). The temporal scope distinguishes strategic ad-
aptations from tactical adaptations, the former referring to the
capacity to adapt in the long term (years), while the latter are
mainly instantaneous short-term adjustments (seasonal to
daily; Risbey et al. 1999; Le Gal et al. 2011). The spatial scope
of adaptation opposes localized adaptation vs. widespread ad-
aptation. In a farm production context, localized adaptations
are often at the plot scale, while widespread adaptation con-
cerns the entire farm. Temporal and spatial scopes of adapta-
tion are easily considered in farmers’ decision-making pro-
cesses; however, incorporating the timing scope of farmers’
adaptive behavior is a growing challenge when designing
farming systems.

System modeling and simulation are interesting ap-
proaches to designing farming systems which allow limiting
the time and cost constraints (Rossing et al. 1997; Romera
et al. 2004; Bergez et al. 2010) encountered in other ap-
proaches, such as diagnosis (Doré et al. 1997), systemic ex-
perimentation (Mueller et al. 2002), and prototyping
(Vereijken 1997). Modeling adaptation to uncertainty when
representing farmers’ practices and decision-making process-
es has been addressed in bio-economic and bio-decision ap-
proaches (or management models) and addressed at different
temporal and spatial scales.

The aim of this paper was to review the way adaptive
behaviors in farming systems has been considered (modeled)
in bio-economic and bio-decision approaches. This work re-
views several modeling formalisms that have been used in
bio-economic and bio-decision approaches, comparing their
features and selected relevant applications. We chose to focus
on the formalisms rather than the tools as they are the essence
of the modeling approach.

Approximately 40 scientific references on this topic were
found in the agricultural economics and agronomy literature.
This paper reviews the approaches used to model farmers’
adaptive behaviors when they encounter uncertainty in specif-
ic stages of, or throughout, the decision-making process.
There is a vast literature on technology adoption in agricul-
ture, which can be considered a form of adaptation, but which
we do not consider here to focus on farmer decisions for a
given production technology. After presenting some back-
ground on modeling decisions in agricultural economics and
agronomy and the methodology used, we present formalisms
describing proactive behavior and anticipation decision-
making processes and formalisms for representing reactive
adaptation decision-making processes. Then we illustrate the
use of such formalisms in papers on modeling farmers’
decision-making processes in farming systems. Finally, we
discuss the need to include adaptation and anticipation to

uncertain events in modeling approaches of the decision-
making process and discuss adaptive processes in other
domains.

2 Background on modeling decisions in agricultural
economics and agronomy

Two main fields dominate decision-making approaches in
farm management: agricultural economics (with bio-
economic models) and agronomy (with bio-decision models;
Pearson et al. 2011). Agricultural economists are typically
interested in the analysis of year-to-year strategical (some-
times tactical) decisions originating from long-term strategies
(e.g., investment and technical orientation). In contrast, agron-
omists focus more on day-to-day farm management described
in tactical decisions. The differences in temporal scale are due
to the specific objective of each approach. For economists, the
objective is to efficiently use scarce resources by optimizing
the configuration and allocation of farm resources given
farmers’ objectives and constraints in a certain production
context. For agronomists, it is to organize farm practices to
ensure farm production from a biophysical context (Martin
et al. 2013). Agronomists identify relevant activities for a giv-
en production objective, their interdependency, what precon-
ditions are needed to execute them, and how they should be
organized in time and space. Both bio-economic and bio-
decision models represent farmers’ adaptive behavior.

Bio-economic models integrate both biophysical and eco-
nomic components (Knowler 2002; Flichman 2011). In this
approach, equations describing a farmer’s resource manage-
ment decisions are combined with those representing inputs to
and outputs from agricultural activities (Janssen and van
Ittersum 2007). The main goal of farm resource allocation in
time and space is to improve the economic performance of
farming systems, usually along with environmental perfor-
mance. Bio-economic models indicate the optimal manage-
ment behavior to adopt by describing agricultural activities.
Agricultural activities are characterized by an enterprise and a
production technology used to manage the activity. Technical
coefficients represent relations between inputs and outputs by
stating the amount of inputs needed to achieve a certain
amount of outputs (e.g., matrix of input–output coefficients;
see Janssen and van Ittersum 2007). Many farm management
decisions can be formulated as a multistage decision-making
process in which farmer decision-making is characterized by a
sequence of decisions made to meet farmer objectives. The
time periods that divide the decision-making process are
called stages and represent the moments when decisions must
be made. Decision-making is thus represented as a dynamic
and sustained process in time (Bellman 1954; Mjelde 1986;
Osman 2010). This means that, at each stage, technical coef-
ficients are updated to proceed to the next round of
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optimization. Three major mathematical programming tech-
niques are commonly used to analyze and solve models of
decision under uncertainty: recursive models, dynamic sto-
chastic programming, and dynamic programming (see
Miranda and Fackler 2004). Agricultural economic ap-
proaches usually assume an idealized situation for decision,
in which the farmer has clearly expressed goals from the be-
ginning and knows all the relevant alternatives and their con-
sequences. Since the farmer’s rationality is considered to be
complete, it is feasible to use the paradigm of utility maximi-
zation (Chavas et al. 2010). Simon (1950) criticized this as-
sumption of full rationality and claimed that decision-makers
do not look for the best decision but for a satisfying one given
the amount of information available. This gave rise to the
concept of bounded and adaptive rationality (Simon 1950;
Cyert and March 1963), in which the rationality of decision-
makers is limited by the information available, cognitive lim-
itations of their minds, and the finite timing of the decision. In
bounded rationality, farmers tend to look for satisfactory rath-
er than utility maximization when making relevant decisions
(Kulik and Baker 2008). From complete or bounded rational-
ity, all bio-economic approaches are characterized by the com-
mon feature of computing a certain utility value for available
options and then selecting the one with the best or satisfactory
value. In applied agricultural economics, stochastic produc-
tion models are more and more commonly used to represent
the sequential production decisions by farmers by specifying
the production technology through a series of operational
steps involving production inputs. These inputs have often
the dual purpose of controlling crop yield or cattle output level
on the one hand and controlling production risk on the other
(Burt 1993; Maatman et al. 2002; Ritten et al. 2010).
Furthermore, sequential production decisions with risk and
uncertainty can also be specified in a dynamic framework to
account for intertemporal substitutability between inputs
(Fafchamps 1993). Dynamic programming models have been
used as guidance tools in policy analysis and to help farmers
identify irrigation strategies (Bryant et al. 1993).

Biophysical models have been investigated since the
1970s, but the difficulty in transferring simulation results to
farmers and extension agents led researchers to investigate
farmers’ management practices closely and develop bio-
decision models (Bergez et al. 2010). A decision model, also
known as a decision-making process model or farm manage-
ment model, comes from on-farm observations and extensive
studies of farmers’ management practices. These studies,
which show that farmers’ technical decisions are planned,
led to the “model for action” concept (Matthews et al. 2002),
in which decision-making processes are represented as a se-
quence of technical acts. Rules that describe these technical
acts are organized in a decision schedule that considers se-
quential, iterative, and adaptive processes of decisions
(Aubry et al. 1998). In the 1990s, combined approaches

represented farming systems as bio-decision models that link
the biophysical component to a decisional component based
on a set of decision rules (Aubry et al. 1998; Attonaty et al.
1999; Bergez et al. 2006, 2010). Bio-decision models describe
the appropriate farm management practice to adopt as a set of
decision rules that drives the farmer’s actions over time (e.g., a
vector returning a value for each time step of the simulation).
Bio-decision models are designed (proactive) adaptations to
possible but anticipated changes. By reviewing the decision
rules, these models also describe the farmer’s reactive
behavior.

3 Method

To achieve the above goal, a collection of articles was assem-
bled through three steps. The first step was a search on Google
Scholar using the following combination of keywords:
Topic= ((decision-making processes) or (decision model) or
(knowledge-based model) or (object-oriented model) or (op-
erational model)) AND Topic= ((bio-economics or agricultur-
al economics) or (agronomy or bio-decision)) AND
Topic= ((adaptation) or (uncertainty) or (risk)). The first topic
defines the tool of interest: only work using decision-making
modeling (as this is the focus of this paper). Given that differ-
ent authors use slightly different phrasings, the present paper
incorporated the most commonly used alternative terms such
as knowledge-based model, object-oriented model, and oper-
ational model. The second topic restricts the search to be with-
in the domains of bio-economics and agronomy. The third
topic reflects the major interest of this paper, which relates
to farmer adaptations facing uncertain events. This paper did
not use “AND” to connect the parts within topics because this
is too restrictive and many relevant papers are filtered out.

The second step was a classification of formalisms refer-
ring to the timing scopes of the adaptation. We retained the
timing dimension as the main criteria for the results descrip-
tion in our paper. The timing dimension is an interesting as-
pect of adaptation to consider when modeling adaptation in
farmers’ decision-making processes. Proactive processes con-
cern the ability to anticipate future and external shocks affect-
ing farming outcomes and to plan corresponding adjustments.
In this case, adaptation processes are time-invariant and for-
malisms describing static processes are the most appropriate
since they describe processes that do not depend explicitly on
time. Reactive processes describe the farmer’s capacity to re-
act to a shock. In this case, adaptation concerns the ability to
update the representation of a shock and perform adaptations
without any anticipation. In this case, adaptation processes are
time-dependent and formalisms describing dynamic processes
are the most appropriate since they describe processes that
depend explicitly on time (Fig. 2). Section 4 presents these
results.
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The third step was a classification of articles related to farm
management in agricultural economics and agronomy refer-
ring to the temporal and spatial scopes of the adaptation. This
last step aimed at illustrating the use of the different formal-
isms presented in the fourth section to model adaptation with-
in farmer decision-making processes. This section is not sup-
posed to be exhaustive but to provide examples of use in the
farming system literature. Section 5 presents these results.

4 Formalisms to manage adaptive decision-making
processes

This section aims at listing formalisms used to manage adap-
tive decision-making processes in both bio-economic and bio-
decision models. Various formalisms are available to describe
adaptive decision-making processes. Adaptation processes
can be time-invariant when they are planned beforehand with
a decision tree, alternative and optional paths, and relaxed
constraints to decision processes. Adaptation processes can
be time-varying when they are reactive to a shock with dy-
namic internal changes of the decision process via recursive
decision, sequential decision, or reviewed rules. We distin-
guish proactive or anticipated processes from reactive pro-
cesses. Six formalisms were included in this review.

4.1 Formalisms in proactive adaptation processes

In proactive or anticipated decision processes, adaptation con-
sists in the iterative interpretation of a flexible plan built be-
forehand. The flexibility of this anticipatory specification that
allows for adaptation is obtained by the ability to use alterna-
tive paths, optional paths, or by relaxing constraints that con-
dition a decision.

4.1.1 Anticipated shocks in sequential decision-making
processes

When the decision-making process is assumed to be a succes-
sion of decisions to make, it follows that farmers are able to
integrate new information about the environment at each stage
and adapt to possible changes occurring between two stages.
Farmers are able to anticipate all possible states of the shock
(change) to which they will have to react. In 1968, Cocks
stated that discrete stochastic programming (DSP) could pro-
vide solutions to sequential decision problems (Cocks 1968).
DSP processes sequential decision-making problems in dis-
crete time within a finite time horizon in which knowledge
about random events changes over time (Rae 1971; Apland
and Hauer 1993). During each stage, decisions are made to
address risks. One refers to “embedded risk” when decisions
can be divided between those initially made and those made at

Fig. 2 Typology of models to
manage adaptive decision-
making processes according to
model type, approach, and
formalism
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a later stage, once an uncertain event has occurred (Trebeck
and Hardaker 1972; Hardaker 2004). The sequential and sto-
chastic framework of the DSP can be represented as a decision
tree in which nodes describe the decision stages and branches
describe anticipated shocks. Considering two stages of deci-
sion, the decision-maker makes an initial decision (u1) with
uncertain knowledge of the future. After one of the states of
nature of the uncertain event occurs (k), the decision-maker
will adjust by making another decision (u2k) in the second
stage, which depends on the initial decision and the state of
nature k of the event. Models can become extremely large
when numerous states of nature are considered; this “curse
of dimensionality” is the main limitation of these models
(Trebeck and Hardaker 1972; Hardaker 2004).

4.1.2 Flexible plan with optional paths and interchangeable
activities

In manufacturing, proactive scheduling is well suited to build
protection against uncertain events into a baseline schedule
(Herroelen and Leus 2004; Darnhofer and Bellon 2008).
Alternative paths are considered and choices are made at the
operational level while executing the plan. This type of struc-
ture has been used in agriculture as well, with flexible plans
that enable decision-makers to anticipate shocks. Considering
possible shocks that may occur, substitutable components,
interchangeable partial plans, and optional executions are
identified and introduced into the nominal plan. Depending
on the context, a decision is made to perform an optional
activity or to select an alternative activity or partial plan
(Martin-Clouaire and Rellier 2009). Thus, two different se-
quences of events would most likely lead to performing two
different plans. Some activities may be canceled in one case
but not in the other depending on whether they are optional or
subject to a context-dependent choice (Bralts et al. 1993;
Castellazzi et al. 2008, 2010; Dury et al. 2010).

4.1.3 Relaxed constraints on executing activities

Management operations on biophysical entities are character-
ized by a timing of actions depending on their current states.
The concept of bounded rationality, presented earlier, high-
lights the need to obtain satisfactory results instead of optimal
ones. Following the same idea, Kemp and Michalk (2007)
point out that “farmers can manage more successfully over a
range than continually chasing optimum or maximum
values.” In practice, one can easily identify an ideal time win-
dow in which to execute an activity that is preferable or desir-
able based on production objectives instead of setting a spe-
cific execution date in advance (Shaffer and Brodahl 1998;
Aubry et al. 1998; Taillandier et al. 2012). Timing flexibility
helps in managing uncontrollable factors.

4.2 Formalisms in reactive adaptation processes

In reactive decision processes, adaptation consists in the abil-
ity to perform decisions without any anticipation by integrat-
ing gradually new information. Reactivity is obtained by
multistage and sequential decision processes and the
integration of new information or the setup of unanticipated
path within forehand plan.

4.2.1 Gradual adaptation in a repeated process

The recursive method was originally developed by Day
(1961) to describe gradual adaptation to changes in exogenous
parameters after observing an adjustment between a real situ-
ation and an optimal situation obtained after optimization
(Blanco-Fonseca et al. 2011). Recursive models explicitly rep-
resent multiple decision stages and optimize each one; the
outcome of stage n is used to reinitialize the parameters of
stage n+1. These models consist of a sequence of mathemat-
ical programming problems in which each sub-problem de-
pends on the results of the previous sub-problems (Day 1961,
2005; Janssen and van Ittersum 2007; Blanco-Fonseca et al.
2011). In each sub-problem, dynamic variables are re-
initialized and take the optimal values obtained in the previous
sub-problem. Exogenous changes (e.g., rainfall and market
prices) are updated at each optimization step. For instance,
the endogenous feedback mechanism for a resource (e.g., pro-
duction input or natural resource) between sub-periods is rep-
resented with a first-order linear difference equation:
Rt=At − 1GXt− 1

* +YRt − 1+Ct, where the resource level of pe-
riod t (Rt) depends on the optimal decisions (Xt− 1

* ) and re-
source level at t−1 (Rt − 1) and on exogenous variables (Ct).
The Bayesian approach is the most natural one for updating
parameters in a dynamic system, given incoming period-
dependent information. Starting with an initial prior probabil-
ity for the statistical distribution of model parameters, sample
information is used to update the latter in an efficient and fairly
general way (Stengel 1986). The Bayesian approach to learn-
ing in dynamic systems is a special but important case of
closed-loop models, in which a feedback loop regulates the
system as follows: depending on the (intermediate) observed
state of the system, the control variable (the input) is automat-
ically adjusted to provide path correction as a function of
model performance in the previous period.

4.2.2 Adaptation in sequential decision-making processes

In the 1950s, Bellman presented the theory of dynamic
programming (DP) to emphasize the sequential decision-
making approach. Within a given stage, the decision-
making process is characterized by a specific status cor-
responding to the values of state variables. In general, this
method aims to transform a complex problem into a
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sequence of simpler problems whose solutions are optimal
and lead to an optimal solution of the initial complex
model. It is based on the principle of optimality, in which
“an optimal policy has the property that whatever the
initial state and decisions are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decisions” (Bellman 1954). DP
explicitly considers that a decision made in one stage
may affect the state of the decision-making process in
all subsequent stages. State transition equations are nec-
essary to link the current stage to its successive or previ-
ous stage, depending on whether one uses a forward or
backward DP approach, respectively. In the Bellman as-
sumptions (backward DP), recursion occurs from the fu-
ture to the present, and the past is considered only for the
initial condition. In forward DP, stage numbering is con-
sistent with real time. The optimization problem defined
at each stage can result in the application of a wide vari-
ety of techniques, such as linear programming (Yaron and
Dinar 1982) and parametric linear programming (Stoecker
et al. 1985). Stochastic DP is a direct extension of the
framework described above, and efficient numerical tech-
niques are now available to solve such models, even
though the curse of dimensionality may remain an issue
(Miranda and Fackler 2004).

4.2.3 Reactive plan with revised and new decision rules

An alternative to optimization is to represent decision-
making processes as a sequence of technical operations
organized through a set of decision rules. This plan is
reactive when rules are revised or newly introduced after
a shock. Revision is possible with simulation-based opti-
mization, in which the rule structure is known and the
algorithm looks for optimal indicator values or thresholds.
It generates a new set of indicator thresholds to test at
each new simulation loop (Nguyen et al. 2014). For small
discrete domains, the complete enumeration method can
be used, whereas when the optimization domain is very
large and a complete enumeration search is no longer
possible, heuristic search methods are considered, such
as local searching and branching methods. Search
methods start from a candidate solution and randomly
move to a neighboring solution by applying local changes
until a solution considered as optimal is found or a time
limit has passed. Metaheuristic searches using genetic al-
gorithms, Tabu searches, and simulated annealing algo-
rithms are commonly used (Nguyen et al. 2014).
Control-based optimization is used to add new rules to
the plan. In this case, the rule structure is unknown, and
the algorithm optimizes the rule’s structure and optimal
indicator values or thresholds. Crop management deci-
sions can be modeled as a Markov control problem when

the distribution of variable X iþ1 depends only on the cur-
rent state X i and on decision Di that was applied at stage
i. The decision-making process is divided into a sequence
of N decision stages. It is defined by a set of possible
states s, a set of possible decisions d, probabilities de-
scribing the transitions between successive states, and an
objective function (sum of expected returns) to be maxi-
mized. In a Markov control problem, a trajectory is de-
fined as the result of choosing an initial state s and ap-
plying a decision d for each subsequent state. The DSP
and DP methods provide optimal solutions for Markov
control problems. Control-based optimization and
metaheuristic searches are used when the optimization
domain is very large and a complete enumeration search
is no longer possible.

5 Modeling adaptive decision-making processes
in farming systems

This section aims at illustrating the use of formalisms to man-
age adaptive decision-making processes in farming systems
both in bio-economic and bio-decision models. Around 40
papers using the six formalisms on adaptation have been
found. We distinguish strategic adaptation at the farm level,
tactic adaptation at the farm and plot scale, and strategic and
tactic adaptation both at the farm and plot scale.

5.1 Adaptations and strategic decisions for the entire farm

Strategic decisions aim to build a long-term plan to achieve
farmer production goals depending on available resources and
farm structure. For instance, this plan can be represented in a
model by a cropping plan that selects the crops grown on the
entire farm, their surface area, and their allocation within the
farmland. It also offers long-term production organization,
such as considering equipment acquisition and crop
rotations. In the long term, uncertain events such as market
price changes, climate events, and sudden resource restrictions
are difficult to predict, and farmers must be reactive and adapt
their strategic plans.

Barbier and Bergeron (1999) used the recursive process to
address price uncertainty in crop and animal production
systems; the selling strategy for the herd and cropping
pattern was adapted each year to deal with price uncertainty
and policy intervention over 20 years. Similarly, Heidhues
(1966) used a recursive approach to study the adaptation of
investment and sales decisions to changes in crop prices due to
policymeasures. Domptail and Nuppenau (2010) adjusted in a
recursive process herd size and the purchase of supplemental
fodder once a year depending on the available biomass that
depended directly on rainfall. In a study of a dairy–beef–sheep
farm in Northern Ireland, Wallace and Moss (2002) examined
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the effect of possible breakdowns due to bovine spongiform
encephalopathy on animal sale and machinery investment de-
cisions over a 7-year period with linear programming and a
recursive process.

Thus, in the operation research literature, adaptation of a
strategic decision is considered a dynamic process that should
be modeled via a formalism describing a reactive adaptation
processes (Table 1).

5.2 Adaptation and tactic decisions

5.2.1 Adaptation for the agricultural season and the farm

At the seasonal scale, adaptations can include reviewing and
adapting the farm’s selling and buying strategy, changing
management techniques, reviewing the crop varieties grown
to adapt the cropping system, and deciding the best response
to changes and new information obtained about the produc-
tion context at the strategic level, such as climate (Table 1).

DSP was used to describe farmers’ anticipation and plan-
ning of sequential decision stages to adapt to an embedded
risk such as rainfall. In a cattle farm decision-making model,
Trebeck and Hardaker (1972) represented adjustment in feed,
herd size, and selling strategy in response to rainfall that im-
pacted pasture production according to a discrete distribution
with “good,” “medium,” or “poor” outcomes. After deciding
about land allocation, rotation sequence, livestock structure,
and feed source, Kingwell et al. (1993) considered that wheat–
sheep farmers in Western Australia have two stages of adjust-
ment to rainfall in spring and summer: reorganizing grazing
practices and adjusting animal feed rations. In a two-stage
model, Jacquet and Pluvinage (1997) adjusted the fodder or
grazing of the herd and quantities of products sold in the
summer depending on the rainfall observed in the spring;
they also considered reviewing crop purposes and the use of
crops as grain to satisfy animal feed requirements. Ritten et al.
(2010) used a dynamic stochastic programming approach to
analyze optimal stocking rates facing climate uncertainty for a
stocker operation in Central Wyoming. The focus was on
profit maximization decisions on stocking rate based on an
extended approach of predator–prey relationship under cli-
mate change scenarios. The results suggested that producers
can improve financial returns by adapting their stocking deci-
sions with updated expectations on standing forage and
precipitation. Burt (1993) used dynamic stochastic program-
ming to derive sequential decisions on feed rations in function
of animal weight and accommodate seasonal price variation;
he also considered decision on selling animals by reviewing
the critical weight at which to sell a batch of animals. In the
model developed by Adesina (1991), initial cropping patterns
are chosen to maximize farmer profit. After observing low or
adequate rainfall, farmers can make adjustment decisions
about whether to continue crops planted in the first stage, to

plant more crops, or to apply fertilizer. After harvesting,
farmers follow risk management strategies to manage crop
yields to fulfill household consumption and income
objectives. They may purchase grain or sell livestock to
obtain more income and cover household needs. To
minimize deficits in various nutrients in an African
household, Maatman et al. (2002) built a model in which
decisions about late sowing and weeding intensity are decided
after observing a second rainfall in the cropping season.

Adaptation of the cropping system was also described
using flexible plans for crop rotations. Crops were identified
to enable farmers to adapt to certain conditions. Multiple
mathematical approaches were used to model flexible crop
rotations: Detlefsen and Jensen (2007) used a network flow,
Castellazzi et al. (2008) regarded a rotation as a Markov chain
represented by a stochastic matrix, and Dury (2011) used a
weighted constraint satisfaction problem formalism to com-
bine both spatial and temporal aspects of crop allocation.

5.2.2 Adaptation of daily activities at the plot scale

Daily adaptations concern crop operations that depend on re-
source availability, rainfall events, and task priority. An oper-
ation can be canceled, delayed, replaced by another, or added
depending on the farming circumstances (Table 1).

Flexible plans with optional paths and interchangeable
activities are commonly used to describe the proactive
behavior farmers employ to manage adaptation at a daily
scale. This flexibility strategy was used to model the
adaptive management of intercropping in vineyards
(Ripoche et al. 2011), grassland-based beef systems
(Martin et al. 2011a), and whole-farm modeling of a dairy,
pig, and crop farm (Chardon et al. 2012). For instance, in
a grassland-based beef system, the beef production level
that was initially considered in the farm management ob-
jectives might be reviewed in case of drought and decided
a voluntary underfeeding of the cattle (Martin et al.
2011a). McKinion et al. (1989) applied optimization tech-
niques to analyze previous runs and hypothesize
potentially superior schedules for irrigation decision on
cotton crop. Rodriguez et al. (2011) defined plasticity in
farm management as the results of flexible and opportu-
nistic management rules operating in a highly variable
environment. The model examines all paths and selects
the highest ranking path.

Daily adaptations were also represented with timing flexi-
bility to help manage uncontrollable factors. For instance, the
cutting operation in the haymaking process is monitored by a
time window, and opening predicates such as minimum har-
vestable yield and a specific physiological stage ensure a bal-
ance between harvest quality and quantity (Martin et al.
2011b). The beginning of grazing activity depends on a time
range and activation rules that ensure a certain level of
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biomass availability (Cros et al. 1999). Shaffer and Brodahl
(1998) structured planting and pesticide application event
time windows as the outermost constraint for this event for

corn and wheat. Crespo et al. (2011) used time window to
insert some flexibility to the sowing of southern African
maize.

Table 1 Modeling adaptive decision-making processes in farming systems: typology of the literature according to adaptation dimensions (temporal
scope, spatial scope, and timing dimension)

Adaptation dimensions Authors Year Formalism type Formalism

Temporal scope Spatial scope Timing dimension

Strategic decisions
(years)

Farm Reactive Barbier and Bergeron 1999 Dynamic Recursive

Farm Reactive Heidhues 1966 Dynamic Recursive

Farm Reactive Domptail and Nuppenau 2010 Dynamic Recursive

Farm Reactive Wallace and Moss 2002 Dynamic Recursive

Tactical decision
(season)

Farm Proactive Trebeck and Hardaker 1972 Static DSP

Farm Proactive Kingwell et al. 1993 Static DSP

Farm Proactive Jacquet and Pluvinage 1997 Static DSP

Farm Proactive Adesina and Sanders 1991 Static DSP

Farm Proactive Burt 1993 Static DSP

Farm Proactive Maatman and Schweigman 2002 Static DSP

Farm Proactive Ritten et al. 2010 Static DSP

Farm Proactive Detlefsen and Jensen 2007 Static Flexible crop sequence

Farm Proactive Castellazzi et al. 2008 Static Flexible crop sequence

Farm Proactive Dury 2011 Static Flexible crop sequence

Tactical decision
(daily)

Plot Proactive Ripoche et al. 2011 Static Optional execution

Plot Proactive Martin et al. 2011 Static Optional execution

Plot Proactive Chardon et al. 2012 Static Optional execution

Plot Proactive Martin et al. 2011 Static Optional execution

Plot Proactive McKinion et al. 1989 Static Proactive adjustments

Plot Proactive Ripoche et al. 2011 Static Proactive adjustments

Plot Proactive Martin et al. 2011 Static Proactive adjustments

Plot Proactive Chardon et al. 2012 Static Proactive adjustments

Plot Proactive Rodriguez et al. 2011 Static Proactive adjustments

Plot Proactive Shaffer and Brodahl 1998 Static Time windows

Plot Proactive Cros et al. 1999 Static Time windows

Plot Proactive Crespo et al. 2011 Static Time windows

Plot Proactive Martin et al. 2011 Static Time windows

Strategic and tactical
decision
(years and season)

Farm and plot Reactive Reynaud 2009 Dynamic DP

Farm and plot Reactive Stoecker et al. 1985 Dynamic DP

Farm and plot Reactive Bryant et al. 1993 Dynamic DP

Farm and plot Reactive Duffy and Taylor 1993 Dynamic DP

Farm and plot Reactive Fafchamps 1993 Dynamic DP

Farm and plot Reactive Hyytiäinen et al. 2011 Dynamic DP

Farm and plot Reactive Bontems and Thomas 2000 Dynamic DP

Farm and plot Reactive Thomas 2003 Dynamic DP

Farm and plot Reactive Pandey and Medd 1991 Dynamic DP

Farm and plot Reactive Yaron and Dinar 1982 Dynamic DP

Farm and plot Reactive Toft and O’Hanlon 1979 Dynamic DP

Farm and plot Reactive and proactive Mosnier et al. 2009 Dynamic and static Recursive and DSP

Farm and plot Reactive and proactive Belhouchette et al. 2004 Dynamic and static Recursive and DSP

Farm and plot Reactive and proactive Lescot et al. 2011 Dynamic and static Recursive and DSP

DSP discrete stochastic programming, DP dynamic programming
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5.3 Sequential adaptation of strategic and tactical
decisions

Some authors combined strategic and tactical decisions to
consider the entire decision-making process and adaptation
of farmers (Table 1). DP is a dynamic model that allows this
combination of temporal decision scales within the formalism
itself: strategic decisions are adapted according to adaptations
made to tactical decisions. DP has been used to address stra-
tegic investment decisions. Addressing climate uncertainty,
Reynaud (2009) used DP to adapt yearly decisions about in-
vestment in irrigation equipment and selection of the cropping
system tomaximize farmers’ profit. The DPmodel considered
several tactical irrigation strategies, in which 12 intra-year
decision points represented the possible water supply. Tomax-
imize annual farm profits in the face of uncertainty in ground-
water supply in Texas, Stoecker et al. (1985) used the results
of a parametric linear programming approach as input to a
backward DP to adapt decisions about investment in irrigation
systems. Duffy and Taylor (1993) ran DP over 20 years (with
20 decision stages) to decide which options for farm program
participation should be chosen each year to address fluctua-
tions in soybean and maize prices and select soybean and corn
areas each season while also maximizing profit.

DP was also used to address tactic decisions about
cropping systems. Weather uncertainty may also disturb deci-
sions about specific crop operations, such as fertilization after
selecting the cropping system. Hyytiäinen et al. (2011) used
DP to define fertilizer application over seven stages in a pro-
duction season to maximize the value of the land parcel.
Bontems and Thomas (2000) considered a farmer facing a
sequential decision problem of fertilizer application under
three sources of uncertainty: nitrogen leaching, crop yield,
and output prices. They used DP to maximize the farmer’s
profit per acre. Fertilization strategy was also evaluated in
Thomas (2003), in which DP was used to evaluate the deci-
sion about applying nitrogen under uncertain fertilizer prices
to maximize the expected value of the farmer’s profit.
Uncertainty may also come from specific products used in
farm operations, such as herbicides, for which DP helped de-
fine the dose to be applied at each application (Pandey and
Medd 1991). Facing uncertainty in water availability, Yaron
and Dinar (1982) used DP to maximize farm income from
cotton production on an Israeli farm during the irrigation sea-
son (80 days, divided into eight stages of 10 days each), when
soil moisture and irrigation water were uncertain. The results
of a linear programmingmodel to maximize profit at one stage
served as input for optimization in the multi-period DP model
with a backward process. Thus, irrigation strategy and the
cotton area irrigated were selected at the beginning of each
stage to optimize farm profit over the season. Bryant et al.
(1993) used a dynamic programming model to allocate irriga-
tions among competing crops, while allowing for stochastic

weather patterns and temporary or permanent abandonment of
one crop in dry periods is presented. They considered 15 intra-
seasonal irrigation decisions on water allocation between corn
and sorghum fields on the southern Texas High Plains. Facing
external shocks on weed and pest invasions and uncertain
rainfalls, Fafchamps (1993) used DP to consider three intra-
year decision points on labor decisions of small farmers in
Burkina Faso, West Africa, for labor resource management
at planting or replanting, weeding, and harvest time.

Concerning animal production, decisions about herd man-
agement and feed rations were the main decisions identified in
the literature to optimize farm objectives when herd composi-
tion and the quantity of biomass, stocks, and yields changed
between stages. Facing uncertain rainfall and, consequently,
uncertain grass production, some authors used DP to decide
how to manage the herd. Toft and O’Hanlon (1979) predicted
the number of cows that needed to be sold every month over
an 18-month period. Other authors combined reactive formal-
isms and static approaches to describe the sequential decision-
making process from strategic decisions and adaptations to
tactical decisions and adaptations. Strategic adaptations were
considered reactive due to the difficulty in anticipating shocks
and were represented with a recursive approach, while tactical
adaptations made over a season were anticipated and
described with static DSP. Mosnier et al. (2009) used DSP to
adjust winter feed, cropping patterns, and animal sales each
month as a function of anticipated rainfall, beef prices, and
agricultural policy and then used a recursive process to study
the long-term effects (5 years) of these events on the cropping
system and on-farm income. Belhouchette et al. (2004) divid-
ed the cropping year into two stages: in the first, a recursive
process determined the cropping patterns and area allocated to
each crop each year. The second stage used DSP to decide
upon the final use of the cereal crop (grain or straw), the types
of fodder consumed by the animals, the summer cropping
pattern, and the allocation of cropping area according to fall
and winter climatic scenarios. Lescot et al. (2011) studied
sequential decisions of a vineyard for investing in precision
farming and plant protection practices. By considering three
stochastic parameters—infection pressure, farm cash balance,
and equipment performance—investment in precision farm-
ing equipment was decided upon in an initial stage with a
recursive process. Once investments weremade and stochastic
parameters were observed, the DSP defined the plant protec-
tion strategy to maximize income.

6 Discussion

6.1 Adaptation: reactive or proactive process?

In the studies identified by this review, adaptation processes
were modeled to address not only uncertainty in rainfall,
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market prices, and water supply but also shocks such as dis-
ease. In the long term, uncertain events are difficult to antici-
pate due to the lack of knowledge about the environment. A
general trend can be predicted based on past events, but no
author in our survey provided quantitative expectations for
future events. The best way to address uncertainty in long-
term decisions is to consider that farmers have reactive behav-
ior due to insufficient information about the environment to
predict a shock. Adaptation of long-term decisions concerned
the selling strategy, the cropping system, and investments.
Thus, in the research literature on farming system in agricul-
tural economics and agronomy approaches, adaptation of stra-
tegic decisions is considered a dynamic process. In the medi-
um and short terms, the temporal scale is short enough that
farmers’ expectations of shocks are much more realistic.
Farmers observed new information about the environment,
which provided more self-confidence in the event of a shock
and helped them to anticipate changes. Two types of tactical
adaptations were identified in the review: (1) medium-term
adaptations that review decisions made for a season at the
strategic level, such as revising the farm’s selling or technical
management strategies and changing the cropping system or
crop varieties, and (2) short-term adaptations (i.e., operational
level) that adapt the crop operations at a daily scale, such as
the cancelation, delay, substitution, and addition of crop oper-
ations. Thus, in the research literature, adaptations of tactical
decisions are mainly considered a static process.

6.2 Decision-making processes: multiple stages
and sequential decisions

In Simon 1976, the concept of the decision-making pro-
cess changed, and the idea of a dynamic decision-making
process sustained over time through a continuous se-
quence of interrelated decisions (Cerf and Sebillotte
1988; Papy et al. 1988; Osman 2010) was more widely
used and recognized. However, 70 % of the articles
reviewed focused on only one stage of the decision: ad-
aptation at the strategic level for the entire farm or at the
tactical level for the farm or plot. Some authors used
formalisms such as DP and DSP to describe sequential
decision-making processes. In these cases, several stages
were identified when farmers have to make a decision and
adapt a previous strategy to new information. Sequential
representation is particularly interesting and appropriate
when the author attempts to model the entire decision-
making processes from strategic to tactical and operation-
al decisions, i.e., the complete temporal and spatial di-
mensions of the decision and adaptation processes (see
Section 5.3). For these authors, strategic adaptations and
decisions influence tactical adaptations and decisions and
vice versa. Decisions made at one of these levels may
disrupt the initial organization of resource availability

and competition among activities over the short term
(e.g., labor availability, machinery organization, and irri-
gation distribution), but also lead to reconsideration of
long-term decisions when the cropping system requires
adaptation (e.g., change in crops within the rotation and
effect of the previous crop). In the current agricultural
literature, these consequences on long- and short-term or-
ganization are rarely considered, even though they appear
an important driver of farmers’ decision-making (Daydé
et al. 2014). Combining several formalisms within an in-
tegrated model in which strategic and tactical adaptations
and decisions influence each other is a good starting point
for modeling adaptive behavior within farmers’ decision-
making processes.

6.3 What about social sciences?

Adaptation within decision-making processes had been stud-
ied in many other domains than agricultural economics and
agronomy. Different researches of various domains (sociolo-
gy, social psychology, and cultural studies) on farmer behavior
and decision-making have contributed to identify factors that
may influence farmers’ decision processes including econom-
ic, agronomic, and social factors (Below et al. 2012; Wood
et al. 2014; Jain et al. 2015).

We will give an example of another domain in the
social sciences that also uses these formalisms to describe
adaptation. Computer simulation is a recent approach in
the social sciences compared to natural sciences and en-
gineering (Axelrod 1997). Simulation allows the analysis
of rational as well as adaptive agents. The main type of
simulation in social sciences is agent-based modeling.
According to Farmer and Foley (2009), “an agent-based
model is a computerized simulation of a number of
decision-makers (agents) and institutions, which interact
through prescribed rules.” In agent-based models, farms
are interpreted as individual agents that interact and ex-
change information, in a cooperative or conflicting way,
within an agent-based system (Balmann 1997).
Adaptation in this regard is examined mostly as a collec-
tive effort involving such interactions between producers
as economic agents and not so much as an individual
process. However, once the decision-making process of
a farmer has been analyzed for a particular cropping sys-
tem, system-specific agent-based systems can be calibrat-
ed to accommodate for multiple farmer types in a given
region (Happe et al. 2008). In agent-based models, agents
are interacting with a dynamic environment made of other
agents and social institution. Agents have the capacity to
learn and adapt to changes in their environment (An
2012). Several approaches are used in an agent-based
model to model decision-making, including microeco-
nomic models and empir ical or heuris t ic rules .
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Adaptation in these approaches can come from two
sources (Le et al. 2012): (1) the different formalisms pre-
sented earlier can be used directly to describe the adaptive
behavior of an agent and (2) the process of feedback loop
to assimilate new situation due to change in the environ-
ment. In the social sciences, farmers’ decision-making
processes are looked at a larger scale (territory and water-
shed) than the articles reviewed here. Examples of uses on
land use, land cover change, and ecology are given in the
reviews of Matthews et al. (2007) and An (2012).

6.4 Uncertainty and dynamic properties

The dynamic features of decision-making concern: (1)
uncertain and dynamic events in the environment; (2)
anticipative and reactive decision-making processes; and
(3) dynamic internal changes of the decision process. In
this paper, we mainly talked about the first two features,
such as being in a decision-making context in which the
properties change due to environmental, technological,
and regulatory risks brings the decision-maker to be reac-
tive in the sense that he will adapt his decision to the
changing environment (with proactive or reactive adapta-
tion processes). Learning aspects are also a major point in
adaptation processes. Learning processes allow updating
and integrating knowledge from observations made on the
environment. Feedback loops are usually used in agricul-
tural economics and agronomy (Stengel 2003) and social
sciences (Le et al. 2012). In such situations, learning can
be represented by Bayes’ theorem and the associated
updating of probabilities. Two concerns have been
highlighted on this approach: (1) evaluation of rare events
and (2) limitation of human cognition (Chavas 2012). The
state-contingent approach presented by Chambers and
Quiggin (2000, 2002) can provide a framework to inves-
tigate economic behavior under uncertainty without prob-
ability assessments. According to this framework, agricul-
tural production under uncertainty can be represented by
differentiating outputs according to the corresponding
state of nature. This yields a more general framework than
conventional approaches of production under uncertainty
while providing more realistic and tractable representa-
tions of production problems (Chambers and Quiggin
2002). These authors use state-contingent representations
of production technologies to provide theoretical proper-
ties of producer decisions under uncertainty, although em-
pirical applications still remain difficult to implement (see
O’Donnell and Griffiths 2006 for a discussion on empir-
ical aspects of the state-contingent approach). Other learn-
ing process approaches are used in artificial intelligence,
such as reinforcement learning and neuro-DP (Bertsekas
and Tsitsiklis 1995; Pack Kaelbling et al. 1996).

7 Conclusion

A farm decision-making problem should be modeled within
an integrative modeling framework that includes sequential
aspects of the decision-making process and the adaptive capa-
bility and reactivity of farmers to address changes in their
environment. Rethinking farm planning as a decision-
making process, in which decisions are made continuously
and sequentially over time to react to new available informa-
tion and in which the farmer is able to build a flexible plan to
anticipate certain changes in the environment, is important to
more closely simulate reality. Coupling optimization formal-
isms and planning appears to be an interesting approach to
represent the combination of several temporal and spatial
scales in models.
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