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Abstract. We consider the phased and phaseless inverse scattering problems for the
Bethe-Peierls model. We give complete solutions of these problems including questions of
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1. Introduction
We consider the three-dimensional Schrödinger equation

−∆ψ(x) = Eψ(x), x ∈ R3\{0}, E > 0, (1)

where

ψ(x) =
ψ−1

|x|
+ ψ0 +O(|x|), x→ 0, ψ0 = −αψ−1, α ∈ R. (2)

Actually, condition (2) is the Bethe-Peierls boundary condition; see [BP], [GN]. In [BP]
model (1), (2) with some α > 0 was used for describing the neutron-photon interaction.
We say that model (1), (2) is the Bethe-Peierls model.

For the Bethe-Peierls model (1), (2) we consider the scattering solutions ψ+ and the
scattering amplitude f :

ψ+(x, k) = eikx − 2π2 e
i
√
E|x|

|x|
f, (3)

f =
1

2π2

1

α+ i
√
E
, (4)

where x ∈ R3, k ∈ R3, k2 = E,
√
E > 0; see [AGHH], [GN] and references therein.

In particular, it is well-known that f satisfies the unitarity condition:

f − f̄ = −πi
√
E

∫
S2

ff̄ dω, (5)

where S2 is the unit sphere in R3.
For model (1), (2) we also consider the differential scattering cross section σ = |f |2.



The problem of inverse scattering (with phase information) for model (1), (2) consists
in finding α from f .

The problem of inverse scattering without phase information for model (1), (2) consists
in finding α from σ = |f |2.

These problems including questions of uniqueness, nonuniqueness, reconstruction and
characterization are solved in the next section.

2. Inverse scattering
We define the circle SE in the complex plane C:

SE = {ζ ∈ C : ζ − ζ̄ = −4iπ2
√
Eζζ̄} =

{ζ ∈ C :
∣∣ζ + i

4π2
√
E

∣∣ = 1

4π2
√
E
},

√
E > 0.

(6)

Theorem 1. Let E > 0 be fixed (with
√
E > 0). Let f be the scattering amplitude

of (3), (4). Then f ∈ SE for any α ∈ R ∪ {∞}. Conversely, for any f ∈ SE there exists
the unique α ∈ R ∪ {∞} such that formula (4) holds, and this α is given by the formula:

α =
Re f

2π2|f |2
. (7)

Proof of Theorem 1. For the scattering amplitude f of (3), (4), the fact that f ∈ SE

follows from the unitarity condition (5). This can be also verified by a direct computation
using (4).

Conversely, for fixed f ∈ SE we consider (4) as an equation with respect to α ∈
R∪{∞}. One can see that this equation is uniquely solvable and that the solution is given
by the formula

α =
1

2π2f
− i

√
E. (8)

In addition, a direct computation also shows that

α = ᾱ if f ∈ SE . (9)

Finally, formulas (8), (9) imply that

α =
α+ ᾱ

2
=

Re f

2π2|f |2
. (10)

Theorem 1 is proved.

Remark 1. Theorem 1 gives a complete solution of the inverse scattering problem
with phase information for model (1), (2) at fixed energy E > 0, including uniqueness,
reconstruction and characterization.
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Next, we have that

σ =
1

4π4

1

α2 + E
, (11)

where σ = |f |2 is the differential scattering cross section for model (1), (2).
In connection with σ of (11) we consider the interval

IE = [0,
1

4π4E
], E > 0. (12)

Theorem 2. Let E > 0 be fixed. Let σ be the differential scattering cross section
of (11). Then σ ∈ IE for any α ∈ R ∪ {∞}. Conversely, for any σ ∈ IE there exists the
unique α2 ∈ [0,+∞] such that formula (11) holds; in addition, the values of α for this α2

are given by the formula

α = ±
√

1

4π4σ
− E. (13)

The simplest proof of Theorem 2 consists in direct computations proceeding from
formula (11).

Theorem 2 also follows from Theorem 1 and formula (5).

Remark 2. Theorem 2 gives a complete solution of the inverse scattering problem
without phase information for model (1), (2) at fixed energy E > 0, including uniqueness,
nonuniqueness, reconstruction and characterization. In particular, the solution is unique
if α ≥ 0.

Finally, using formula (11) we also obtain the following example of nonuniqueness for
phaseless inverse scattering from the differential scattering cross section σ given for all
positive energies E.

Example 1. Let σ+ and σ− be the differential scattering cross sections for model
(1), (2) with α = α+ and with α = α−, respectively, where α+ > 0, α− = −α+. Then

σ+ ≡ σ− for all E > 0. (14)

3. Additional remarks

Remark 3. Finding α from f or from σ = |f |2 is not considered in [BP]. The work
[BP] refers to other physical approaches for determining α.

Remark 4. Two-dimensional analogs of Theorems 1 and 2 were given in [AN].
However, the two-dimensional analog of Example 1 does not valid in the framework of
considerations of [AN].

Remark 5. Analogs of Theorems 1 and 2 and Example 1 are valid for the case of the
one-dimensional Schrödinger equation on the whole line with the potential v(x) = εδ(x),
where δ = δ(x), x ∈ R, is the Dirac function, ε ∈ R.
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Remark 6. The property that f ∈ SE (see Theorem 1) can be considered as a rela-
tionship between the amplitude and phase of a signal scattered by a point inhomogeneity
at {0}. In the framework of acoustic scattering such a relationship was obtained in [BM],
[BBMR] in the form:

sinφ =
−|β|

(4π/
√
E)

, where

β = |β| exp(iφ), β = (2π)3f.

(15)

However, in [BM], [BBMR] this relation is not yet related with the unitarity property (5)
of the scattering amplitude f .

Note that a two-dimensional analog of Remark 6 was given in [AN].

Remark 7. In connection with recent results on acoustic scattering by a quasi-point
inhomogeneity of a medium, we refer to [D].

Remark 8. Formulas (3), (4), (8) remain valid for α ∈ C in model (1), (2).
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