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We consider the phased and phaseless inverse scattering problems for the Bethe-Peierls model. We give complete solutions of these problems including questions of uniqueness, nonuniqueness, reconstruction and characterization.

Introduction

We consider the three-dimensional Schrödinger equation

-∆ψ(x) = Eψ(x), x ∈ R 3 \{0}, E > 0, (1) 
where

ψ(x) = ψ -1 |x| + ψ 0 + O(|x|), x → 0, ψ 0 = -αψ -1 , α ∈ R. (2) 
Actually, condition (2) is the Bethe-Peierls boundary condition; see [BP], [GN]. In [BP] model ( 1), (2) with some α > 0 was used for describing the neutron-photon interaction. We say that model (1), ( 2) is the Bethe-Peierls model.

For the Bethe-Peierls model ( 1), (2) we consider the scattering solutions ψ + and the scattering amplitude f :

ψ + (x, k) = e ikx -2π 2 e i √ E|x| |x| f, (3) f = 1 2π 2 1 α + i √ E , ( 4 
)
where [AGHH], [GN] and references therein. In particular, it is well-known that f satisfies the unitarity condition:

x ∈ R 3 , k ∈ R 3 , k 2 = E, √ E > 0; see
f -f = -πi √ E ∫ S 2 f f dω, ( 5 
)
where S 2 is the unit sphere in R 3 . For model ( 1), (2) we also consider the differential scattering cross section

σ = |f | 2 .
The problem of inverse scattering (with phase information) for model (1), (2) consists in finding α from f . The problem of inverse scattering without phase information for model (1), (2) consists in finding α from σ = |f | 2 .

These problems including questions of uniqueness, nonuniqueness, reconstruction and characterization are solved in the next section.

Inverse scattering

We define the circle S E in the complex plane C:

S E = {ζ ∈ C : ζ -ζ = -4iπ 2 √ Eζ ζ} = {ζ ∈ C : ζ + i 4π 2 √ E = 1 4π 2 √ E }, √ E > 0. ( 6 
)
Theorem 1. Let E > 0 be fixed (with √ E > 0). Let f be the scattering amplitude of ( 3), ( 4). Then f ∈ S E for any α ∈ R ∪ {∞}. Conversely, for any f ∈ S E there exists the unique α ∈ R ∪ {∞} such that formula (4) holds, and this α is given by the formula:

α = Re f 2π 2 |f | 2 . ( 7 
)
Proof of Theorem 1. For the scattering amplitude f of (3), (4), the fact that f ∈ S E follows from the unitarity condition (5). This can be also verified by a direct computation using (4).

Conversely, for fixed f ∈ S E we consider (4) as an equation with respect to α ∈ R ∪ {∞}. One can see that this equation is uniquely solvable and that the solution is given by the formula

α = 1 2π 2 f -i √ E. (8)
In addition, a direct computation also shows that

α = ᾱ if f ∈ S E . ( 9 
)
Finally, formulas (8), ( 9) imply that

α = α + ᾱ 2 = Re f 2π 2 |f | 2 . ( 10 
)
Theorem 1 is proved.

Remark 1. Theorem 1 gives a complete solution of the inverse scattering problem with phase information for model (1), (2) at fixed energy E > 0, including uniqueness, reconstruction and characterization.

Next, we have that

σ = 1 4π 4 1 α 2 + E , ( 11 
)
where σ = |f | 2 is the differential scattering cross section for model (1), (2).

In connection with σ of (11) we consider the interval

I E = [0, 1 4π 4 E ], E > 0. ( 12 
)
Theorem 2. Let E > 0 be fixed. Let σ be the differential scattering cross section of ( 11). Then σ ∈ I E for any α ∈ R ∪ {∞}. Conversely, for any σ ∈ I E there exists the unique α 2 ∈ [0, +∞] such that formula (11) holds; in addition, the values of α for this α 2 are given by the formula

α = ± √ 1 4π 4 σ -E. ( 13 
)
The simplest proof of Theorem 2 consists in direct computations proceeding from formula (11).

Theorem 2 also follows from Theorem 1 and formula (5).

Remark 2. Theorem 2 gives a complete solution of the inverse scattering problem without phase information for model ( 1), (2) at fixed energy E > 0, including uniqueness, nonuniqueness, reconstruction and characterization. In particular, the solution is unique if α ≥ 0.

Finally, using formula (11) we also obtain the following example of nonuniqueness for phaseless inverse scattering from the differential scattering cross section σ given for all positive energies E.

Example 1. Let σ + and σ -be the differential scattering cross sections for model ( 1), ( 2) with α = α + and with α = α -, respectively, where α + > 0, α -= -α + . Then σ + ≡ σ -for all E > 0.

(14)

Additional remarks

Remark 3. Finding α from f or from σ = |f | 2 is not considered in [BP]. The work [BP] refers to other physical approaches for determining α.

Remark 4. Two-dimensional analogs of Theorems 1 and 2 were given in [AN]. However, the two-dimensional analog of Example 1 does not valid in the framework of considerations of [AN].

Remark 5. Analogs of Theorems 1 and 2 and Example 1 are valid for the case of the one-dimensional Schrödinger equation on the whole line with the potential v(x) = εδ(x), where δ = δ(x), x ∈ R, is the Dirac function, ε ∈ R. Remark 6. The property that f ∈ S E (see Theorem 1) can be considered as a relationship between the amplitude and phase of a signal scattered by a point inhomogeneity at {0}. In the framework of acoustic scattering such a relationship was obtained in [BM], [BBMR] in the form:

sin φ = -|β| (4π/ √ E)
, where

β = |β| exp(iφ), β = (2π) 3 f. (15)
However, in [BM], [BBMR] this relation is not yet related with the unitarity property (5) of the scattering amplitude f . Note that a two-dimensional analog of Remark 6 was given in [AN].

Remark 7. In connection with recent results on acoustic scattering by a quasi-point inhomogeneity of a medium, we refer to [D].

Remark 8. Formulas (3), ( 4), (8) remain valid for α ∈ C in model ( 1), (2).
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