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1ILM, Université Lyon 1 and CNRS, UMR 5306, F-69622 Villeurbanne, France
2Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
3UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

(Received 21 September 2013; accepted 11 January 2014; published online 31 January 2014)

Nanopores, either biological, solid-state, or ultrathin pierced graphene, are powerful
tools which are central to many applications, from sensing of biological molecules to
desalination and fabrication of ion selective membranes. However, the interpretation
of transport through low aspect-ratio nanopores becomes particularly complex as
3D access effects outside the pores are expected to play a dominant role. Here, we
report both experiments and theory showing that, in contrast to naı̈ve expectations,
long-range mutual interaction across an array of nanopores leads to a non-extensive,
sub-linear scaling of the global conductance on the number of pores N. A scal-
ing analysis demonstrates that the N-dependence of the conductance depends on
the topology of the network. It scales like G ∼ N/log N for a 1D line of pores,
and like G ∼ √

N for a 2D array, in agreement with experimental measurements.
Our results can be extended to alternative transport phenomena obeying Laplace
equations, such as diffusive, thermal, or hydrodynamic transport. Consequences of
this counter-intuitive behavior are discussed in the context of transport across thin
membranes, with applications in energy harvesting. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4863206]

I. INTRODUCTION

Solid-state nanopore membranes are well-known for their powerful applications in multiple
domains, in particular in biology, as low-cost biosensors,1 but also in engineering as devices for
filtering or for the generation of energy.2, 3 A biosensor is made of a nanopore connected to two fluid
reservoirs, between which a potential or pressure drop is imposed. The particles in solution are driven
through the nanopore, where their passage temporarily blocks the flow of ionic current. It is thus
possible to detect biological components, such as proteins, by measuring the ionic current crossing
the nanopore.4–8 This is expected to achieve fast and low-cost sequencing of DNA.1 Furthermore,
in the context of desalination or energy conversion, multi-pore membranes also raise great hopes
to increase the efficiency of the process.9, 10 The passage through the ultrathin nanopores is a key
to their unique properties: it provides high sensitivity to molecular passage, as well as enabling the
building up of huge potential and chemical gradients across the thin membranes which facilitates
the passage.11 In this context, pierced graphene constitutes the ultimate membrane, yielding great
expectations for applications.12–15

Success in using nanopores lies in a proper understanding of transport properties of molecules,
but also of ionic current signals through the nanopores, which is commonly used as a probe of
macromolecule transport. It has been known since the 1960s that ionic transport through thin pores
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is dominated by access effects occurring at the entrance of the nanopore. Hille,16 followed by
Hall,17 first calculated the access resistance through a small circular pore in a membrane, by using
an analogy to an electrostatic capacitance problem. The total conductance is written accordingly
as18

G = (Rchannel + 2Raccess)
−1 = κb

[
4l

πd2
+ 1

d

]−1

(1)

with κb the bulk ionic conductivity, l the pore length, and d its diameter. More sophisticated
approaches, solving explicitly the Poisson-Nernst-Planck equations,19 do not predict appreciable
deviations from Hall’s17 formula, at least in neutral or weakly charged membranes.20 This formula
works for moderate to highly concentrated solutions of KCl; at low concentrations, surface conduc-
tion effects become dominant over the bulk conduction, leading to an anomalous saturation of the
conductance at low salt concentration.21 Finally, geometrical effects could also be accounted for, in
particular by taking into account the hourglass-like shape of some solid-state nanopores, as shown
by Kowalczyk et al.22

In this paper, we raise the question of ionic transport through an array of multiple nanopores.
While naı̈ve expectations would suggest that the total ion conductance GN should scale as the
number N of pores, we report experimental results for arrays with N = 1. . . 50 pores showing that
the conductance per pore GN/N strongly decreases with the number of pores N, with GN/N → 0 as
N → ∞. This result is supported by a scaling analysis of ionic transport, which is successfully
compared to the experimental results. Consequences of this counter-intuitive result are discussed
for ionic – but also hydrodynamic, diffusive, and thermal – transport across membranes, with
implications in the context of energy harvesting.

II. FROM ONE TO TWO, TO MANY PORES: A SCALING ANALYSIS

In order to understand this prediction, we build our approach in the spirit of Hall’s work.17 The
key remark made by Hille16 and Hall17 is that an analogy can be made between the ion transport and
an electrostatic capacitance problem because the obeyed equations are identical: for ion transport,
the ion current �j and electric field �E are connected through current conservation

�∇ · �j = 0, �j = κb �E (2)

leading to a Laplace equation for the electrostatic potential, as for the capacitance problem. Boundary
conditions are in both case a given potential on the disk and at infinity. Consequently, the access
electrical resistance for a single pore entrance is related to the capacitance C between a conducting
disk of vanishing thickness, standing for the nanopore entrance, and a half-spherical electrode at
infinity.23 In mks units, this is expressed as

Raccess = ερ/C (3)

with ρ = κ−1
b the resistivity of the medium. For a charged conducting disk of diameter d, we have24

C = 2εd, leading to

Raccess = 1

2κb d
(4)

(for one side of the pore). Adding this access resistance for the two sides of the pore to the bulk
resistance of a cylindrical conductor leads back to Eq. (1).

We now generalize this framework to the case of multiple pores. Following the same
reasoning, the overall access resistance RN , access of the pore array can be obtained directly
from the corresponding capacitance of the N conducting (and electrostatically connected) disks,
as

RN , access = 1

κb
× ε

CN pores
(5)

again for one pore side.
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A. Two pores

Before exploring the general N pore case, we first consider the 2-pore geometry. In this case,
the calculations proceed easily by a simple electrostatic analogy. The calculation of the 2-disk
capacitance separated by a distance L can be estimated recursively. We fix the potential V0 on the
disks and compute their charge. For L → ∞, the charge held by each pore entrance tends to that
of isolated pores, i.e., q = 2εdV0. For finite L, their charge will depend on the interspacing L in
order to maintain two neighboring conducting disks at the same potential, due to mutual electrostatic
interaction. We make the standard simplifying assumption that the effect of a given disk on the
other can be approximated by the effect of a point charge located at the center of the first disk. This
assumption is expected to hold when L � d (as may be indeed verified numerically).

In this case, the image charge δq(1) is simply δq (1) = −q d
2L . Next orders can be calculated

along the same method and within the above approximation, this leads to δq(n) = q × (− d/2L)n, so
that the total charge on a single disk is accordingly estimated by summing up all contributions as
Q = ∑

nδq(n) = q/(1 + d/2L). The global access ionic resistance of the two pores is deduced
accordingly

R2,access 	 1

2κb d

(
1 + d

2L

)
(6)

and the two-pore conductance is

G = 2κb

[
4l

πd2
+ 1

deff

]−1

, (7)

where deff 	 d/(1 + d/2L) has the meaning of an effective electric size of the pores, modified under
their mutual influence. The effective electric diameter is equal to the physical size of the pore in the
absence of interpore interactions.

B. N pores: General framework

Let us generalize this result to N pores. In that case, the charge correction factor may be different
for each pore, but we consider only (averaged) global properties in the present estimates. As above
the conductance may be written as

G N = Nκb

[
4l

πd2
+ 1

deff

]−1

, (8)

where the effective electric size of the pore now takes the general expression

deff ≡ d × CN pores

NCsingle pore
. (9)

Following the capacitance analogy, the effective electric size deff is defined in terms of the capacitance
CN pores of the N pore system.

We are not aware of a general analytical estimate for CN pores and we therefore proceed along the
same lines as for the two pore case above, with an estimate of the charge carried by each conducting
disk (the pore entrances) in order to keep their potential fixed.

Using the recursive reasoning, the charge perturbations on each pore {δq1, . . . , δqN} are linearly
linked to the bare charge of the pores {q1, . . . , qN}

δ�q =
(

− d

2L

)
× A · �q. (10)

The matrix A is a function of the geometry of the pore array. For example, for N pores in a line
separated by a distance L, the matrix has the structure

Ai j =
{

0 i = j,

|i − j |−1 i �= j = 1 . . . N .
(11)
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The transformation matrix is always centrosymmetric in any geometry, because Aij = Aji, and in a
linear geometry is also a Toeplitz matrix, which can be diagonalized numerically using fast recursive
algorithms.

Now the capacitance CN pores follows. To first order in d/L, each pore entrance carries a total
charge Qi 	 qi + δqi = qi + (− d/2L)

∑
j Aijqj. At the zeroth order, the charges qi are fixed by the

potential V0, as qi = q0 = 2εdV0 ∀i , and the total charge in a N-pores array is

QN pores 	
∑

i

qi − d

2L
×

∑
i, j

Ai j q j

= 2 NεdV0

⎛
⎝1 − d

2L
× 1

N

∑
i, j

Ai j

⎞
⎠. (12)

Thus, we get

CN pores 	 NCsingle pore ×
(

1 − γN
d

2L

)
(13)

with γ N ≡ N−1∑
i, jAij a global factor accounting for the geometry of the network.

We finally obtain for the effective electric size of the pores: deff 	 d
(
1 − γN

d
2L

)
. The previous

expression for deff can be viewed as the first order expansion of the (physically more relevant)
formula

deff 	 d

1 + γN
d

2L

. (14)

While this form involves a number of approximations, we anticipate from the numerical results
below that this is found to agree very well with the numerical solution. Together with Eq. (8), this
expression gives the conductance of the N-pore array. Note that surface conduction effects have been
neglected here,21 so that the present analysis is valid for moderate to high-salt concentrations (see
Sec. IV).

C. Scaling relationships

While exact values for the geometric factor γ N can be explicitly calculated for specific geome-
tries, it is possible to obtain scaling relationships in the limit of a large pore array, N → ∞. We
consider specifically two geometries: a line of pores and 2D compact arrays, for example, made of
square or triangular lattice of N pores.

The case of lines is certainly the simplest one. The corresponding transformation matrix A is
given in Eq. (11) and γN = 1

N

∑
i �= j |i − j |−1. For large N, a continuum approximation can be made

and

γN = 1

N

∑
i �= j

1

|i − j | 	 1

N

∫ ∫ N

|x−y|>1
dx dy

1

|x − y| (15)

yielding

γN ∼ log N (16)

for the 1D line of pores.
In the case of a 2D compact lattice of N pores, the transformation matrix A takes the generic

form

Ai j =
{

0 i = j,∣∣ri − r j

∣∣−1
i �= j = 1 . . . N ,

(17)



012005-5 Gadaleta et al. Phys. Fluids 26, 012005 (2014)

with ri the (dimensionless) positions of the pores in units of L, and

γN = 1

N

∑
i �= j

1

|ri − r j | . (18)

To estimate the sum in Eq. (18), we proceed using an analogy to a further electrostatic problem.
The sum corresponds indeed to the electrostatic energy EN of a conductor made of the N pores with

unit charge. In the large N limit, a continuum approximation can be made, so that EN = Q2
N

2CN
, with

QN = N the total charge, and CN the capacitance of the global object (here the N pores). Using
standard results,24 CN scales linearly with the lateral size RN of the compact N pores system, so that
CN ∼ RN ∼ √

N .
Gathering results, one gets finally

γN ∼ N 1/2 (19)

for 2D arrays of pores. The scaling is therefore stronger in 2D compared to the logarithmic scaling
for the 1D line. This is due to the higher coordination number in 2D.

D. N-pore conductance

Altogether one therefore predicts for the conductance the following expression:

G N 	 Nκb

[
4l

πd2
+ 1

d

(
1 + γN

d

2L

)]−1

(20)

with γ N ∼ log N for lines of pores, while γ N ∼ N1/2 for 2D arrays of pores.
This result demonstrates that entrance resistances do not simply add in parallel, as one would

have naı̈vely expected. This fact is highlighted by the predicted increase of the factor γ N with the
number of pores N. This result stems from the long-range electrostatic interactions between pores
which can never be neglected in the calculation of the global conductance of the membrane. A
counter-intuitive outcome of this prediction is that – whatever the bulk contribution to the con-
ductance, as described by the first term in the brackets in the right hand side of the previous
equation – the contribution of entrance effects dominates for sufficiently large N and

G N

N
∝ 1

γN
−−−−−→

N→∞
0 . (21)

Entrance effects lead to a sub-linear scaling of the conductance as a function of the number of pores,
and the conductance per unit pore vanishes for an infinite number of pores.

We shall come back on the astonishing consequences of this prediction in Sec. IV at the end of
the paper.

E. Numerical validation

Before turning to the experimental investigation of this unexpected effect, we first validate our
predictions on the basis of a numerical resolution of the transport equations using a finite-element
method (COMSOL software). This allows merely to apprehend the approximations behind the above
calculation.

To this end, we built up a 3D system formed by two reservoirs separated by a thin non-conducting
membrane with one or N pores drilled through the membrane. We ensured that the size of reservoirs
was much larger than the pore radius and the global pore array to avoid finite-size effects. We
imposed an electrical potential difference �V between the two sides of the membrane. Then we
solved the Laplace equation for the potential V , ∇2V = 0, using a finite-element calculation. The
boundary condition at the interface between the membrane and the solution is that of a vanishing
flux, leading to �n · �∇V = 0 on the surfaces. Finally, we measured the total ionic current I through
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FIG. 1. Numerical results: inverse conductance for N pores, GN, normalized by N × G1, with G1 the conductance of a single
pore, versus the inverse distance L between the pores for various numbers N of pores: (Left) N pores in a line; (right) N pores
in a square array. The linear dependence does confirm the prediction in Eq. (20). The slope of the linear dependence allows
to extract the geometric factor γ N.

the pores, defined as

I = κb

∫
S
(−�∇V ) · �d S (22)

being κb the bulk conductivity and S a cross-section of the system.
Within this numerical setup, we explored both the linear and 2D arrays (square and triangu-

lar lattice) for a number of pores varying from N = 2 up to N = 151 (for the triangular lattice).
In Fig. 1, we show the conductance across the nanopore network, calculated numerically for a
varying distance L between pores. For the various geometries, we found that the inverse conduc-
tance scales linearly with the inverse length L−1, in full agreement with our main prediction in
Eq. (20). This confirms thereby our prediction in Eq. (14) for the effective electrostatic diame-
ter of the pore. The numerical computation highlights the mutual interaction of electric transport
between the pores, as shown in the deformation of the electric streamlines, see Fig. 2. From
the slope of the lines in the previous plot, one can accordingly extract the geometric factor γ N.
This is plotted in Fig. 3 for the line of pores, as well as for the square and triangular array of
pores.

FIG. 2. Computed stream lines of the electric field, showing the deformation due to mutual interaction.
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FIG. 3. Numerical results: Plot of the geometrical factor γ N versus the number of pores N. (Left) N pores in a line: the linear
fit shows that γ N ∼ log N in this geometry. (Right) N pores in a square array (square symbols) and in a triangular array (circle
symbols). The dashed line is a power law fit with a 0.6 exponent.

Altogether these numerical calculations fully confirm the predictions of the scaling analysis.
The geometric factor is found to scale logarithmically in N for the linear array, γ N ∼ log N, while it
scales algebrically with the number of pores in the 2D system, γ N ∼ Nα , with a measured exponent
α 	 0.6 very close to the predicted one (0.5). We attribute the slight difference in exponent in edge
effects which should disappear in the very high N regime (which we could not reach numerically).

III. LINEAR AND SQUARE ARRAYS OF PORE: EXPERIMENTAL RESULTS

We now turn to the experimental counterpart with the aim to explore the electric conductance
across an array of nanopores.

A. Fabrication process and experimental protocol

To fabricate multipore membranes, we used 50 nm-thick silicon nitride (Si3N4) membranes
drilled by Focused Ion Beam (FIB) milling. The resulting nanopores were cylindrical, with diameter
d ≈ 200 nm. Various FIB scan protocols were tested in order to obtain straight cylinders. Using
this technique, we fabricated membranes with 1–90 drilled nanopores in a line or in square array,
with various distances L between the pores. The actual distances and diameters were measured
post-fabrication by SEM imaging, with errors of a few nanometers. Figure 4(b) shows the SEM
image of a sample with various nanopore arrays.

Each membrane was then inserted in a custom-made electrochemical cell between two reservoirs
of a KCl solution of concentration cs, made from deionized water and solid KCl (Acros Organics,
99% purity), see, e.g., Ref. 21. The conductivity of the solution was checked before and after each
experiment with a conductimeter (HI 2550, Hanna Instruments), and no particular drift was observed.

FIG. 4. (a) Sketch of the system. (b) SEM images of FIB-milled multipores: pore lines and square arrays.
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The conductance of the nanopores was extracted from I-V characteristic curves, measured with a
custom-made I/V converter and a National Instruments DAQ board, using Ag/AgCl electrodes.

B. Three pores in a line

We first explore the case of three pores in a line, which we compare to the measurements
obtained for a single-pore membrane. Figure 5 reports the dependence of the conductance for the
3-pore system as a function of the distance L between the pores. While the conductance normalized
to its single pore value, G3/3G1, approaches unity when L � d, a strong decrease of the multipore
conductance, with respect to the sum of the contributions of individual pores, is observed at small
interpore distance L ≈ d, so that G3 < 3 × G1. Furthermore, the theoretical prediction in Eq. (20)
is found to reproduce fairly well the experimental results (with γ 3 = 1.07 as obtained from the
numerical calculation).

C. Multipore arrays: Linear and square geometries

While the above experiment confirms the strong mutual influence of the nanopores, our focus is
merely on the dependence on the number of pores N. To this end, we have measured the conductance
in (linear and square) arrays of nanopores, with a number of pores varying between N = 1 and
N ≈ 50 for a given interpore distance L (L ≈ 2 d). The results are displayed in Fig. 6. The conductance
of the multipore system GN, normalized by N times the expected contribution of an individual pore,
is plotted versus the number of pores N. The panels (a) and (b) of this figure clearly demonstrate that
the normalized conductance GN/N decreases by a large factor with the number of pores N.

As suggested by our prediction in Eq. (20), these data are presented in the panels (a′) and (b′)
as NG1/GN versus N to highlight the scaling behavior of the entrance effects. The results for the line
of nanopores, panel (a′), do exhibit a log N scaling, in full agreement with our predictions above.
The 2D square array exhibits a slow algebraic increase of the entrance effects, as highlighted by the
comparison to a N1/2 scaling in panel (b′), again in agreement with our predictions. Altogether the
experiments fully confirm the sublinear scaling of the conductance due to entrance effects.

0 10 20 30
L/d

0

0.5

1

G
ex

p,
3/3

G
1,

 th

FIG. 5. Experimental values of the normalized conductance G3/3G1 of 3-nanopores linear arrays, with G3 measured
conductance of the sample and G1, th the predicted conductance of a single nanopore, as a function of the normalized distance
L/d. The pore diameter is d = 226 nm. Error bars are obtained from measurements over various realizations and 5 salt
concentrations in the range 10−2 − 1 M. The dashed line is the prediction using Eq. (20) (with γ 3 = 1.07 as obtained from
the numerical calculation).
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FIG. 6. Experimental results: conductance across N nanopores in a line (a) and in a square array (b), as a function of the
number of nanopores N. The conductance is normalized by N times the value expected for a single nanopore. The distance
between nanopores is fixed L ≈ 2 d (with d ≈ 200 nm the pore diameter). In panels (a′) and (b′), the inverse conductance is
plotted versus the number of pores in order to highlight the scaling with N. The dashed line highlights the predicted log N
behavior for the linear geometry (panel (a′)), while it shows a N1/2 scaling for the square geometry (panel (b′)). This plot
gathers measurements for salt concentration Cs between 10−2 and 100 M, as the normalized conductance is independent of
concentration in this regime.

IV. DISCUSSION

In conclusion, we experimentally demonstrated and theoretically justified that the conductance
through arrays of nanopores exhibits an anomalous sub-extensive dependence of the conductance on
the number of pores. The total ion conductance normalized by the sum of individual contributions
strongly decreases with the number of pores N. A theoretical framework shows that this counter-
intuitive behavior originates in the mutual interactions between the nanopores. The long range nature
of the transport leads to a bending of the field lines at pore entrances, thereby modifying the apparent
cross section of each pore.

We furthermore proposed a scaling approach showing that the global entrance effects diverge as
N goes to infinity. This leads to a sublinear dependence of the total conductance versus the number
of pores, scaling as GN ∼ N/log (N) for an array of N pores in a line, and GN ∼ N1/2 for a 2D array of
pores. An astonishing consequence is that the normalized conductance GN/N vanishes for an infinite
number of pores, GN/N → 0 as N → ∞. We checked this result by finite-element simulation, finding
a good agreement with experimental results.

We quote that our results are valid in the regime where the surface conduction can be ne-
glected as compared to the bulk conduction inside the pore. This corresponds to a regime where
the so-called Dukhin length, 
D, defined as the ratio between surface and bulk conductance, is
smaller than the interpore distance. Indeed, as shown in Ref. 21, the surface conduction inside
the pore is expected to modify the electric field lines up to a distance 
D in the bulk and the
interactions between pores would be modified when 
D compares with the interpore distance.
This effect has not been considered in our description, and our approach is accordingly valid
for negligible surface conduction. This implicitly assumes moderate to high salt concentration.
It would be however highly desirable to extend our predictions to include the effects of surface
conduction.

The consequences of this result are highly non-trivial. It shows that the total conductance of
a 2D array of pores scales sub-extensively with the number of pores due to entrance effects and
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multipore interactions, so that in the macroscopic scale, G N ∝ √
N × κb L as N → ∞ (L the

interpore distance).
The result bares some similarity with the collective sedimentation of particles.25 Beyond its

vectorial nature, the Navier-Stokes equation exhibits a similar laplacian form (for the pressure
equation), leading to long-range hydrodynamic interaction between the particles. It is known in this
context that sedimentation exhibits very strong finite-size effects.25, 26 Our prediction is a counterpart
of this behavior for electric transport.

The anomalous scaling of the conductance originates from entrance effects. As it can be seen
from our main prediction in Eq. (20), entrance effects always prevail over bulk conductance through
the membrane for sufficiently large N. Typically this occurs – using Eq. (20) – when γ N � L · l/d2,
with l and d the length and diameter of the pores, and L their interdistance. This condition occurs
above a threshold number of pores, N�. For a 1D line of nanopores, N� ≈ exp [L · l/d2], while N� ≈
(L · l/d2)2 for a 2D array. Above N�, entrance effects start to play a dominant role and the anomalous
scaling for the conductance is in effect, decreasing the conductance with the number of pores N. For
membranes made of pores with large aspect ratio l/d � 1, N� is accordingly very large and the effect
is weak. However, for thin membranes with a pore aspect ratio smaller than one, N� is typically of
order unity and the sub-linear scaling should show up as in the present measurements.

This counter-intuitive result raises a number of questions for electric transport across mem-
branes, as it shows that for sufficiently large areas, the entrance effects dominate over the resistance
inside the pores. In any case, these effects will be particularly dominant for ultrathin membranes,
such as graphene pierced by many pores. While one would naı̈vely expect that, for the molecularly
thin graphene layer, a huge electric potential gradient should build up across the membrane, our re-
sults do show in contrast that interactions between pores should decrease strongly the corresponding
ionic transport across this ultrathin membrane.

Furthermore, it is also interesting to note that the theoretical framework proposed here can be
easily generalized to any transport phenomena involving a laplacian type of equation. This is due
to the conservation equation which leads to long-range interaction between the pores. While this
should deserve further systematic investigations, the present results are expected to generalize to
hydrodynamic transport, as well as diffusive or heat transport (provided the membrane is assumed
to be thermally insulating). This raises accordingly the question of finite size effects on the global
permeability of thin membranes, as well as the diffusive permeability of such membrane to solutes.
Such questions would deserve a much more detailed investigation in the context of reverse osmosis
and desalination process. The consequences are numerous and quite subtle. For example, due to the
large entrance resistance, the potential drop inside the pore is substantially smaller. So this should
impact any transport phenomena taking its origin in the corresponding driving force. This is in
particular the case of cross transport phenomena, such as electro-osmosis. Due to Onsager symmetry,
the same applies to the streaming current, which is the electric current induced by hydrodynamic
flow under a pressure drop. This incidently confirms that the effects discussed here for electric
transport should apply for hydrodynamic transport as well. A strong hydrodynamic resistance at
the entrance leads to a smaller pressure drop inside the pore, thereby reducing corresponding fluxes
(mass and electric).

In the context of energy harvesting, streaming currents were considered as an interesting new
route to produce electric current Istream from pressure gradients.27 The maximum power produced is
easily calculated as Pmax = 1

4 G−1 × I 2
stream, with G the global conductance of the membrane. Due

to the anomalous entrance effects, the conductance will decrease with the number of pores, and
this may be thought as a strong amplification factor for the produced power. However, as discussed
above, the current Istream is proportional to the pressure gradient inside the pore, Istream ∝ [∇P]in,
which is also affected by the same entrance effects, with similar scalings as for the conductance.
Altogether this should therefore lead to a decrease of the produced power as a function of the number
of pores, with similar scaling laws as discussed in the present article.

Such effects may however be circumvented for the alternative diffuso-osmotic energy harvesting
under salt concentration gradients,28 whereby an electric current is generated by a salt concentration
gradient, IDO ∝ ∇Csalt. Indeed, while the salt concentration gradient inside the pore should a priori
be affected by similar effects, the possibility of convective mixing of the salt may allow to bypass
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the limitations induced by mutual effects between pores in diffusive transport (while keeping the
effect for the electric conductance). In this case, the corresponding generated power – similar to the
case of streaming currents – may be therefore increased due to the corresponding decrease of the
conductance.

Altogether, entrance effects across membranes exhibit subtle and counter-intuitive features,
which – provided they are used properly – can be harnessed for applications in various fields.
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