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”Look At This One” Detection sharing between modality-independent
classifiers for robotic discovery of people

Joris Guerry1, Bertrand Le Saux1 and David Filliat2

Abstract— With the advent of low-cost RGBD sensors, many
solutions have been proposed for extraction and fusion of
colour and depth information. In this paper, we propose new
different fusion approaches of these multimodal sources for
people detection. We are especially concerned by a scenario
where a robot evolves in a changing environment. We extend
the use of the Faster RCNN framework proposed by Girshick et
al. [1] to this use case (i), we significantly improve performances
on people detection on the InOutDoor RGBD People dataset [2]
and the RGBD people dataset [3] (ii), we show these fusion
handle efficiently sensor defect like complete lost of a modality
(iii). Furthermore we propose a new dataset for people detection
in difficult conditions: ONERA.ROOM (iv).

I. INTRODUCTION

When exploring an unknown place, a robot can find itself
in very different situations. Because of these uncertain condi-
tions, different sources of information may be used to ensure
greater detection robustness. In the context of computer
vision, a colour camera (Red-Green-Blue) can be coupled to
a so-called ”depth map” camera providing additional spatial
information. Kinect or Xtion cameras are examples of RGBD
sensors providing all of this information to the user. The low
cost of these devices and their plug’n’play design have raised
a recent interest for the scientific community. The nature of
the information provided by each built-in sensor is different
and can be complementary. For this reason, it is important
to cleverly merge this information to improve classification
performance and to be robust to specific failure conditions
for each modality. In particular, for a robot equipped with
such sensor (Figure 1) in an exploration scenario, situations
such as a dark room can suppress the RGB modality, while
sunny areas can suppress the depth modality.

In this paper, we focus on people detection because of
its importance in many scenarios for domestic or search-
and-rescue robotics. Many methods have been proposed for
this detection task on RGB images, such as Histogram of
Oriented Gradients for people detection [4] and Deformable
Part Models [5] to name but a few. The use of a sec-
ond modality like depth permits to be less dependant to
colour and texture features and instead to focus on global
geometric shape or object instance separation. Using such
a multimodal RGBD approach, Gupta et al. [6] proposed
a method based on the Girshick et al. Region-CNN [7].
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Fig. 1. Our mobile robot used for ONERA.ROOM acquisitions

They use an independent Region Of Interest (ROI) proposal
module and then extract features of the region through a
convolutional neural network (CNN). These features are
subsequently classified by a support vector machine (SVM).
The major contribution of their work is an efficient encoding
of the depth information: HHA (Horizontal disparity, Angle
of normal vector to gravity). However, the ROIs proposition
phase as well as the HHA processing are time-consuming
and the SVM makes the training process complex. Aware
of this complexity problem of HHA encoding, Eitel et al.
proposed in [8] to make a simple and fast rendering of the
depth map, transforming the spatial distance into a colour
information with the Jet colormap. The authors proposed to
merge three CNNs, an RGB expert, a depth expert and an
optical flow expert, replacing the last layer of each expert
by a common fully-connected fusion layer and appending a
final global softmax layer. The evolution of this work led
to the use of a CNN module that weights the outputs of
each expert on the fly, rather than learning the combination
statically. This module, called Gating network [2], is based
on features extracted at the last levels of each expert. Thus,
with both class probability vector, a final vector is obtained
as a weighted sum of the coefficients proposed by the Gating
Network. Therefore, an expert can overwrite the information



of others if the Gating Network weights it sufficiently. Since
the neural network used is non-linear, this kind of decision
can lead to the complete loss of information of one of the
experts.

Another multimodal fusion strategy was proposed by
Hazirbas et al. with FuseNet [9], where the intermediate
tensors of the depth expert neural network are concatenated
in the RGB expert network. The convolution kernels of
the depth expert remain independent of the colour, but the
convolution kernels of the RGB expert must now process the
depth information. If the resulting activation of the convolu-
tional filters is not sufficient for at least a single modality,
it is possible that the total activation is not sufficient for
the macro network, locally blocking the information. For
example, if the RGB image is too dark, only the depth expert
should be able to express itself, which is not possible here.
Badrinarayanan et al. [10] applied a new encoder-decoder
CNN structure for semantic segmentation on a RGBD dataset
showing better results with only RGB modality than former
RGBD based methods. But this dataset was not presenting
hard luminosity condition.

Fig. 2. Fr RCNN architecture [1]

However, some efficient methods have been also proposed
for single modality. For range images [11] computes feature
on the point cloud which is processed from the depth
acquisitions. For RGB-only data, object detection is a very
active domain. The R-CNN adapted by Gupta for RGBD
has already been outperformed by Fast RCNN [12]. This
is a deep network object classification method, also used
in [2], which uses an ROIs proposal module independent of
the classification network. In following works, the Region
Proposal Network (RPN) has been added to a new version
of the method: Faster RCNN [1] (abbreviated to Fr RCNN).
The RPN provides regions of interest directly within the
CNN architecture. The CNN ROIs provided by the RPN are
then extracted from the 5th convolution layer output to be
classified by the second part of the network (see Figure 2). In
this paper, we study how multimodal RGBD information can
be exploited in the frame of the Fr CNN approach. Indeed,
more than a particular neural network, Fr RCNN is a concept
that can be applied to many structures of CNN. Yet, the
Fr RCNN is just made for a single source of information and,
to our knowledge, has not been structurally adapted to the use
of multimodal sources. We will show that these approaches
significantly improve performances on people detection on
the InOutDoor RGBD People dataset [2] and the RGBD
people dataset [3] and that these fusion handle efficiently
sensor defect like complete lost of one of the modalities.
We also propose a new dataset, ONERA.ROOM, containing
more challenging detection conditions acquired in a mobile

Fig. 3. Different fusion architectures, from top to bottom: U-fusion (NMS
with the expert classifier outputs), X-fusion (NMS on the RPN outputs and
NMS on the classifier outputs), Y-fusion (working on the concatenation of
the tensors of each semi-expert).

robotics exploration scenario.

II. JOINT-MODE APPROACH FOR OBJECT
DETECTION

We propose multiple approaches for fusion of information
from both modes: RGB and depth. First, we build single
mode experts based on the effective region proposal module
of Fr RCNN [1]. We show that this architecture can also
be successfully applied to depth data. Second, the objective
of fusion is to be able to adapt to realistic data in which
the conditions of luminosity can completely degrade the
performances of the RGB expert (in dark environment,
blurry, smoky, ...) or of the depth expert (outdoor, long
distance, ...). This is why the approaches we propose try to
keep the experts independent (i.e avoid hybrid architectures)
while allowing them to help each other.

In this paper, NMS is referring to Non-Maximum Sup-
pression, recently called GreedyNMS in [13] as opposed to
learnt NMS. This post-processing sorts and selects the best
object detections among proposals in order to only keep one
detection per object.

From now on, our different architectures are named RGBD
RCNN (see Fig. 3) with the following variants.

• The U architecture is a naive version with two parallel
networks. Thus, the two streams of information are only
merged at the end of the detection. The fusion step
is performed by NMS. This simple approach allows
to have a better recall than single experts since one
network can make up for the failing one but can lead
to worse precision. This strategy can be applied to
every computer vision technique that proposes bounding
boxes.



• The X architecture is more subtle. Placing a common
NMS after the RPN makes it possible to share the
ROIs before the classification process of each expert.
This pooling of detections allows an expert to share its
detections with the other expert : ”Look at this one !”.
Thus, class-blind object detections from both RGB and
depth can be classified by the two experts meanwhile
the redundant proposed regions are handled by the final
NMS.

• The Y architecture aims to use only one RPN, taking as
input the 5th convolution outputs of both experts con-
catenated in a single tensor. The underlying assumption
is that a RPN which gets both RGB and depth inputs
will be able to predict better ROIs. However, the RPN
feature space is now twice as big as before and thus
training is more complex. So, longer time is required for
optimisation. A second benefit of such a fusion is that it
results in a lighter architecture with a single classifier, so
less parmeters to optimize and faster prediction times.

The U and X architectures are structurally independent:
RGB and depth experts are trained separately and it is only
at test time that ROIs are shared. They are thus incremental
approaches: a new sensor modality could be added without
retraining the existing ones. On the contrary, the Y archi-
tecture would require a new training with all sources. The
advantage is that it would also be able to learn cross-modality
features.

In this paper, our new method uses Fr RCNNs based on the
VGG16 [14] network1. Each training is done with stochastic
gradient descent for 10,000 iterations with a constant learn-
ing rate of 0.001 through Pytorch framework. Parameters
are initialized with pre-trained weights on the ImageNet [16]
dataset. At test time, each expert runs at 3 frames per second
(fps) and the X-fusion runs at 5 fps.

III. RESULTS

Fig. 4. Examples of predictions with models trained and tested on RGBD
People dataset [17], from left to right : RGB expert, depth expert, X-fusion.
The depth expert was able to find all the people in the image but the X-
fusion propose better bounding box alignments with the ground truth.

We compare our approach with state-of-the-art methods
on two public RGBD datasets for people detection: RGBD
People in part III-A and the more recent InOutDoor dataset

1Fr-RCNN was also implemented with Residual Networks [15], leading
to improvement over VGG networks on many datasets but at a large
computational cost

with a moving camera in part III-B. We also run experi-
ments of people detection with our robotic platform in even
more challenging set-ups, which yields the new dataset we
deliver: ONERA.ROOM (in part III-C). For performance
evaluation we use standard metrics of object detection used
in similar contexts [2]: Average Precision (AP), Equal Error
Rate (EER), Intersection-over-Union (IoU) and the harmonic
mean of the precision/recall pair (F1).

A. RGBD PEOPLE DATASET

We first test our method on the RGBD People [3] dataset.
This set of over 3000 RGBD images was acquired with 3
static cameras in a large hall with stable lighting conditions.
By reproducing the experiment in [2], we produced 5
random sets (70 % training / 30 % test) and give the averaged
results in Table I, ignoring cases of occlusions . We consider
a correct detection if IoU > 0.6. The method Fr RCNN
allows a significant gain on the method proposed in [2] (+9.1
points) and the X-fusion slightly increases this result (+0.2
points). An illustration of these results is shown in Figure 4.

TABLE I
EER ON RGBD PEOPLE [17] DATASET FOR SEVERAL DETECTORS.

HOD IS SHORT FOR HISTOGRAM OF ORIENTED DEPTHS AND HGE FOR

HIERARCHICAL GAUSSIAN PROCESS MIXTURES OF EXPERTS.

Method Source EER
HOD [18] D 56.3
HGE [18] RGBD 87.4

Gating Net. [2] RGBD-Optical flow 89.3
Fr RCNN [1] D 98.3
Fr RCNN [1] RGB 98.4

RGBD RCNN U RGBD 98.4
RGBD RCNN Y RGBD 98.3
RGBD RCNN X RGBD 98.6

B. INOUTDOOR RGBD PEOPLE DATASET (IOD)

TABLE II
PERFORMANCE ON THE IOD DATASET (REFERENCE SETS [2]) FOR

DIFFERENT DETECTORS.

Method Source Precision/Recall AP EER IoU F1
Gating Net. [2] RGBD –/81.1 80.4 – – –
Fr RCNN [1] RGB 73.2/94.2 91.9 90.1 80.3 82.4
Fr RCNN [1] D 46.9/85.9 84.0 84.8 79.4 60.7

U RGBD 45.6/96.4 94.4 92.1 80.3 61.9
X RGBD 43.5/96.5 94.3 92.4 79.9 60.0
Y RGBD 59.4/93.3 90.2 90.1 80.2 72.6

U * RGB-D 46.9/85.9 84.0 84.8 79.4 60.7
X * RGB-D 45.9/85.9 84.1 84.8 79.4 59.9
Y * RGB-D n.a/0 n.a n.a 0 n.a

The more challenging IOD [2] dataset is obtained by an
RGBD camera embedded on a mobile robot which evolves
among people in motion. It has sharp changes in brightness
(indoor / outdoor) and consists in 4 sequences (8305 images)
captured at different times of the day with variations in
ambient light. We consider a detection is correct if IoU > 0.6.
The Fr RCNN [1] alone, (RGB or D) already achieves a



better score than the previous state of the art [2], with a
gain of 11.5 points on the AP. This important gain can be
partially explained by a better recall (detection rate) thanks
to the RPN. Fusion strategies further improve the score by
2.5 points, raising AP to 94.4%. A classification example on
IOD is available on the left column of Figure 5.

We notice that X and U strategies have better performance
than Y. The training is more delicate for the Y strategy.
Indeed, the task is more complicated because the feature
space is bigger for the single RPN/classifier. Moreover, this
type of hybrid network can not handle the loss of one of
the sources as shown by the total absence of detections for
Y * in the experiments with ablation of the RGB modality
(see Table II). On the contrary, U * and X * react well by
equalizing the performances of the depth expert alone.

Fig. 5. Examples of predictions with models trained on IOD [2] and tested
on IOD and ONERA.ROOM datasets. It is interesting to notice that the X-
fusion (left column) has a new ROI. This is allowed by the intermediate
NMS, post-RPN: the depth expert found an object and was not able to
classify it, however, the RGB expert did not initially find this object but
was finally able to classify it. The U-fusion (right column) does not allow
this pre-classification detection exchange but allows to reorder, by score,
the ROIs during the final NMS. In this example, the ROI from the depth
expert is dismissed in favor of the RGB expert central ROI, which allows
the depth expert to provide a previously ignored ROI (in yellow).

C. ONERA.ROOM

We now propose a new and more challenging dataset in a
robotic exploration scenario.

Robot framework: The experimental set-up consists in
a four-wheeled Robotnik Summit XL (cf. Fig. 1) equipped
with a RGBD camera (Asus Xtion in its last version, but
formerly Kinect v1 and Realsense camera). The sensors are
linked to an embedded computer and wi-fi transmitter for
remote data processing.

Dataset: ONERA.ROOM is a new data set with 27 se-
quences acquired by various RGBD sensors (Kinect v1, Re-

Precision-Recall curve on IOD [2] dataset.

Precision-Recall curve on ONERA.ROOM dataset.

Fig. 6. The asterisk means that the source RGB was unavailable (black
image). U and X-fusions behave well against this defect (see fusion curve
U * and fusion X *) which fall back to the performance level of the depth
expert. The X-fusion has a better AP than the RGB expert. Although the
EER of the Y-fusion is good, this strategy is unable to make any detection
in the event of loss of the RGB source.

alSense and mainly Xtion), embedded on a remote-controlled
mobile robot. 23 sequences containing people have been
labelled, representing 27201 ROIs of people distributed in
35379 images. Oriented to robotic scenarios for search
and rescue, the ONERA.ROOM dataset includes sequences
acquired in the dark, sequences blurred by the movement of
the robot and cases of unconscious people on the ground.
It has three main sets of increasing difficulty level: ”Easy”,
”Average” and ”Hard”, and is made publicly available for
research purposes on our website2.

Experiments: To impose a statistical independence be-
tween the training data and the test data, we used the
models trained on the IOD train set and apply them to ON-
ERA.ROOM. All the quantitative results on ONERA.ROOM
refer to the Easy set. We consider a detection is correct
if IoU > 0.5. The trends are similar to the experiments on
IOD (see Figure 6 and Table III). The U and X fusions are
better than the RGB expert and as good as the depth expert
in the absence of light. A U-fusion classification sample is

2http://jorisguerry.fr/ONERA.ROOM



Fig. 7. Influence of decreasing luminosity. ONERA.ROOM propose a static
sequence where the only changing factor is ambient light. The yellow curve
indicate the mean pixel intensity. First column shows true positive detection
of RGB expert, second column concerns depth expert and third column are
the X-fusion detections. The last column images are made from the RGB
and depth mean image for illustration purpose only.

TABLE III
PERFORMANCES ON THE ONERA.ROOM DATASET, ”EASY” SET, FOR

VARIOUS DETECTORS TRAINED ON IOD [2].

Method Source Precision/Recall AP EER IoU F1
Fr RCNN [1] RGB 61.0/96.1 91.2 91.0 72.8 74.6
Fr RCNN [1] depth 25.6/76.9 66.9 68.3 65.3 38.5

U RGBD 26.7/95.8 90.6 88.0 71.1 41.8
X RGBD 25.7/96.6 91.3 89.1 71.7 40.7
Y RGBD 81.1/92.1 87.1 90.3 71.7 86.3

U * RGB-D 18.2/78.3 67.0 68.3 65.3 29.5
X * RGB-D 25.0/77.0 66.7 68.1 65.3 37.8
Y * RGB-D n.a/0 n.a n.a 0 n.a

available in the right column of Figure 5. In the case of a
rescue mission such an approach will be more robust to un-
predictable, degraded conditions. A video illustrating several
conditions is available on the website of the ONERA.ROOM
dataset. Figure 7 illustrates RGB expert, depth expert and
X-fusion behaviours facing luminosity reduction: when the
environment is too dark for the standard RGB expert, the
depth one is able to compensate and the X-fusion detects
and localise the right silhouettes. Other challenging situations
present in ONERA.ROOM are shown in Figures 8 (people
in bright, sun-illuminated environments), Figure 9 (people
crouching or lying on the ground) and Figure 10 (multiple
people occluding each other). These situations are examples
of the X-fusion strength versus single experts, explaining the
gain of performance shown in Table III.

Fig. 8. X-fusion on ONERA.ROOM allows to make a detection where both
RGB/D experts were impotent (left and middle column) and can differentiate
two very close people mingled by both RGB/D experts (right column).

Fig. 9. X-fusion on ONERA.ROOM was close to detect the unconscious
person on the floor (left column) but lacks of precision in the ROI. Still,
it is the only one to detect a crouching person (left column), a person at
the edge of the depth rectified image (middle column), and propose a better
ROI in the last column than the depth expert.

IV. CONCLUSION

We have presented several strategies for merging the
predictions of CNNs experts on different modalities. The
multimodal object detection architecture based on Faster
RCNN [1] enhances robustness in the case of heterogeneous
conditions. The results on the InOutDoor RGBD People [2],
RGBD People [3] and ONERA.ROOM datasets show that
these strategies result in an average precision gain under nor-
mal conditions and remain robust under extreme conditions.
In addition, we set new references in the state of the art on
these datasets. Our best proposal, the X RGBD RCNN, gets
more than 90% of AP on all these datasets and is able to
withstand the failure of one of the two sensors. Lastly, we
made ONERA.ROOM publicly available in the hope that it
will encourage and facilitate the work on challenging RGBD



data.

V. PERSPECTIVE AND FUTURE WORK

Our future work will aim at incorporating temporal infor-
mation to enable re-identification of previous detections and
to implement temporal filtering of class probability vectors.
A detection tracker could be seen as a third expert proposing
ROIs previously revealed: ”Look at this one, again!”. As
mentioned in [13], the NMS here is still a hand crafted
processing who can be improved by deep learning. This is
particularly interesting considering that both experts here are
equally weighted whereas the RGB expert alone is better
than the depth expert. Thus, a trained NMS could benefit
from this kind of a-priori knowledge.
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Fig. 10. X-fusion on ONERA.ROOM allows to improve ROIs proposition
(left and middle columns) and is even able to detect the unconscious person
(right column). However, as for the U-fusion, these strategies suffer from
false positive (left column) because they can not remove a detection.
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