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We investigate the hydrodynamic friction properties of superhydrophobic surfaces and quantify their
superlubricating potential. On such surfaces, the contact of the liquid with the solid roughness is
minimal, while most of the interface is a liquid-gas one, resulting in strongly reduced friction. We
obtain scaling laws for the effective slip length at the surface in terms of the generic surface
characteristics (roughness length scale, depth, solid fraction of the interface, etc.). These predictions
are successfully compared to numerical results in various geometries (grooves, posts or holes). This
approach provides a versatile framework for the description of slip on these composite surfaces. Slip
lengths up to 100 um are predicted for an optimized patterned surface. © 2007 American Institute

of Physics. [DOI: 10.1063/1.2815730]

I. INTRODUCTION

The design and fabrication of micro- and nanopatterned
nonwetting surfaces have received much attention in recent
years.l’2 This was initially motivated by the peculiar static-
wetting properties of such surfaces, associated with the so-
called superhydrophobic effect. The natural nonwettability of
the flat substrate, as quantified by the liquid contact angle, is
enhanced by the underlying roughness, reaching values close
to 180°.° Depending on the characteristics of the liquid-solid
interface, two different classes of superhydrophobic states
are exhibited, namely the so-called Wenzel and Cassie states.
For the Wenzel case,” the liquid impregnates the roughness,
while for the Cassie (fakir) state,5 the liquid interface is re-
stricted to the top of the roughness, the roughness being oc-
cupied by a gas phase. The relative stability of the two states
depends on the surface structure characteristics (height and
lateral scale, etc.)® and the experimental conditions (liquid
pressure, etc.).”” While a strong dissipation is expected in
the Wenzel state as the liquid flow follows the contour of the
roughness, it was predicted by Philip8’9 that a composite in-
terface in the Cassie state should display a low friction-
superlubricating behavior.

Such a superlubricating behavior is particularly attrac-
tive in the context of micro- and nanofluidic devices. As
downsizing leads to an increased surface-to-volume ratio, su-
perlubricating properties of textured nonwetting surfaces
provide a way to bypass the huge increase in hydrodynamic
resistance that comes with system miniaturization.'® Accord-
ingly, surface effects become key factors in the understand-
ing of the motion of liquids at ever smaller scales. A reduced
wall friction is associated with a breakdown of the no-slip
boundary condition of the hydrodynamic velocity field at the
surface, leading to wall slippage. Slippage is described by
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the Navier boundary condition (BC)"' for the velocity field at
the surface, b qd,v=v,,, Wwhere b is the effective slip length,
v,, 1s the slip velocity at the wall, and z is the normal coor-
dinate to the wall.

Since the first experiments involving rolling drops,12 a
few experimental works have reported the characterization of
friction properties of superhydrophobic surfaces.” "
All experimental studies confirm large slippage on
microtextured'>'* and nanotextured'®™" nonwetting sur-
faces, which are orders of magnitude higher than what is
achievable with liquid on smooth nonwetting walls. Typi-
cally, slip lengths in the micrometer range have been dem-
onstrated on superhydrophobic surfaces, while it remains
within the tens of nanometers range on a smooth hydropho-
bic surface.”*?

On the theoretical side, flows on composite interfaces
(combining solid and gas areas) were first tackled theoreti-
cally by Philip&9 and more recently by Lauga and Stone?*
and Cottin-Bizonne e al.”> Numerical approaches have also
been followed, either at the molecular scale using molecular
dynamicsﬁ’25 or at larger mesoscopic scales using, e.g.,
Lattice-Boltzmann methods.”® At the hydrodynamic level,
the composite surface is modeled as a spatially dependent
boundary condition, with a no-slip BC on the solid surface
and a shear-free BC on the liquid-vapor interface.

However, the hydrodynamic flow on a mixed BC is dif-
ficult to solve in practice and analytical results are only
available in simple geometries. These latter essentially re-
duce to the case of a flow on stripes (either parallel or per-
pendicular to the external flow), as solved by Philip and
Lauga-Stone, so that results for more complex geometries,
even the rather simple case of a regular array of posts, are
still lacking. In particular, for a given nanotexture (character-
ized by its morphology, height, length scale, etc.) investi-
gated experimerltally,”_19 there exists no prediction for the
amount of slippage that is to be expected. Even simple ques-
tions such as whether slippage on an array of posts is ex-
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FIG. 1. (Color online) Sketch of the liquid interface at a superhydrophobic
wall in the Cassie state. L, e: roughness periodicity and height; a: typical
length scale for solid/liquid contact areas.

pected to be larger than for a stripe geometry remain without
any answer up to now.

Thus, a quantitative understanding of liquid friction past
superhydrophobic surfaces is still challenging. The design of
optimized interfaces faces a lack of predictive tools linking
the wall characteristics—texture geometry (pattern type and
dimensions) and chemistry (setting the intrinsic slip length
over the smooth solid)—to the final slippage properties.

In the present work, we propose analytical expressions
for the slip length on superhydrophobic surfaces in the form
of scaling laws in terms of the texture properties. We quan-
tify furthermore how dissipation into the gas layer and the
curvature of the liquid-gas interface may affect the final re-
sult. These predictions are successfully compared to numeri-
cal calculations of the slip lengths both by direct resolution
of the hydrodynamic equations and by finite-element meth-
ods. Altogether, these results are used to discuss the merits of
different generic surface geometries—stripes, pillars,
holes—with respect to the resulting frictional properties. Fi-
nally, we show how these simple analytical laws can be used
to link basic surface parameters to the surface slip length in
order to anticipate and optimize the surface frictional
properties.

Il. A SCALING LAW APPROACH FOR SLIPPAGE

We examine in this part the problem of an idealized
superhydrophobic surface in the Fakir state (sketched in
Fig. 1) where a liquid slab lies on top of the surface
roughness.

The liquid-gas interface is assumed to be flat (no menis-
cus curvature), so that the modeled superhydrophobic sur-
face appears as a perfectly smooth surface with a pattern of
BCs. The latter BCs are taken as no-slip over solid/liquid
areas and shear-free over gas/liquid regions (Fig. 1). We de-
note as L the roughness periodicity and a the typical length
scale of solid/liquid areas. The fraction of such solid/liquid
areas will be denoted ¢,. We assume that the fluid is de-
scribed by the Stokes equation, i.e., that the Reynolds num-
ber is very small. This is a pertinent limit for microfluidic
devices. Overall, the situation we investigate is similar to
those studied in the simple geometries previously considered
in Refs. 8, 9, 24, and 25.

In this idealized surface description, it should be recog-
nized that two of the assumptions have a possible influence
on the surface frictional properties. First, by assuming flat
menisci, we have neglected an additional mechanism for mo-
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mentum transfer between liquid and wall.?” Second, by as-
suming a shear-free BC over the gas/liquid regions, the vis-
cous dissipation taking place in the underlying gas phase has
been neglected. Both effects are expected to increase the
surface friction, i.e., decrease the effective slip length. The
results obtained in this section, therefore, provide an upper
limit for the slip length. How curvature of the liquid-gas
interface and dissipation in the gas phase affect the slip
length will be discussed in Sec. III.

In the following, our aim is to define an effective bound-
ary condition for the composite interface in the form of an
effective (averaged) Navier BC:

<0-w> = 77[< ‘j/w> = )\eff<uw> > (1)

where 7, is the liquid dynamic viscosity, A is the effective
surface friction coefficient, and (o), (%,), and {u,,) are, re-
spectively, the averaged shear stress, shear rate, and (slip)
velocity at the interface. This BC here expressed in the form
of a stress balance at the interface can also be rewritten to
introduce the effective slip length b.; characterizing the
interface,

Y

—. 2
)\eff ( )

bt H) = u,)  With b=

Let us emphasize that the effective slip length b is the
pertinent BC for the hydrodynamic problem at scales larger
than those characterizing the underlying roughness (L). The
roughness scales are therefore integrated out in the definition
of by

A. Limit of vanishing solid areas: ¢;—0

We first consider the case in which the solid fraction ¢,
is very small. This is the interesting limit to obtain superlu-
bricating surfaces, for which slippage effects are expected to
be the largest.

In such a limit, the wall is almost frictionless, and close
to the interface the flow is plug-like and described by the
imposed plug-flow velocity U. Accordingly, the averaged
slip velocity simply reads in this situation {u,,)~ U.

Let us now estimate the averaged viscous stress at the
wall (o) in this limit. The residual friction stress is only
imposed on the solid parts, i.e., over a fraction ¢, of the
surface. This leads to an averaged shear stress

<0-w> = (ZSS X 771<’j/w>sa (3)

where (7,,), is the local shear rate on the solid surface. To
estimate this quantity, we recall that the Stokes equation has
a Laplacian form, which strongly couples the spatial depen-
dence of the velocity profile along the different axes (x,y,z).
This implies that (,,);=(dv,/dz)s~ U/ a, with a the typical
size of the solid area.

Gathering the above results, one obtains that the effec-
tive slip length scales as b~ a/¢p,. We thus write in the
limit of small solid fraction ¢,
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a
beff ~ a -, (4)
¢—0 &y

with a a numerical prefactor, which is expected to depend on
the underlying geometry of the surface (stripes, posts, etc.).
This relationship is the main result of this paper.

First, it is interesting to compare this scaling law (4) to
existing analytical predictions in simple geometries. For pe-
riodic grooves oriented parallel&9 (respectively, perpen-
dicular24) to the flow, the exact expression for by actually
reads

bar=— 1og{cos<72—7<1 - m)] (5)

[respectively, 1/2 of Eq. (5)]. In the limit of vanishing solid
fraction ¢,, it therefore predicts b to depend only logarith-
mically on ¢, through b 4~ —L log ¢,. For this groove ge-
ometry, the solid fraction simply reads ¢;=a/L so that the
scaling law approach (4) now becomes

bt ~ L. (6)
¢—0
In agreement with the exact calculation, our approach, there-
fore, predicts no dependency of the effective slip length on
the solid fraction ¢, to leading order in ¢, (i.e., up to the
logarithmic term).

We now consider a more complex geometry of major
practical interest: a bidimensional (2D) pattern of posts. In
this situation, the solid fraction now reads ¢,=(a/L)? so that
Eq. (4) predicts that

L

by ~ a—=—=.
b—0 ¢y

()

Since no exact calculation is available for post patterns, we
have checked the validity of the above scaling law using a
numerical calculation for the slip length. To this end, we
used a previously reported numerical approach.25 We only
briefly recall here the basic steps of this approach and refer
the reader to Ref. 25 for a more detailed description. A shear
flow is considered over a composite surface characterized by
a heterogeneous slip length pattern. The boundary is mod-
eled by a pattern of local slip lengths on a planar surface.
The characteristics of the flow far away from the surface and
an effective slip length are determined by solving the hydro-
dynamic equations with the hydrodynamic BC given by the
local slip length, using an integral method.

Using this numerical approach, the effective slip length
was computed for a square lattice of solid patches of square
cross section. The computed slip lengths b/ L are plotted in
Fig. 2 against 1/\@‘% for different solid fractions in the range
¢,<30%. The agreement with the prediction (7) is shown to
be excellent, therefore validating the proposed scaling law.
As an additional check, these results were complemented by
numerical results obtained from 3D finite-element methods
(see Sec. III B for details) in the same geometry (square lat-
tice of solid patches of either square or disk shape). As
shown in Fig. 2, the agreement is again excellent, with all
data collapsing on a single straight line. A linear regression
performed on the numerical calculation data allows us to
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FIG. 2. Normalized effective slip length b/ L for a composite surface made
of solid patches organized on a square lattice; limit of low solid fraction:
$,=2-30%. by/L is plotted against 1/1/¢, according to Eq. (4) with ¢,
=(a/L)>. 2D numerical approach (Ref. 25): (M) solid patches of square
cross section; 3D finite-element calculation: solid patches of ((J) square
cross section, (O) circular cross section; (—) linear regression: bgq/L
=0.325/¢p,~0.44.

access the coefficients of the scaling behavior, Eq. (7),
begt/ L=0.325/ \@?—0.44. This formula provides a useful and
very simple expression for the slip length on patterned sur-
faces of posts.

To finish, we show that it is simple to relax the assump-
tion of a no-slip BC on the solid areas, assuming a finite
intrinsic slip length b,. Slippage over a bare, smooth surface
(here denoted as “intrinsic slippage”) has been intensively
investigated over the past decade.” An intrinsic slip length
b, of a few tens of nanometers is demonstrated over smooth,
hydrophobic surfaces. >

Going back to the above derivation of the scaling law in
the limit ¢,— 0, one expects that a finite slip length on the
solid will reduce the shear rate (7y,,), over the solid regions:
(Y)s~Ul(a+bg). The averaged shear stress over the total
surface now reads (o,)=ad,nU/(a+b,). One gets accord-
ingly a modified scaling law for the effective slip length,

a+b,

(8)

o0

This modified scaling is tested on the square lattice ge-
ometry of solid patches in Fig. 3. The difference between the
effective slip length beg(d,,a,b,) with intrinsic slippage b,
on the solid, and the no-slip prediction (ideal case shown in
Fig. 2) bigeq = besi{ by, a,b;=0), is plotted against b,/ ¢,. This
figure confirms the soundness of the scaling law (8), which,
therefore, allows us to quantify the impact of an intrinsic
solid slip on the overall effective slip over superhydrophobic
surfaces.

Additionally, it is important to note that b,/ ¢, does not
depend on the geometry of the surface so that the increase of
the effective slip length due to the intrinsic slip is indepen-
dent of the details of the underlying surface texture (stripes
or posts). Moreover, Eq. (8) shows that such a term will play
a role only if the size of the solid region, a, is of the order of
the intrinsic slip length: b,~a. With b, limited to a few tens
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FIG. 3. Influence of a finite slippage on solid patches on the normalized
effective slip length b/ L for a composite surface made of solid patches
organized on a square lattice; limit of low solid fraction: ¢,=2—-16%. In-
crease in b/ L compared to the reference for no slip on solid is plotted
against b,/ (L¢,) according to Eq. (8). 2D numerical approach for patches of
square cross section (Ref. 25): (@) ¢,=2%, (A) ¢;=5%, (W) d,=16%; (—)
linear regression: Ab.g/L=0.165b,/(Ld,).

of nanometers,”® intrinsic slippage will only play a role for
very sharp nanostructures, with a in the tens of nanometer
range.

B. Limit of vanishing gas areas: ¢s—1

We now consider the opposite limit of vanishing gas
area: ¢,— 1. This limit has a much lower practical impor-
tance than the previous one, ¢,— 0. Indeed, in this case the
shear-free area will have a tiny influence on the wall friction
and the effective slippage is expected to be much smaller. We
mention this result for completeness.

Since in this limit the BC is almost everywhere a no-slip
BC, the flow is now appropriately described by the imposed
shear rate y. Accordingly, the averaged viscous stress at the
wall is expected to basically reduce to {(o,)= 1,7 in this
limit.

Now, the averaged slip velocity at the wall only results
from the (1-¢,) surface fraction of gas areas. In these re-
gions, the typical fluid velocity is of order €7, with € a
characteristic length scale for the gas areas. Combining those
two estimates leads to the scaling behavior

begr ~ €(1 - ¢y). 9)
¢—1

Again, this result (9) can be first compared with analytical
predictions for grooves.&9’24 For this simple one-dimensional
geometry (1D), the typical length scale € is simply €=L(1
—¢,) and Eq. (9) reduces to by~ L(1—¢,)%. This prediction
is in perfect agreement with the analytic expression in this
limit.>*>*

Turning now to geometries made of 2D patterns, the
scaling law predictions are tested against the numerical re-
sults for the slip length obtained using the approach de-
scribed in Ref. 25. Two geometries have been considered: a
square lattice of square solid patches, corresponding to a
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FIG. 4. Normalized effective slip length b.;/L for a composite surface of
various geometries in the limit of high solid fraction: ¢,=60—100%. b/ L
is plotted against €(1—¢,)/L according to Eq. (9) with € the geometry-
dependent typical size of shear-free areas. Symbols are numerical data ob-
tained by solving the hydrodynamics equations (Ref. 25). Main: ¢=L(1
—¢,); (M) square solid patches organized on a square lattice (surface struc-
ture made of pillars), (V) solid stripes perpendicular to the flow, (A) solid
stripes parallel to the flow, (—) linear regressions: slopes are, respectively,
0.21+0.02 and 0.41%0.04. Inset: £=L\1—¢,; (®) square shear-free patches
organized on a square lattice (surface structure made of holes), (—) linear
regression: slope is 0.17.

surface made of pillars as already studied in Sec. IT A, and of
square gas (shear-free) patches, corresponding to a holes sur-
face texture.

It is interesting to note that the two 2D geometries in-
vestigated do not behave the same way in the considered
limit (a point discussed in more detail in Sec. IT C). Namely,
for the hole pattern, the characteristic size € simply relates to
the area of the hole so that one has ¢ =L\e"1——¢s. On the
contrary, for a post pattern, the characteristic size € over
which the flow is modified is associated with the small width
of the gaseous stripe separating two adjacent posts. Conse-
quently, ¢ scales as € ~L(1—¢,) for the post pattern, which
means that this 2D structure behaves as a stripe-like geom-
etry when ¢, — 1.

Numerical results for the effective slip length obtained
with the different geometries (simple grooves, posts, and
holes) are gathered in Fig. 4. The main figure shows data
obtained for grooves—either parallel or perpendicular to the
flow—and posts. The expected scaling b= aL(1—¢,)? is
very well verified with @=0.41+0.04 (respectively, «
=0.21+0.02) agreeing with the prefactor «=0.393 (respec-
tively, 0.186) obtained from analytical prediction&g’24 for
grooves parallel (respectively, perpendicular) to the flow [see
Eq. (5)]. As predicted, in this ¢,— 1 limit, the post geometry
is equivalent to perpendicular grooves in term of surface fric-
tional properties.

Finally, the inset of Fig. 4 displays data for the hole
pattern. The modified behavior now predicted by the scaling
law, b= aL(1-¢,)*?, is perfectly recovered.

Overall, the agreement with Eq. (9) is shown to be ex-
cellent for all geometries and for solid fractions ¢,>60%.

Eventually, we quote that the effect of intrinsic slippage
on the solid surface can be considered along the same lines
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as above, yielding the prediction b~ b, to leading order in
(1-¢,): the main contribution to slippage originates in the
intrinsic slippage on the solid surface, therefore correspond-
ing to a small effective slip length.

C. Influence of the geometry
on the effective slip length

In the experimentally interesting limit ¢,— 0, the differ-
ent results can be summarized, restricting to the case of a
no-slip BC on the solid regions, as

stripe geometry b ~ — L log(¢p,),
(10)

L
post geometry beg~ ——.
Vs

These predictions show that the geometry has a strong effect
on the effective slip length. Indeed, for stripe geometries the
log-dependency in ¢, practically limits the achievable effec-
tive slip lengths to no better than the surface periodicity L.
On the contrary, the power-law divergence exhibited by the
post pattern as ¢,— 0 makes it possible to overcome the L
bound to achieve much higher effective slip lengths.

It is interesting to note that this change in behavior does
not hold for any 2D pattern as opposed to a 1D pattern. As
already noticed in the preceding section, 2D holes and post
patterns may have completely different frictional properties,
and in the present limit ¢;— 0, the pattern of holes surface
indeed reduces to a stripe-like one. As a matter of fact, for
holes, ¢,=2a/L (with a the thickness of the solid walls
surrounding the holes), so that the general predictions, Eq.
(4), lead to b~ L, and holes thus behave like stripes.

Of course, this is to compare with the opposite limit
¢,— 1, where we already noticed that the post pattern this
time behaved as a stripe-like structure, in contrast to the
behavior of the hole pattern.

The two limiting cases can be rationalized in the follow-
ing way. Slippage in the ¢,— 0 limit depends on the typical
scale a of the solid phase [see Eq. (4)], while in the ¢,— 1
limit it depends on the gas phase extension € [see Eq. (9)]. A
structure shifts from what we called 2D behavior to a 1D
stripe-like behavior whenever this typical size a (respec-
tively, €) no longer reduces to the square root of the solid
(respectively, gas) phase area. Not surprisingly, this type of
criterion amounts to considering a shape factor for the phase
under scrutiny: an elongated phase structure leading to a
stripe-like behavior.

These points are summarized in Fig. 5, where the effec-
tive slip lengths are plotted as a function of the gas area
fraction (1—¢,) for different patterns: parallel grooves, per-
pendicular grooves, pillars, and holes. Note that for discreti-
zation reasons in the numerical calculations, we were limited
to solid fractions ¢, higher than 1% for pillars, and to the
more stringent condition ¢;=10% for holes. Even with this
restriction, the effective slip length for surfaces made of pil-
lars (squares) is seen to be much higher than for periodic
grooves (solid and dashed lines) and holes (circles) in the
limit ¢;— 0. Additionally, one verifies that holes behave as
grooves perpendicular to the flow in this low solid fraction

Phys. Fluids 19, 123601 (2007)
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FIG. 5. Normalized effective slip length b./L as a function of the gas area
fraction (1—¢,) for a composite surface of geometries. 2D numerical ap-
proach (Ref. 25) (OJ) square solid patches organized on a square lattice
(surface structure made of pillars), (O) square shear-free patches organized
on a square lattice (surface structure made of holes), (--) solid stripes per-
pendicular to the flow, (—) solid stripes parallel to the flow. Inset: focus on
the low gas fraction region.

limit, while in the opposite limit (shown in the inset of Fig.
5), it is the pillar surface that behaves that way. In the limit
¢,— 1, the surface made of holes is the one having the
higher effective slip length for a given solid fraction.

Altogether, surfaces made of pillars (posts) are the best
candidates to obtain very large slip lengths in the ¢;—0
limit.

lll. TOWARD A GENERAL DESCRIPTION
FOR THE SLIP LENGTH

In the preceding section, we derived general scaling laws
relating the surface geometry to the effective surface friction
at the superhydrophobic wall. However, these general scaling
laws are obtained within an idealized description assuming a
flat liquid interface and “ideal” shear-free BC over the gas-
eous regions.

The validity of these assumptions is now examined and
these effects are quantified. Expressions for the effective slip
lengths taking these effects into account are provided as a
predictive tool for experimental situations.

A. An interpolation formula for composite slippage

We start by considering the situation in which the slip
length on the gas phase is not infinite, so that the local BC is
not a shear-free BC as assumed in Sec. 1. We denote as b,
the slip length on the liquid-gas interface. We assume that a
no-slip BC applies on the solid regions.

Let us first consider the limiting case b, — 0. For a shear
flow with shear rate 7y, the velocity profile may be approxi-
mated as u(x,y,z)=¥z+b(x,y)], with b(x,y) the locally
varying slip length. Such an approximation is expected to be
valid when b is smaller than its variation length scale (Vb
<1, expressed here as b, <L). The averaged velocity profile
thus reads (u)(z)=y(z+(b)). Using the definition of the ef-
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FIG. 6. Effective slip length b.g for various surface geometries, compared
with the interpolation formula (12). Numerical results for the effective slip
length using the approach in Ref. 25: ([J) periodic pattern of pillars with
¢,=3-80%; (/) periodic pattern of holes with ¢,=60-80%. This also in-
corporates the effect of the viscosity of the gas phase 7, on the effective slip
length (see Sec. III B). In this case, the effective slip length is calculated
using finite-element calculations with various surface heights e/L [0.05-2]
and viscosity ratio 7,/ 77,: [0.01-100]: (O, @) stripes (perpendicular or par-
allel to the flow) with ¢,=20%; ((J) same for pillars; (A) same for holes.
(--) linear prediction: y=x.

fective slip length, this velocity profile is expected to identify
with (u)(z)=Y(z+bg). This yields the following expression
for the effective slip length in this limit:

besr= (1 = ¢,)b,. (11)

One may show this result more rigorously using a
perturbative approach of the flow field in b,. The reference
flow field corresponds to bg=0, which reads, for a shear rate
v at infinity, uy=7yz. The first-order correction for the flow
field over a composite surface with no-slip region S, and
partial slip region S, thus verifies 7,Au;=VP, together with
the following boundary condition on the liquid-gas
interface:  b,d,(up+uy)|,,= uy|,. In the limit b,—0, one
has uy|,=b,y so that in the end (u,)=(1-¢)b,y, and
ber=(1-,)b, as shown above.

For large b,, no such simple prediction could be ob-
tained. However, it is possible to propose an interpolation
formula that will prove to be useful in the following. This
interpolation is based on the two known limits: for b,—0,
ber=(1=y)by; for by— %, b= b;gey With bjge, the effec-
tive slip length obtained in the idealized case where a shear-
free BC is assumed at the liquid/gas interface. b;q., 1S given
by the expressions discussed in Sec. II (typically bjgeq
~al ¢y).

A heuristic formula interpolating between these two lim-
iting cases is

1 1 1

=4 )
best (1= )by bigea

This amounts to adding the friction coefficient in the above
two limits. This interpolation formula is tested in Fig. 6.
While there is no deep physical justification for such a for-
mula, it is shown to provide a very good description of the
effect of a finite slip length on the liquid-gas interface.

(12)
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In the following, we will make use of this interpolation
to discuss the effect of a finite dissipation in the gas phase.

B. Finite dissipation within the gas subphase

We now discuss how the dissipation in the gas phase
modifies the friction properties and the effective slip length.

In Sec. II, the assumption of a shear-free BC at the
liquid-gas interface implicitly amounts to neglecting such a
dissipation. As a consequence, the predicted effective slip
length at the surface does not depend on the liquid viscosity.
This is to contrast with the opposite situation, which we will
refer to as the “gas cushion model,” which assumes that the
dissipation at the surface is dominated by the shearing of a
continuous gas layer, lying in between the solid and liquid
phases (gas cushion). Such a model predicts®*

b= Le, (13)
8

with 7, the gas dynamic viscosity and e the thickness of the
gas layer. Of course in the limit of vanishing ¢,, this should
represent an upper bound value toward which the slip length
will saturate.

In the following, we develop an approach to estimate the
dissipation resulting from the gas phase in intermediate cases
(finite ¢, and 7,/ 7,). Focusing on a surface structure corre-
sponding to a square lattice of cylindrical pillars, which re-
semble most of the artificial superhydrophobic surfaces, we
will first define and estimate an averaged slip length b, over
the gas area. Then we will make use of the interpolation
formula, Eq. (12), to obtain the effective slip length.

Before proceeding with this strategy, it should be men-
tioned that the problem of Stokes shear flow over a liquid-
impregnated roughness (7, now equals 7,) has been the sub-
ject of different works, especially in the simpler groove
geometry, where it has been solved analytically by Wang31
using eigenfunction expansions and matching. In this simpler
geometry, a strategy might then be to follow Wang’s ap-
proach by modifying the matching condition to incorporate
the viscosity contrast. To our knowledge, however, no such
route has been developed for the surfaces made of pillars that
we consider now.

We start with the estimate of the averaged slip length b,
over the gas area. To evaluate the extra dissipation occurring
within the gas subphase, we use an effective medium ap-
proach analogous in spirit to Darcy-Brinkmann’s law in a 2D
porous medium.** The gas is assumed to flow parallel to the
bottom reference surface (see Fig. 1) and satisfies a Stokes
equation,

7, AU =VP, (14)

with P the gas pressure. An effective medium approach
amounts to replacing the (gas+pillars) problem by a homo-
geneous problem with an effective velocity (7” and an effec-
tive pressure gradient whose strength is set by the drag on
the pillars,
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—V”ﬁ:EFd, (15)

with 3=1/L? the number density of pillars and F, the drag
force per unit of length experienced by a single pillar. The
latter is of the form F,=—&(¢b,)U,, where &(¢,) is the friction
coefficient, the ¢, dependency of which accounts for hydro-
dynamic interactions between pillars and can be found in the
literature.™ For example, for a square array of pillars, a se-
ries expansion in ¢, leads to

41y 1
—=E = —1n ¢, — 0.738 + ¢, — 0.887 > + 2.039¢);
o) 2

+0(e), (16)

accurate to within 5% in the range of practical interest ¢,
<30%. Combining Egs. (14) and (15) with the definition of
&(¢,), one obtains the relation

AU, = U, (17)
A

complemented by the BCs 17”(Z=0)=(uw>g and ﬁH(Z=—e)
=0. It resolves straightforwardly and yields an averaged vis-
cous surface stress of

<0-w>g = 7]g<uw> (18)

ftanh ge’

with g*=3&(¢,)/ 1,. According to Egs. (1) and (2), this pre-
dicts for the averaged slip length b, over the gas areas

__emtanh ge
7, qe

o (19)
with g(¢,) given above, an expression reminiscent of the
Beavers and Joseph BC on porous media.*

To estimate the effective slip length, we now use this
prediction together with the interpolation formula, Eq. (12),
to obtain

1 1 1
—= + , (20)
bet (1- (mﬂtanh ge  bigea
7, g€

where we recall that b;y., stands for the effective slip length
for the composite surface with a negligible dissipation in the
gas (shear-free BC), as discussed in Sec. IL

To assess the validity of this approach, we have con-
ducted numerical resolution of the Stokes equations using
finite-element methods implemented through Comsol®. The
computed geometry is like the one sketched in Fig. 1 with an
undeformable planar liquid interface separating a liquid
phase and a gas phase, with a given viscosity ratio 7,/ 7. A
planar upper wall (not sketched) encloses the liquid slab
separated from the liquid interface by a distance H (H was
chosen large enough so that the results matched the H—
limit). Symmetries were used to reduce the size of the com-
putation cell. A Couette flow is simulated by imposing a
velocity U of the top planar wall.

The resulting flow field is computed, from which we
have extracted the effective slip length b over the entire
surface, as done previously. We also measured the averaged
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FIG. 7. Effective slip length b, over gas areas as obtained from finite-
element calculations, compared with theoretical predictions according to Eq.
(19). The surface is made of cylindrical pillars of height e arranged on a
square lattice and the viscosity ratio 77,/ 77, between the two phases is varied
from 0.1 to 100; solid and empty symbols correspond, respectively, to e/L
=0.25 and e¢/L=1. (O, @) ¢,=30%, (0, W) ¢,=20%, (O, ) ¢,=10%,
(A, A) ¢;=3%, (---) perfect match: y=x.

slip length b, over the gas areas. The latter is defined from
the averaged shear stress (o,,), and the averaged slip velocity
(u,), over the gas phase according to Navier-like relation-
ships of the form (1) and (2).

Let us first discuss the result for the averaged slip length
b,. The comparison between the theoretical prediction (19)
and the numerical results using finite-element computations
is shown in Fig. 7. For the explored viscosity ratios 7,/ 7,,
the gas layer thickness e/L, and the solid fraction ¢,, our
analytical prediction proves very satisfactory and remains al-
ways within 20% of the numerical value.

We can now test the global result for the effective slip
length, in Eq. (20). This phenomenological relationship is
tested by comparing with the results of the 3D finite-element
calculation—where both b and b, are measured—but also
by comparing with the 2D numerical approach25 with a flat
composite interface with mixed BC: no-slip and partial slip
with slip length b,. This is done in Fig. 6, where (b
—biga)”! is plotted against (1-¢,)b,. As already noted, the
interpolating formula (20) appears to be astonishingly effi-
cient. It describes with very good precision the effect of the
finite dissipation within the underneath subphase. Combining
Eqgs. (16) and (20) allows us to quantify the influence of the
subphase dissipation on the effective slip length.

C. Pressure dependency: Meniscus curvature effect

In this section, we discuss qualitatively the effect of a
pressure drop AP=P,— P, between the liquid and the under-
lying gas phase. A pressure drop is associated with a curva-
ture of the liquid-vapor meniscus, leading to a reduction of
slippage. Our aim in this section is to provide an upper limit
for the pressure drop AP below which curvature effects can
be neglected. To this end, we shall focus on the case in which
the gas meniscus is oriented outward (protruding by a dis-
tance & into the liquid phase), which can be handled in a
simple way within the present description. This situation was
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recently shown to be relevant experimentally whenever no
direct control can be exerted on the gas subphase,35 and we
expect the present analysis to capture the general features
occurring at curved interfaces.”’°

To obtain how pressure-induced curvature effects
modify the slip length, we follow a similar approach to that
in the preceding section. The additional dissipation resulting
from the boundary curvature will be incorporated as a finite
slip length b, applied on the liquid-gas interface. In the case
of a curved gas meniscus, this effective slip length b, should
correspond to the local radius of curvature,”’ which reads
b,~¢t 2/ 8 in a parabolic approximation.

This relationship, based on the local expression of the
stress tensor in the tangential/normal vector frame,37 can ac-
tually be recovered with a simple scaling argument. Starting
from the expression for the drag force F=4mnRu experi-
enced by a spherical bubble moving at velocity u, Y we
expect the additional drag exerted on the cap to be of the
form

<F>g -~ 77[5<uw>g' (21)

The averaged shear stress resulting from this drag force is
simply (0,,),=(F),/€* with € the typical length scale for the
gas areas so that in the end one recovers for the effective slip
length over the gas areas

b, ~ €/6. (22)

We are now in a situation similar to the one considered in
Sec. I B except for the origin of b,. The effective slip
length can be obtained using the interpolation formula (12).

It is first interesting to compare this prediction with a
recent analytical work considering the 1D situation of a shear
flow parallel to grooves.36 In this geometry, a first-order per-
turbative approach was developed that allowed to quantify
the effect of meniscus curvature in the limit §<{ (£=L
—a). Considering the limit of large solid fraction ¢, our
scaling approach provides in this 1D situation the following
curvature correction to the effective slip length:

bege = bigeas ~ = (1 = ) 6, (23)

which is obtained by combining Egs. (9), (12), and (22). This
result agrees fully with the first-order correction term found
in Ref. 36.

In the more interesting limit of a 2D surface pattern with
¢— 0, the ideal flat surface slip length is now given by Eq.
(4). We thus obtain

s 1 \!
e = (_2 + _> (24)
L* bigea

with bige/L=0.325/\/¢p—0.44 (see Sec. II). This result
shows that in the limit b,=L*/ 5< b4, the effective slip
length b does saturate at the gas spherical cap radius of
curvature. Coming back to macroscopic variables, this radius
of curvature can be traced back to the pressure difference
between the liquid and the gas phase through the Laplace
equation, AP:Pg—P,=271g5/L2, with 7y, the liquid/gas sur-
face tension. A pressure difference between the liquid and the
gas thus induces a saturation of the effective slip length at a
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TABLE I. Summary of the effective slip length for flows over a surface
made of pillars in various situations. b, origin and expressions: (a) sublayer
viscous dissipation b,=(e7,/ 7,)tanh(ge)/(ge); (b) curvature of menisci b,
=2v,,/AP.

Model assumptions begr

Digear=L(0.325//¢h,—0.44)
bige+0.165b,/ b,
{bigea*[(1= )b, I}

Ideal: flat, no-slip, shear-free
Finite solid slip by
Finite gas slip 5"

gas slip b,

value boi— 2%,/ AP. To fix ideas, for AP~ 1 bar, b satu-
rates at b~ 1 um.

These results allow us to estimate the domain of pressure
difference AP, for which the curvature effects do not affect
the slippage on the superhydrophobic surface. According to
Eq. (24), this amounts to L?/ 8> by, With by, the slip
length when curvature effects are negligible. This can be
rewritten

AP < Y= (25)

ideal

This condition shows that situations with larger slip
lengths are more sensitive to curvature effects. However, on
can note that a reasonable pressure difference in the order of
tens of mbars will not affect a slip length in the hundreds of
micrometers range. It should therefore be moderately limit-
ing in the design of reduced friction interfaces. This is sup-
ported by the absence of pressure effects reported in Ref. 19
or the low curvature reported in Ref. 13.

We eventually remark that such curvature effects are ex-
pected to be more important for surfaces with a roughness
made of holes, for which the gas is not connected to a res-
ervoir. Depending on the condition for surface immersion,
gas may be trapped in the holes with a non-negligible excess
pressure. Such effects have indeed been observed in Ref. 35,
with a geometry of holes of size £ ~650 nm, thus resulting
in a strongly reduced slip length.

IV. DISCUSSION

The results obtained in the previous sections are summa-
rized in Table I for the pillars’ surface geometry. Based on
this, we now discuss how to optimize slippage, and what
maximum slip length may actually be expected, taking into
account the actual limitation in surface engineering (nano-
lithography, etc.). In the following, we will restrict our dis-
cussion to the case of flat interfaces, i.e., the pressure differ-
ence AP obeys the (nonrestrictive) condition in Eq. (25). As
we noted above, a geometry of holes is to be avoided to
reduce these effects. This is, however, not actually limiting,
as this geometry is not the one that favors large effective slip
lengths (see Sec. I1 C).

Let us consider a practical surface. Of course from the
different previous sections, minimizing the friction and
maximizing the slip length would require the use of large
periodicity L. However the latter is limited by stability con-
siderations: the transition to the impregnated Wenzel state,
where the liquid fills the roughness and therefore sweeps out
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the gas lubricating pockets, is indeed associated with the
disappearance of superlubricating properties.6’19 A reason-
able compromise may lie in the range L~ few um for which
pressure differences of tens of mbars—typical for gravity-
driven microfluidic flows—can be withstood by an air/water
interface. Note that for a precise value of the stability limit,
one should actually take into account all surface geometric
parameters, including, for instance, the structure height.25

Now for microfabricated or nanofabricated surface pat-
terns, the exact geometry of the surface is known a priori
and Egs. (4), (8), (12), and (19) allow us to estimate the
expected frictional properties of this surfaces. However, for
most superhydrophobic surfaces reported, the structure ge-
ometry is not as controlled, and a key parameter such as the
solid fraction ¢, has to be estimated or measured. It is there-
fore very convenient to relate this parameter to a macro-
scopic observable such as the effective contact angle 6.4 on
the surface. With 6, the contact angle on the bare surface (in
the range of 100-120° for hydro- or fluorocarbon coatings),
O.¢; relates to ¢, through the Cassie-Baxter relation,’

€08 Oupp= P (cos Oy +1)—1. (26)

Fixing the typical height of the structures to e=L=5 um and
assuming a pillars-like type of geometry, it is therefore pos-
sible to predict the frictional properties b of the surface as
a function of its macroscopic effective contact angle 6. For
pillars, Eq. (4) gives

cos Gy + 1
beff = aL - :8’ (27)
cos O+ 1

with @=0.325 and B=0.44 the numerical factors. This ex-
pression shows that close to 6.4=180°, b g strongly diverges,
like

Degr (28)

180 - Betf '
This is apparent in Fig. 8, where huge slippage in the hun-
dreds of micrometers range can be achieved for large yet
achievable'” contact angles.

It should be noted that for such low solid fractions, the
dissipation within the gas sublayer, though small, may have a
non negligible effect as it is predicted to decrease the slip
length from 110 (solid line) to 60 um (dashed line) for 6.4
=179°. As a consequence, the effective slip length at the
surface will depend on the liquid viscosity. Let us stress,
however, that this dependency is much weaker than what
would be predicted by the simple “gas cushion” model, for
which b.y scales as 7, For the previous example, 6.
=179°, doubling the liquid viscosity only modifies b.s from
60 to 80 um. An effect of fluid viscosity on the slip length
has been reported in Ref. 17, however with a much larger
magnitude than with the above prediction.

We note in addition that the sublayer dissipation has
been calculated assuming no slip of the gas on the solid
surfaces, while with a mean free path of order 0.1 um we
would anticipate a slip length for the gas onto the solid of the
same order. We therefore somewhat overestimate the sub-
layer dissipation together with its influence on by

Phys. Fluids 19, 123601 (2007)

300 Errrrr e

300

T A

P I IR SR
6 177 178 179 180

9

=

—_
(=
=
(RAARRRRARNRARRRRRRRS|

..... I s ¢ D i
?10 120 130 140 150 160 170 18
0, (degrees)

SEin

FIG. 8. Effective slip length b as a function of the contact angle 6, on the
superhydrophobic surface. The considered surface is made of pillars of
height e=5 um arranged on a square lattice of periodicity L=5 um. The
pillars’ radius is the only remaining geometrical parameter that controls the
overall solid fraction ¢,, the latter being related to 6. according to the
Cassie relation (26). The viscosity contrast between the liquid and gas cor-
responds to the water/air interface: 7,/ 7,=55.5. Theoretical expressions are
taken according to Table I: (—) theoretical prediction assuming ideal BCs
on the composite interface (no-slip and shear-free), (--) theoretical predic-
tion assuming no slip on the solid and a finite dissipation within the gas
sublayer (---) upper bond of a uniform gas layer (¢,=0). Inset: close-up of
the near 180° contact angle region.

Finally, we note that the effect of a finite slip length by
on the solid in the tens of nanometer range does decrease the
overall surface friction but still not in large proportion for
contact angles below 179°. In the considered example, and
for O.;=179°, it would change the overall slip length from
60 to 65 wm (not plotted in Fig. 8). Such an effect is more
effective as the effective contact angle 6. is very close to
180°.

In conclusion, we presented here a scaling law analysis
that allows us to calculate the frictional properties of super-
hydrophobic surfaces as a function of the generic geometri-
cal parameters characterizing the surface structure. These
laws were successfully tested against numerical calculations
for generic geometries and showed that very large slip
lengths can be obtained for an ultrahydrophobic surface,
characterized by a contact angle very close to 180° (6.
>178°).

Such surfaces may be obtained by present techniques of
nano-engineering. For example, a surface made of pillars of
~50-100 nm in diameter, 5 um apart, is now achievable
and corresponds to an effective contact angle 6, larger than
179°. For such surfaces, our analysis predicts slip lengths
that can reach hundred of micrometers. Beyond, the slip
length is ultimately limited by the dissipation in the gas
phase. We hope that our predictions, and the simple analyti-
cal laws we provided will motivate further experimental
work to develop superlubricating surfaces, with ultralow lig-
uid friction.
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