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We survey some of our recent results on inverse problems for evolution equations. The goal is to provide a unified approach to solve various types of evolution equations. The inverse problems we consider consist in determining unknown coefficients from boundary measurements by varying initial conditions. Based on observability inequalities and a special choice of initial conditions, we provide uniqueness and stability estimates for the recovery of volume and boundary lower order coefficients in wave and heat equations. Some of the results presented here are slightly improved from their original versions.
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Introduction

Inverse coefficient problems for evolution equations have been a very active area in mathematical and numerical research over the last decades, driven by numerous applications. They are intrinsically difficult to solve: this fact is due in part to their very mathematical structure and to the fact that generally only partial data is available [17]. We survey in this paper some of our recent results on inverse problems for evolution equations concerning heat and wave equations. In [2] the authors proposed a general method to deal with inverse source problems for evolution equations. Starting from the ideas in [2], we developed an approach based on observability inequalities and a spectral decomposition to solve some inverse coefficients problems in evolution equations [3,4,[START_REF] Ammari | Determining the potential in a wave equation without a geometric condition. Extension to the heat equation[END_REF]. However the approach is older than that. Inverse coefficient problems in heat and wave equations using control techniques have been studied by a large community of people (see for instance [29,21,[START_REF] Imanuvilov | Global uniqueness and stability in determining coefficients of wave equations[END_REF]16,[START_REF] Rakesh | Uniqueness for an inverse problem for the wave equation[END_REF][START_REF] Ammari | Logarithmic stability in determining a boundary coefficient in an ibvp for the wave equation[END_REF][START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF]6] and the references therein). It would be impossible to present here all the relevant results that have been proved in this research direction. We will be mainly focusing on the results that are closely connected to the considered inverse coefficient problems in heat and wave equations.

The measurements are made on a sub-boundary by varying initial conditions. The key idea in our analysis consists in reducing the inverse coefficients problems to inverse source problems. This is achieved by using a spectral decomposition and unique continuation property of eigenfunctions.

For simplicity convenience we limited ourselves to initial boundary value problems for wave and heat equations. But our analysis can be extended to other types of evolution equations such as dynamical Schrödinger equation.

The main ingredient in our approach is observability inequalities. We point out that the wave and the heat equations have different observability properties. We know that, under some appropriate conditions, the wave equation is exactly observable, while the heat equation is only final time observable [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]30]. We refer to Section 2 for details. In Section 3, we establish weighted interpolation inequalities involving the eigenfunctions of Laplace-Beltrami operator that are useful in the analysis of the stability issue of the studied inverse coefficient problems. These inequalities have been obtained by quantifying the unique continuation property for the Laplace-Beltrami operator through weighted energy estimates with the aid of Carleman type inequalities. We present an abstract framework for the inverse source problem in Section 4. Based on the introduced observability inequalities we provide uniqueness and stability inequalities of the recovery of volume and boundary lower order coefficients in wave and heat equations from boundary measurements in respectively Sections 5 and 6.

Observability inequalities

We collect in this section various observability inequalities that are necessary to the analysis of the inverse problems we want to tackle in this text. Since most of these results are well recorded in the literature we limited ourselves to give their precise statement and provide the references where the proofs can be found.

2.1.

Wave and heat equations in a Riemannian manifold. Let n ě 2 be an integer and consider M " pM, gq a compact n-dimensional Riemannian manifold with boundary. By a manifold with boundary we mean a C 8 manifold and its boundary is C 8 manifold of dimension n ´1. Throughout, we adopt the Einstein convention summation for repeated indices. If in any term the same index name appears twice, as both an upper and a lower index, that term is assumed to be summed from 1 to n. In local coordinates system x " px 1 , . . . , x n q, g " g ij dx i b dx j .

Let pB 1 , . . . , B n q be the dual basis of px 1 , . . . , x n q. For two vector fields X "

X i B i and Y " Y j B j over M , set xX, Y y " g ij X i Y j and |X| " a xX, Xy.
Recall that the gradient of u P C 8 pM q is the vector field given by ∇u " g ij B i uB j and the Laplace-Beltrami operator is the operator acting as follows ∆u "

1 ? det g B i ´adet g g ij B j u ¯,
where pg ij q denote the inverse of the metric pg ij q.

We are first concerned with observability inequalities for the wave equation. Consider then the following initial-boundary value problem, abbreviated to IBVP's in the sequel, for the wave equation:

(2.1)

$ & % B 2 t u ´∆u `qpxqu `apxqB t u " 0 in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " u 0 , B t up¨, 0q " u 1 .
The usual energy space for the wave equation is given by H " H 1 0 pM q ' L 2 pM q. According to [10, sections 5 and 6, Chapter XVIII] or [7, Chapter 2]), for any q, a P L 8 pM q, τ ą 0 and pu 0 , u 1 q P H 0 , the IBVP (2.1) has a unique solution u " upq, a, pu 0 , u 1 qq P Cpr0, τ s, H 1 0 pM qq so that B t u P Cpr0, τ s, L 2 pM qq. If in addition }q} 8 `}a} 8 ď ℵ, for some constant ℵ ą 0, then by the energy estimate (2.2) }u} Cpr0,τ s,H 1 0 pM qq `}B t u} Cpr0,τ s,L 2 pM qq ď C}pu 0 , u 1 q} H0 , holds with C " Cpℵq ą 0 is a nondecreasing function.

Denote by ν the unit normal vector field pointing inward M and set B ν u " x∇u, νy. From [7, Lemma 2.4.1] B ν u P L 2 pBM ˆp0, τ qq and

(2.3) }B ν u} L 2 pBM ˆp0,τ qq ď c M `}pu 0 , u 1 q} H0 `}qu `aB t u} L 1 pp0,τ q,L 2 pM q ˘,
where c M is a constant depending only on M . In light of (2.2), (2.3) yields

(2.4)

}B ν u} L 2 pBM ˆp0,τ qq ď C}pu 0 , u 1 q} H ,
with a constant C of the same form as in (2.2). Let Γ be a non empty open subset of BM and τ ą 0 so that pΓ, τ q geometrically control M . This means that every generalized geodesic traveling at speed one in M meets Γ in a non-diffractive point at a time t P p0, τ q (we refer to [19] for more details).

Fix pq 0 , a 0 q P L 8 pM q ˆL8 pM q. In light of [19, theorem page 169] (which remains valid for the wave operator plus an operator involving space derivatives of first order) and bearing in mind that controllability is equivalent to observability we can state the following inequality

(2.5) 2κ 0 }pu 0 , u 1 q} H ď }B ν u 0 } L 2 pΓˆp0,τ qq ,
for some constant κ 0 ą 0, where we set u 0 " upa 0 , q 0 , pu 0 , u 1 qq for pu 0 , u 1 q P H. By a perturbation argument, there exists β ą 0, depending on pq 0 , a 0 q and κ 0 , so that, for any pq, aq " pq 0 , a 0 q `pq, ãq, with pq, ãq P L 8 pM q ˆL8 pM q satisfying }pq, ãq} L 8 pM qˆL 8 pM q ď β, we have

κ 0 }pu 0 , u 1 q} H ď }B ν u} L 2 pΓˆp0,τ qq .
Here κ 0 ą 0 is the same as in previous inequality and u " upa, q, pu 0 , u 1 qq.

Theorem 2.1. Let pq 0 , a 0 q P L 8 pM qˆL 8 pM q and assume that pΓ, τ q geometrically control M . There exist κ ą 0 and β ą 0, only depending on Γ, M and pq 0 , a 0 q, such that for any pq, aq " pq 0 , a 0 q `pq, ãq with pq, ãq satisfying }pq, ãq} L 8 pM qˆL 8 pM q ď β we have

(2.6) κ}pu 0 , u 1 q} H0 ď }B ν u} L 2 pΓˆp0,τ qq ,
where u " upq, a, pu 0 , u 1 qq.

Next, we examine the case where we do not assume that pΓ, τ q geometrically control M . Define dpΓq " suptdpx, Γq; x P M u, let v " vpq, pu 0 , v 0 qq " upq, 0, pu 0 , u 1 qq and set H ´1 " L 2 pM q ' H ´1pM q.

In light of [18, Corollary 3.2] we have Theorem 2.2. Let ℵ ą 0. Under the assumption τ ą 2dpΓq there exist positive constants C, κ and 0 so that for any q P L 8 pM q with }q} L 8 pM q ď ℵ we have

(2.7) C}pu 0 , u 1 q} H´1 ď e κ }B ν v} L 2 pΓˆp0,τ qq `1 }pu 0 , u 1 q} H , pu 0 , u 1 q P H, ě 0 .
Here v " vpq, pu 0 , v 0 qq.

We now give an observability inequality for a parabolic equation. Consider then the IBVP (2.8)

$ & % B t u ´∆u `qpxqu " 0 in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " u 0 .

For q P L 8 pM q let A q " ∆ ´q with domain DpA q q " H 1 0 pM q X H 2 pM q. As A 0 (that is A q with q " 0) is an m-dissipative operator we deduce form the well established theory of continuous semigroups that A q generates a strongly continuous semigroup e tAq . Therefore, for any u 0 P L 2 pM q, the IBVP has a unique solution u " upq, u 0 q " e tAq u 0 P Cpr0, τ s, L 2 pM qq X C 1 ps0, τ s, H 2 pM q X H 1 0 pM qq. The perturbation argument we used previously for the wave equation is in fact stated in general abstract setting [28, Proposition 6.3.3, page 189], which is also applicable for the heat equation. This together with [20, Corollary 4] yield the following final time observability inequality.

Theorem 2.3. Let τ ą 0, Γ a non empty open subset of BM and ℵ ą 0. There exists a constant C ą 0 so that for any q P L 8 pM q satisfying }q} L 2 pM q ď ℵ we have

(2.9) }up¨, τ q} L 2 pM q ď C}B ν u} L 2 pΓˆp0,τ qq ,
where u " upq, u 0 q with u 0 P L 2 pM q.

2.2. The wave equation in a rectangular domain with boundary damping. Consider on Ω " p0, 1q ˆp0, 1q the IBVP (2.10)

$ ' ' & ' ' % B 2 t u ´∆u " 0 in Ω ˆp0, τ q, u " 0 on Γ 0 ˆp0, τ q, B ν u `aB t u " 0 on Γ 1 ˆp0, τ q, up¨, 0q " u 0 , B t up¨, 0q " u 1 .
Here Γ 0 " pp0, 1q ˆt1uq Y pt1u ˆp0, 1qq, Γ 1 " pp0, 1q ˆt0uq Y pt0u ˆp0, 1qq and B ν " ν ¨∇ is the derivative along ν, the unit normal vector pointing outward of Ω. Note that ν is everywhere defined except at the vertices of Ω.

We identify in the sequel a| p0,1qˆt0u by a 1 " a 1 pxq, x P p0, 1q and a| t0uˆp0,1q by a 2 " a 2 pyq, y P p0, 1q. In that case it is natural to identify a, defined on Γ 1 , by the pair pa 1 , a 2 q.

Fix 1{2 ă α ď 1 and let

A " tb " pb 1 , b 2 q P C α pr0, 1sq ' C α pr0, 1sq, b 1 p0q " b 2 p0q, b j ě 0u.
Let V " tu P H 1 pΩq; u " 0 on Γ 0 u and define on V ' L 2 pΩq the unbounded operator A a , a P A , by A a " pw, ∆vq, DpA a q " tpv, wq P V ' V ; ∆v P L 2 pΩq and B ν v " ´aw on Γ 1 u.

From [4]

A a generates a strongly continuous semigroup e tAa . Whence, for any pu 0 , u 1 q P DpA a q, the IBVP (2.10) has a solution u " upa, pu 0 , u 1 qq so that pu, B t uq P Cpr0, τ s, DpA a qq X C 1 pr0, τ s, V ' L 2 pΩqq.

We proved in [4, Corollary 2.2] the following observability inequality Theorem 2.4. Fix 0 ă δ 0 ă δ 1 . Then there exist τ 0 ą 0 and κ ą 0, depending only on δ 0 and δ 1 , so that for any τ ě τ 0 and a P A satisfying δ 0 ď a ď δ 1 on Γ 1 we have κ}pu 0 , u 1 q} V 'L 2 pΩq ď }B ν u} L 2 pΓ1ˆp0,τ qq , where u " upa, pu 0 , u 1 qq, with pu 0 , u 1 q P DpA a q.

It is worth noticing that Γ 1 satisfies the geometric control condition given in the multiplier method. We also point out that a special case was considered by the third author and Ren [27] in which the observation is made only on one side of Γ 1 .

Weighted interpolation inequalities

We aim in the present section establishing two weighted interpolation inequalities. These inequalities will be useful in the proof of Hölder stability estimates for certain inverse problems we discuss in the coming sections.

As in the preceding section M is a compact n-dimensional Riemannian manifold with boundary.

Consider the Hardy's inequality (3.1)

ż M |∇f pxq| 2 dV ě c ż M |f pxq| 2 dpx, BM q 2 dV, f P H 1 0 pM q,
for some constant c ą 0, where dV is the volume form on M , d is the geodesic distance introduced previously and dp¨, BM q is the distance to BM . Define r x pvq " inft|t|; γ x,v ptq R M u, where γ x,v is the geodesic satisfying the initial condition γ x,v " x and 9 γ x,v " v. It was observed in [START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF] that Hardy's inequality (3.1) holds for any open subset O, of a complete Riemannian manifold, whenever O has the following uniform interior cone property: there are an angle α ą 0 and a constant c 0 ą 0 so that, for any x P M , there exists an α-angled cone C x Ă T x M r1s with the property that r x pvq ď c 0 dpx, BM q, for all v P C x . The proof of this result follows the method by Davies [11, page 25] for the flat case. Since in our case M is a compact Riemannian manifold, it is obvious that it satisfies the uniform interior cone property. Then slight modifications of the proof in [START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF] show that Hardy's inequality is satisfied for any compact Riemannian manifold.

It is worth mentioning that Hardy's inequality holds for any bounded Lipschitz domain of R n with constant c ď 1{4, with equality if and only if Ω is convex.

The following Hopf's maximum principle is a key ingredient in establishing our first weighted interpolation inequality. Lemma 3.1. Let q P CpM q and u P C 2 pM q X H1 0 pM q satisfying q ď 0 and ∆u qu ď 0. If u is non identically equal to zero then u ą 0 in M and B ν upyq " x∇upyq, νpyqy ą 0 for any y P BM .

Proof. Similar to that of [12, Lemma 3.4, page 34 and Theorem 3.5, page 35]. The tangent ball in the classical Hopf's lemma is substitute by a tangent geodesic ball (see the construction in [23, Proof of Theorem 9.2, page 51]). Proposition 3.1. Let q P CpM q and u P C 2 pM q X H 1 0 pM q satisfying q ď 0 and ∆u `qu ď 0. If u is non identically equal to zero then upxq ě c u dpx, BM q, x P M, where the constant c u only depends on u and M .

Proof. Let 0 ă to be specified later. Let x P M so that dpx, BM q ď and y P BM satisfying dpx, BM q " dpx, yq. Since M is complete there exist a unit speed minimizing geodesic γ : r0, rs Ñ M such that γp0q " y, γprq " x and 9

γp0q " νpyq, where we set r " dpx, BM q (see for instance [22, page 150]).

Define φptq " upγptqq. Then φ 1 ptq " dupγptqqp 9 γptqq φ 2 ptq " d 2 upγptqqp 9 γptq, 9 γptqq `dupγptqqp: γptqq.

Here 9 γptq " 9 γ i ptqB i P T γptq . Observe that by the geodesic equation : γ k ptq " ´9 γ i ptq 9 γ j ptqΓ k ij pγptqq, where Γ k ij are the Christoffel symbols associated to the metric g. We get by taking into account that φ 1 p0q " dupyqpνpyqq " x∇upyq, νpyqy " B ν upyq

φprq " rB ν upyq `r2 2 φ 2 pstq,
for some 0 ă s ă 1. Hence there exists c ą 0 depending on u and M so that φprq ě 2rη ´cr 2 ě rη `rpη ´c q, with 2η " min yPΓ B ν upyq ą 0 (by the compactness of BM and Lemma 3.1). Thus φprq ě rη provided that ď η{c. In other words we proved (3.2) upxq " φprq ě rη " ηdpx, BM q.

On the other hand an elementary compactness argument yields, where M " tx P M ; dpx, BM q ě u,

(3.3) upxq ě min zPM upzq ě min zPM upzq max zPM dpz, BM q dpx, BM q, x P M .
In light of (3.2) and (3.3) we end up getting

upxq ě c u dpx, BM q, x P M.
The proof is then complete.

A consequence of Proposition 3.1 is the following corollary.

Corollary 3.1. Let q P CpM q, q ď 0, and u P C 2 pM q X H 1 0 pM q non identically equal to zero satisfying ∆u `qu ď 0. There exists a constant C u only depending on u and M so that we have

}f } L 2 pM q ď C u }f u} 1 2 L 2 pM q }f } 1 2 H 2 pM q for any f P H 2 pM q. Proof. By Proposition 3.1 upxq ě c u dpx, BM q. Therefore ż M f pxq 2 dV pxq ď c ´1 u ż M f pxq 2 upxq 2 dpx, BM q 2 dV pxq.
Combined with Hardy's inequality (3.1) this estimate gives

(3.4) ż M f pxq 2 dV pxq ď c ´1 u c ż M |∇pf uqpxq| 2 dV pxq.

But from usual interpolation inequalities we have

}f u} H 1 pM q ď C}f u} 1 2 L 2 pM q }f u} 1 2 H 2 pM q , where the constant C only depends on M . Whence (3.4) implies }f } L 2 pM q ď C u }f u} 1 2 L 2 pM q }f } 1 2
H 2 pM q , which is the expected inequality Let 0 ď q P C 1 pM q be fixed and consider the operator A " ´∆ `q with domain DpAq " H 2 pM q X H 1 0 pM q. An extension of [12, Theorem 8.38, page 214] to a compact Riemannian manifold with boundary shows that the first eigenvalue of A, denoted by λ 1 , is simple and has a positive eigenfunction. Let then φ 1 P C 2 pM q (by elliptic regularity) be the unique first eigenfunction satisfying φ 1 ą 0 and normalized by }φ 1 } L 2 pM q " 1. Since ∆φ 1 ´qφ 1 " ´λ1 φ 1 the Hopf's maximum principle is applicable to φ 1 . Therefore a particular weight in the preceding corollary is obtained by taking u " φ 1 .

Corollary 3.2. There exists a constant c ą 0, depending on φ 1 , so that we have

(3.5) }f } L 2 pM q ď c}f φ 1 } 1 2 L 2 pM q }f } 1 2
H 2 pM q for any f P H 2 pM q.

The second weighted interpolation inequality relies on the following proposition.

Proposition 3.2. Let p P L 8 pM q and u P W 2,n pM q satisfying p∆ `pqϕ " 0 in M and ϕ 2 P W 2,n pM q. Then there exists δ " δpϕq ą 0 so that |ϕ| ´δ P L 1 pM q.

It is worth mentioning that in general δ ă 1 as soon as ϕ vanishes at some point x 0 P M . Consider for instance in the flat case ψpxq " |x ´x0 | k near x 0 if x 0 is a zero of order k. It is then clear that |ϕ| ´δ is locally integrable in a neighborhood of x 0 if and only if δk ă n ´1. In consequence δ ă 1 whenever k ě n ´1.

Sketch of the proof. First step. Denote by B the unit ball of R n and let B `"

B X R n `, with R n `" tx " px 1 , x n q P R n ; x n ą 0u.
Let L be a second order differential operator acting as follows Lu " B j pa ij B i uq `V ¨∇u `du.

Assume that pa ij q is a symmetric matrix with entries in C 1 p2B `q, V P L 8 p2B `qn is real valued and d P L 8 p2B `q is complex valued. Suppose furthermore that a ij pxqξ j ¨ξj ě κ 0 |ξ| 2 , x P 2B `, ξ P R n , for some κ 0 ą 0.

Let u P W 2,n p2B `q X C 0 p2B `q be a weak solution of Lu " 0 satisfying u " 0 on Bp2B `q X R n `and |u| 2 P W 2,n p2B `q X C 0 p2B `q. From [1, Theorem 1.1, page 942] there exists a constant C, depending of u, so that the following doubling inequality at the boundary ż

B2rXB`| u| 2 dx ď C ż BrXB`| u| 2 dx,
holds for any ball B 2r of radius 2r contained in 2B.

On the other hand simple calculations yield, where v " u and w " u,

B j pa ij B i |u| 2 q `2V ¨∇|u| 2 `4p| d| `| d|q|u| 2 ě 2a ij B i vB j v `2a ij B i wB j w ě 0 in 2B ànd |u| 2 " 0 on Bp2B `q X R n `.
Harnak's inequality at the boundary (see [12, Theorem 9.26, page 250]) then yields sup

BrXB`| u| 2 ď C |B 2r | ż B2rXB`| u| 2 dx,
for any ball B 2r of radius 2r contained in 2B.

Define ũ by ũpx 1 , x n q " upx 1 , x n q if px 1 , x n q P 2B `, ũpx 1 , x n q " upx 1 , ´xn q if px 1 , ´xn q P 2B `.

Therefore ũ belongs to H Second step. As BM is compact there exists a finite cover pU α q of BM and

C 8 - diffeomorphisms f α : U α Ñ 2B so that f α pU α XM q " 2B `, f α pU α XBM q " 2BXR n ànd,
for any x P BM , x P V α " f ´1 α pBq, for some α. Then u α " ϕ ˝f ´1 α satisfies L α u α " 0 in 2B and u " 0 on Bp2B `q X R n `for some L " L α satisfying the conditions of the first step. Hence |u α | ´δα P L 1 pB `q and then |ϕ| ´δα P L 1 pV α q. Let V the union of V α 's. Since u P L 8 pV q we get |u| ´δ0 P L 1 pV q with δ 0 " min δ α . Next, let sufficiently small in such a way that M zM Ă V , where M " tx P M ; distpx, BM q ą u. Proceeding as previously it is not hard to get that there exists δ 1 so that |ϕ| ´δ1 P L 1 pM {2 q. Finally, as it is expected we obtain that |ϕ| ´δ P L 1 pM q with δ " minpδ 0 , δ 1 q. Lemma 3.2. Let ϕ be as in Proposition 3.2. There exists a constant C ą 0, depending on ϕ, so that we have

}f } L 2 pM q ď C}f } 2 2`δ L 8 pM q }f ϕ} δ 2`δ
L 2 pM q , for any f P L 8 pM q Proof. Let δ " δpϕq given as in the preceding proposition. Since ϕ belongs to L 8 pM q, substituting δ by minp1, δq if necessary, we may assume that δ ă 2. We get by applying Cauchy-Schwarz's inequality ż

M |f | δ{2 dV ď }|f ϕ| δ } 1{2 L 1 pM q }|ϕ| ´δ } 1{2 L 1 pM q .
But by Hölder's inequality

}|f ϕ| δ } 1{2 L 1 pM q ď VolpM q p2´δq{4 }f ϕ} δ{2 L 2 pM q . Whence (3.8) }|f | δ{2 } L 1 pM q ď VolpM q p2´δq{4 }f ϕ} δ{2 L 2 pM q }|ϕ| ´δ } 1{2 L 1 pM q . On the other hand (3.9) }f } L 2 pM q ď }f } 1´δ{4 L 8 pM q }|f | δ{2 } 1{2 L 1 pM q .
A combination of (3.8) and (3.9) yields }f } L 2 pM q ď C}f } 1´δ{4 L 8 pM q }f ϕ} δ{4 L 2 pM q , which is the expected inequality.

Inverse source problem: abstract framework

Let H be a Hilbert space and A : DpAq Ă H Ñ H be the generator of continuous semigroup T ptq. An operator C P BpDpAq, Y q, Y is another Hilbert space which is identified with its dual space, is called an admissible observation for T ptq if for some (and hence for all) τ ą 0 the operator Ψ P BpDpAq, L 2 pp0, τ q, Y qq given by pΨxqptq " C T ptqx, t P r0, τ s, x P DpAq, has a bounded extension to H.

We introduce the definition of exact observability for the system z 1 ptq " Azptq, zp0q " x, (4.1)

yptq " C zptq, (4.2)
where C is an admissible observation for T ptq. The pair pA, C q is said exactly observable at time τ ą 0 if there is a constant κ such that the solution pz, yq of (4.1) and (4.2) satisfies

ż τ 0 }yptq} 2 Y dt ě κ 2 }x} 2 H , x P DpAq.
Or equivalently (4.3) Let H 1 pp0, τ q, Y q " u P H 1 pp0, τ q, Y q; up0q " 0 ( .

ż τ 0 }pΨxqptq} 2 Y dt ě κ 2 }x} 2 H , x P DpAq.
Define the operator S : L 2 pp0, τ q, Y q ÝÑ H 1 pp0, τ q, Y q by (4.7) pShqptq "

ż t 0 λpt ´sqhpsqds.
If E " SΨ then (4.6) takes the form yptq " pExqptq.

Theorem 4.1. Assume that pA, C q is exactly observable for τ ě τ 0 , for some τ 0 ą 0. Let λ P H 1 p0, τ q satisfies λp0q ‰ 0. Then E is one-to-one from H onto H 1 pp0, τ q, Y q and Mimicking the proof of [14, Theorem 2, page 33] we obtain that this integral equation has a unique solution ϕ P L 2 pp0, τ q, Y q and }ϕ} L 2 pp0,τ q,Y q ď C}ψ 1 } L 2 pp0,τ q,Y q

(4.8) κ|λp0q| ? 2 e ´τ }λ 1 } 2 L 2 p0,τ q |λp0q| 2 }x} H ď }Ex} H 1 pp0,τ q,Y q , x P H.
ď C}ψ} H 1 pp0,τ q,Y q .

Here C " Cpλq is a constant. For estimating the constant C above we first use the elementary convexity inequality pa `bq 2 ď 2pa 2 `b2 q in order to get

}|λp0q|ϕptq} 2 Y ď 2 ˆż t 0 |λ 1 pt ´sq |λp0q| r|λp0q|}ϕpsq} Y s ds ˙2 `2}ψ 1 ptq} 2 Y .
Thus

|λp0q| 2 }ϕptq} 2 Y ď 2 }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 ż t 0 |ϕp0q| 2 }ϕpsq} 2 Y ds `2}ψ 1 ptq} 2 Y
by the Cauchy-Schwarz's inequality. Therefore using Gronwall's lemma we obtain in a straightforward manner

}ϕ} L 2 pp0,τ q,Y q ď ? 2 |λp0q| e τ }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 }ψ 1 } L 2 pp0,τ q,Y q
and then

}ϕ} L 2 pp0,τ q,Y q ď ? 2 |λp0q| e τ }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 }Sϕ} H 1 pp0,τ q,Y q .
In light of (4.3) we end up getting

}Ex} H 1 pp0,τ q,Y q ě κ|λp0q| ? 2 e ´τ }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 }x} H .
This is the expected inequality.

We shall need a variant of Theorem 4.1. If pA, C q is as in Theorem 4.1 then, as in the preceding section, by the perturbation argument in [28, Proposition 6.3.3, page 189], there exist ℵ ą 0 and κ ą 0 such that for any P P BpHq satisfying }P } ď ℵ we have that pA `P, C q is exactly observable with κpP `Aq ě κ.

Define E P similarly to E by substituting in E A by A `P .

Theorem 4.2. Assume that pA, C q is exactly observable for τ ě τ 0 , for some τ 0 ą 0, and let λ P H 1 p0, τ q satisfies λp0q ‰ 0. There exist ℵ ą 0 and κ ą 0 so that for any P P BpHq satisfying }P } ď ℵ we have that E P is one-to-one from H onto H 1 pp0, τ q, Y q and (4.9) κ|λp0q| ? 2 e ´τ }λ 1 } 2 L 2 p0,τ q |λp0q| 2 }x} H ď }E P x} H 1 pp0,τ q,Y q , x P H.

We will consider inverse source problems with singular sources. For this purpose we need to extend Theorem 4.1. Fix then in the resolvent set of A. Let H 1 be the space DpAq equipped with the norm }x} 1 " }p ´Aqx} and denote by H ´1 the completion of H with respect to the norm }x} ´1 " }p ´Aq ´1x}. As we observed in [28, Proposition 4.2, page 1644] and its proof, when x P H ´1 (which is the dual space of H 1 with respect to the pivot space H) and λ P H 1 p0, τ q, then according to the classical extrapolation theory of semigroups the Cauchy problem (4.1) has a unique solution z P Cpr0, τ s, Hq. In addition y given in (4.2) belongs to L 2 pp0, τ q, Y q.

If x P H we have by Duhamel's formula (4.10) yptq "

ż t 0 λpt ´sqC T psqxds " ż t 0 λpt ´sqpΨxqpsqds.
Let H 1 pp0, τ q, Y q " u P H 1 pp0, τ q, Y q; up0q " 0 ( .

We define the operator S : L 2 pp0, τ q, Y q ÝÑ H 1 pp0, τ q, Y q by (4.11) pShqptq "

ż t 0 λpt ´sqhpsqds.
Hence E " SΨ then (4.10) the form yptq " pExqptq.

Let Z " p ´A˚q´1 pX `C ˚Y q.

Theorem 4.3. Assume that pA, C q is exactly observable at time τ . Then (i) E is one-to-one from H onto H 1 pp0, τ q, Y q.

(ii) E is extended to an isomorphism, denoted by Ẽ, from Z 1 onto L 2 pp0, τ q, Y q.

(iii) There exists a constant κ, independent of λ, so that

(4.12) }x} Z 1 ď κ|λp0q|e }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 τ } Ẽx} L 2 pp0,τ q,Y q .
Proof. We give the proof of (ii) and (iii) and we note that (i) is contained in Theorem 4.1. We first observe that S ˚, the adjoint of S, maps L 2 pp0, τ q, Y q into H 1 r pp0, τ q, Y q, where H 1 r pp0, τ q, Y q " u P H 1 pp0, τ q, Y q; upτ q " 0 ( .

Moreover

S ˚hptq " ż τ t λps ´tqhpsqds, h P L 2 pp0, τ q, Y q.

Fix h P L 2 pp0, τ q, Y q and set k " S ˚h. Then

k 1 ptq " λp0qhptq ´ż τ t λ 1 ps ´tqhpsqds. Hence |λp0q}hptq} 2 ď ˆż τ t |λ 1 ps ´tq| |λp0q| r|λp0q|}hpsq}sds `}k 1 ptq} ˙2 ď 2 ˆż τ t |λ 1 ps ´tq| |λp0q| r|λp0q|}hpsq}sds ˙2 `2}k 1 ptq} 2 ď 2 }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 ż t 0 r|λp0q|}hpsq}s 2 ds `2}k 1 ptq} 2 .
The last estimate is obtained by applying Cauchy-Schwarz's inequality. Then Gronwall's lemma yields

r|λp0q|}hptq}s 2 ď 2e 2 }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 τ }k 1 ptq} 2 . Therefore }h} L 2 pp0,τ q,Y q ď ? 2 |λp0q| e }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 τ }k 1 } L 2 pp0,τ q,Y q . Whence (4.13) }h} L 2 pp0,τ q,Y q ď ? 2 |λp0q| e }λ 1 } 2 L 2 pp0,τ qq |λp0q| 2 τ }S ˚h} H 1 r pp0,τ q,Y q .
The adjoint operator of S ˚, acting as a bounded operator from rH 1 r pp0, τ q; Y qs 1 into L 2 pp0, τ q; Y q, gives an extension of S. We denote by S this operator. By [28, Proposition 4.1, page 1644] S defines an isomorphism from rH r pp0, 1q; Y qs 1 onto L 2 pp0, τ q; Y q. In light of the identity } S} BprH 1 r pp0,τ q;Y qs 1 ;L 2 pp0,τ q,Y qq " }S ˚}BpL 2 pp0,τ q;Y q;H 1 r pp0,τ q,Y qq , (4. [START_REF] Gohberg | Introduction to the theory of linear non self-adjoint operators[END_REF] τ ď } S} BprH 1 r pp0,τ q;Y qs 1 ;L 2 pp0,τ q;Y qq .

On the other hand according to [28, Proposition 2.13, page 1641] Ψ possesses a unique bounded extension, denoted by Ψ, from Z 1 into rH 1 r pp0, τ q; Y qs 1 and there exists a constant c ą 0 so that (4.15) } Ψ} BpZ 1 ;rH 1 r pp0,τ q;Y qs 1 q ě c. The operator Ẽ " S Ψ gives the unique extension of E to an isomorphism from Z 1 onto L 2 pp0, τ q, Y q.

We end up the proof by noting that (4.12) follows from (4.14) and (4.15).

Inverse problems for evolution equations associated to Laplace-Beltrami operator

Throughout this section M is a compact n-dimensional Riemannian manifold with boundary, τ ą 0 and Γ is a nonempty open subset of BM . 

$ & % B 2
t u ´∆u `qpxqu `apxqB t u " gptqf pxq in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " 0, B t up¨, 0q " 0.

Assume that pΓ, τ q geometrically control M . Fix pq 0 , a 0 q P L 8 pM q ' L 8 pM q and denote by 2κ the observability constant for pq 0 , a 0 q. In light of Theorem 2.1 there exists a constant β ą 0 only depending on Γ, M and pq 0 , a 0 q such that, for any pq, aq " pq 0 , a 0 q `pq, ãq with pq, ãq P L 8 pM q ' L 8 pM q satisfying (5.2) }pq, ãq} L 8 pM qˆL 8 pM q ď β, the observability contant for pq, aq is κ. We denote the set of couples pq, aq P L 8 pM q ' L 8 pM q of the form pq, aq " pq 0 , a 0 q `pq, ãq, where pq, ãq P L 8 pM q ' L 8 pM q satisfies (5.2), by D.

Let f P L 2 pM q and g P H 1 p0, τ q with gp0q ‰ 0. We have according to Theorem 4.1

(5.3) }f } L 2 pM q ď ? 2 κ|gp0q| e τ }g 1 } 2 L 2 p0,τ q |gp0q| 2 }B ν u} H 1 pp0,τ q,L 2 pΓqq ,
where u " upq, a, f, gq denotes the solution of the IBVP (5.1).

An immediate consequence of this inequality is the following theorem.

Theorem 5.1. Assume that pΓ, τ q geometrically control M . Let g P H 1 p0, τ q satisfying gp0q ‰ 0. Then there exists a constant C, only depending on pq 0 , a 0 q, κ, Γ, τ and g, so that for any pq, aq P D we have }f } L 2 pM q ď C}B ν u} H 1 pp0,τ q,L 2 pΓqq .

Here u " upq, a, f, gq denotes the solution of the IBVP (5.1).

Set for simplicity v " vpq, f, gq " upq, 0, f, gq. That is v is the solution of the IBVP (5.4)

$ & % B 2
t u ´∆u `qpxqu " gptqf pxq in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " 0, B t up¨, 0q " 0. Using Duhamel's formula it is not hard to check that vpx, tq "

ż t 0 gpt ´sqwpx, sqds,
where w " wpf q is the solution of the IBVP (5.5)

$ & % B 2
t w ´∆w `qpxqw " 0 in M ˆp0, τ q, w " 0 on BM ˆp0, τ q, wp¨, 0q " f, B t wp¨, 0q " 0.

Let

H 1 pp0, τ q, L 2 pΓqq " u P H 1 pp0, τ q, L 2 pΓqq; up0q " 0 ( and define the operator S : L 2 pΓ ˆp0, τ qq ÝÑ H 1 pp0, τ q, L 2 pΓqq by pShqptq "

ż t 0 gpt ´sqhpsqds.
We have seen in the proof of Theorem 4.1 that S is an isomorphism and

}h} L 2 pΓˆp0,τ qq ď ? 2 κ|gp0q| e τ }g 1 } 2 L 2 pp0,τ qq |gp0q| 2
}Sh} H 1 pp0,τ q,L 2 pΓqq .

Whence

(5.6)

}B ν w} L 2 pΓˆp0,τ qq ď ? 2 κ|gp0q| e τ }g 1 } 2 L 2 pp0,τ qq |gp0q| 2 }B ν v} H 1 pp0,τ q,L 2 pΓqq .
Let ℵ ą 0, assume that dpΓq ă 8 and let τ ą 2dpΓq. From Theorem 2.2 there exist three constants C, κ and 0 so that for any q P L 8 pM q with }q} L 8 pM q ď ℵ we have (5.7)

C}f } L 2 pM q ď e κ }B ν w} L 2 pΓˆp0,τ qq `1 }f } H 1 0 pM q , ě 0 . Now (5.6) in (5.7) yields

(5.8) C}f } L 2 pM q ď e κ ? 2 κ|gp0q| e τ }g 1 } 2 L 2 pp0,τ qq |gp0q| 2 }B ν v} H 1 pp0,τ q,L 2 pΓqq `1 }f } H 1 0 pM q
for any ě 0 . Let Ψpρq " | ln ρ | ´1 `ρ, ρ ą 0, and Ψp0q " 0. Then a standard minimization argument with respect to in (5.8) enables us establishing the following result. Theorem 5.2. Let ℵ ą 0, R ą 0 and τ ą 2dpΓq. Let g P H 1 p0, τ q satisfying gp0q ‰ 0. Then there exists a constant C ą 0, only depending on ℵ, R, Γ, τ and g, so that for any q P L 8 pM q with }q} L 8 pM q ď ℵ and any f P H 1 0 pM q satisfying }f } H 1 0 pM q ď R we have }f } L 2 pM q ď CΨ `}B ν v} H 1 pp0,τ q,L 2 pΓqq ˘,

where v " vpq, f, gq is the solution of the IBVP (5.4).

Determining the potential and the damping coefficient in a wave equation.

Introduce the IBVP for the wave equation (5.9)

$ & % B 2 t u ´∆u `qpxqu `apxqB t u " 0 in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " u 0 , B t up¨, 0q " u 1 .
Let ℵ ą 0 and recall that H 0 " H 1 0 pM q ' L 2 pM q. We have seen in Section 1 that, for any pq, aq P L 8 pM q ' L 8 pM q, τ ą 0 and pu 0 , u 1 q P H 0 , the IBVP (5.9) has a unique solution u " upq, a, pu 0 , u 1 qq P Cpr0, τ s, H 1 0 pM qq so that B t u P Cpr0, τ s, L 2 pM qq and B ν u P L 2 pBM ˆp0, τ qq. Moreover under the assumption }pq, aq} L 8 pM q'L 8 pM q ď ℵ we have (5.10) }u} Cpr0,τ s,H 1 0 pM qq `}B t u} Cpr0,τ s,L 2 pM qq ď C}pu 0 , u 1 q} H0 and (5.11) }B ν u} L 2 pBM ˆp0,τ qq ď C}pu 0 , u 1 q} H0 .

Here C " Cpℵq is a nondecreasing function.

Define the initial-to-boundary operator Λpq, aq as follows Λpq, aq : pu 0 , u 1 q P H 0 Þ Ñ B ν upq, a, pu 0 , u 1 qq P L 2 pΓ ˆp0, τ qq.

Let H 1 " pH 1 0 pM q X H 2 pM qq ' H 1 0 pM q. Observing that B t upq, a, pu 0 , u 1 qq " upq, a, pu 1 , ∆u 0 ´qu 0 ´au 1 qq we easily obtain that Λpq, aq P BpH 1 , H 1 pp0, τ q, L 2 pΓqqq. Furthermore we get as a consequence of (5.11) }Λpq, aq} BpH1,H 1 pp0,τ q,L 2 pΓqqq ď C, where the constant C is similar to that in (5.11).

Denote by D 0 the set D in the case where pq 0 , a 0 q " pq 0 , 0q with q 0 ě 0. Define then D 1 pℵq as the subset of D 0 consisting in couples pq, aq P H 2 pM q ' H 2 pM q satisfying }pq, aq} H 2 pM q'H 2 pM q ď ℵ. It is then clear that D 1 pℵq is nonempty provided that ℵ ě ℵ 0 , for some ℵ 0 " ℵpβq. Theorem 5.3. Assume that pΓ, τ q geometrically control M and let ℵ ě ℵ 0 . There exists a constant C ą 0, depending on ℵ and q 0 , so that for any pq, aq P D 1 pℵq we have }q ´q0 } L 2 pM q `}a ´0} L 2 pM q ď C}Λpq, aq ´Λpq 0 , 0q} 1{2 BpH1,H 1 pp0,τ q,L 2 pΓqqq . Proof. Let 0 ď φ 1 be the first eigenfunction of the operator ´∆ `q0 with domain H 2 pM q X H 1 0 pM q. This eigenfunction is normalized by }φ 1 } L 2 pM q " 1. If u 0 " upq 0 , 0, pφ 1 , i a λ 1 φ 1 qq " e i ? λ1 t φ 1 and u " upq, a, pφ 1 , i a λ 1 φ 1 qq then v " u ´u0 is the solution of the following IBVP (5.12)

$ & % B 2 t v ´∆v `qv `aB t v " ´rpq ´q0 q `i? λ 1 ase i ? λ1t φ 1 in M ˆp0, τ q, v " 0 on BM ˆp0, τ q, vp¨, 0q " 0, B t vp¨, 0q " 0.
Bearing in mind that pΓ, τ q geometrically control M we get from Theorems 5.1

}φ 1 pq ´q0 q} L 2 pM q `}φ 1 a} L 2 pM q ď C}B ν v} H 1 pp0,τ q,L 2 pBM qq .
This inequality combined with Corollary 3.1 yields

}q ´q0 } L 2 pM q `}a ´0} L 2 pM q ď C}B ν v} 1{2 H 1 pp0,τ q,L 2 pΓqq
which gives in a straightforward manner the expected result.

Denote the sequence of eigenvalues, counted according to their multiplicity, of A " ´∆ with domain H 2 pM q X H 1 0 pM q by 0 ă λ 1 ă λ 2 ď . . . ď λ k Ñ 8. Consider on H 0 the operators

A " ˆ0 I ´A 0 ˙, DpAq " H 1
and Apq, aq " A `Bpq, aq with DpApq, aqq " DpAq, where Bpq, aq " ˆ0 0 ´q ´a ˙P BpH 0 q.

From [28, Proposition 3.7.6, page 100] A is skew-adjoint operator with 0 P ρpAq and

A ´1 " ˆ0 ´A´1 I 0 ˙.
We note that, since A ´1 : H Ñ H 1 is bounded and the embedding

H 1 ãÑ H is compact, A ´1 : H Ñ H is compact.
Also, from [28, Proposition 3.7.6, page 100] A is diagonalizable and its spectrum consists in the sequence pi ? λ k q. Introduce the bounded operator Cpq, aq " piA ´1qp´iBpq, aqqpiA ´1q.

Let s k pCpq, aqq, k ě 1, denote the singular values of Cpq, aq, that is the eigenvalues of rCpq, aq ˚Cpq, aqs 1 2 . In light of [13, formulas (2.2) and (2.3), page 27] we have s k pCpq, aqq ď }Bpq, aq}s k piA ´1q 2 " }Bpq, aq}λ ´1 k , where }Bpq, aq} denote the norm of Bpq, aq in BpHq.

On the other hand referring to Weyl's asymptotic formula we get λ k " Opk 2{n q. Hence C q,a belongs to the Shatten class S p for any p ą n{2, that is ÿ kě1 rs k pCpq, aqqs p ă 8.

We get by applying [13, Theorem 10.1, page 276] that the spectrum of Apq, aq consists in a sequence of eigenvalues pµ k pq, aqq, counted according to their multiplicity, and the corresponding eigenfunctions pφ k pq, aqq form a Riesz basis of H. Fix pq, aq and k. Set µ " µ k pq, aq and φ " φ k pq, aq " pϕ, ψq P H 1 be an eigenfunction associated to µ. Then it is straightforward to check that ψ " µϕ and p´∆ `q `aµ `µ2 qϕ " 0 in M . Since ´∆ϕ " f in M with f " ´pq `aµ `µ2 qϕ we can use iteratively [12, Corollary 7.11, page 158] (Sobelev embedding theorem) together with [12, Theorem 9.15, page 241] in order to obtain that ϕ P W 2,p pM q for any 1 ă p ă 8. In particular ϕ, |ϕ| 2 P W 2,n pM q X C 0 pM q. In other words ϕ satisfies the assumption of Proposition 3.2.

Set, for pq, aq, pq, ãq P D, u " upq, a, φq and ũ " upq, ã, φq.

Then similarly to Theorem 5.3 we prove, where v " ũ ´u, }ϕpq ´qq} L 2 pM q `}ϕpã ´aq} L 2 pM q ď C}B ν v} H 1 pp0,τ q,L 2 pBM qq .

This and Lemma 3.1 yield Theorem 5.4. Assume that pΓ, τ q geometrically control M and fix pq, aq P D.

Then there exists two constants C ą 0 and α ą 0, depending of pq, aq, so that for any pq, ãq P D we have }q ´q} L 2 pM q `}ã ´a} L 2 pM q ď C}Λpq, ãq ´Λpq, aq} α BpH1,H 1 pp0,τ q,L 2 pΓqqq . $ & % B 2 t u ´∆u `qpxqu " 0 in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " u 0 , B t up¨, 0q " 0.

From the preceding subsection the initial-to-boundary mapping Λpqq : u 0 P H 1 0 pM q X H 2 pM q Þ Ñ B ν u P H 1 pp0, τ q, L 2 pΓqq, where u " upq, u 0 q is the solution on the IBVP, defines a bounded operator. Moreover for any ℵ ą 0 there exists a constant C ą 0, depending of ℵ, so that for any q P L 8 pM q satisfying }q} L 8 pM q ď ℵ we have }Λpqq} BpH 1 0 pM qXH 2 pM q,H 1 pp0,τ q,L 2 pΓqqq ď C. Theorem 5.5. Let ℵ ą 0 and suppose that τ ą 2dpΓq. There exists a constant C ą 0 so that for any 0 ď q P L 8 pM q, q P L 8 pM q satisfying q ´q P W 1,8 pM q and }q} L 8 pM q ď ℵ, }q} L 8 pM q ď ℵ, }q ´q} W 1,8 pM q ď ℵ we have }q ´q} L 2 pM q ď CΦ ´}Λpqq ´Λpqq} BpH 1 0 pM qXH 2 pM q,H 1 pp0,τ q,L 2 pΓqqq ¯, with Φpρq " | ln ρ| ´1{pn`3q `ρ, ρ ą 0, and Φp0q " 0.

Proof. Let 0 ď q P L 8 pM q satisfying }q} L 8 pM q ď ℵ. Denote by 0 ă λ 1 ď λ 2 . . . ď λ k . . . the sequence of eigenvalues of the operator ´∆ `q with domain H 1 0 pM q X H 2 pM q. Let pφ k q an orthonormal basis of L 2 pM q consisting in eigenfunctions, each φ k is an eigenvalue for λ k . Note that according to the usual elliptic regularity we have φ k P C 8 pM q for each k.

By the Weyl's asymptotic formula and the min-max principle there exists a constant κ ą 1, depending on ℵ but not in q, so that (5.14) κ ´1k 2{n ď λ k ď κk 2{n .

Set, for q P L 8 pM q satisfying }q} L 8 pM q ď ℵ, u " upq, φ k q " cospλ k tqφ k and ũ " upq, φ k q.

Then v " ũ ´u is the solution of the IBVP, where g k ptq " cosp ? λ k tq, (

$ & % B 2 t u ´∆u `qu " pq ´qqφ k g k ptq in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " 0, B t up¨, 0q " 0.

We have }g 1 k } 2 L 2 p0,τ q ď λ k τ . Hence (5.16) }g 1 k } 2 L 2 p0,τ q ď κτ k 2{n by (5.14).

In the rest of this proof C and c denote generic constant only depending of M , ℵ, Γ and τ . From (5.8) we have (5.17) C}pq ´qqφ k } L 2 pM q ď e κ e ck 2{n }B ν v} H 1 pp0,τ q,L 2 pΓqq `1 }pq ´qqφ k } H 1 0 pM q for any ě 0 .

On the other hand }pq ´qqφ k } H 1 0 pM q ď }r q ´q} W 1,8 pM q }φ k } H 1 0 pM q ď 2N a λ k ď ck 1{n by (5.14).

This in (5.17) gives

C}pq ´qqφ k } L 2 pM q ď e κ e ck 2{n }B ν v} H 1 pp0,τ q,L 2 pΓqq `k1{n , ě 0 .

But we have by Cauchy-Schwarz's inequality pq ´q, φ k q 2 ď VolpM q}pq ´qqφ k } L 2 pM q .

Whence Cpq ´q, φ k q 2 ď e κ e ck 2{n }B ν v} H 1 pp0,τ q,L 2 pΓqq `k

1 n , ě 0 . Also }q ´q} 2 L 2 pM q " ÿ kď pq ´q, φ k q 2 `ÿ ką pq ´q, φ k q 2 ď ÿ kď pq ´q, φ k q 2 `1 λ `1 ÿ ką λ k pq ´q, φ k q 2 ď ÿ kď pq ´q, φ k q 2 `N 2 p `1q 2{n .

Thus

(5.18) C}q ´q} 2 L 2 pM q ď e κ e c 2{n }B ν v} H 1 pp0,τ q,L 2 pΓqq `1 p `1q 2{n ` 1`1{n

.

Let s ě 1 be a real number and let be the unique integer so that ď s ă `1. Then (5.18) with that yields (5.19) C}q ´q} 2 L 2 pM q ď se κ e cs 2{n }B ν v} H 1 pp0,τ q,L 2 pΓqq `1 s 2{n `s1`1{n .

We then get by taking " s 3{n`1 in (5.19), where s 0 " max ´1,

n{pn`3q 0 ¯, C}q ´q} 2 L 2 pM q ď 1 s 2{n `ecs 2{n`1 e κs 3{N `1 }B ν v} H 1 pp0,τ q,L 2 pΓqq , s ě s 0 . Therefore C}q ´q} 2 L 2 pM q ď 1 s 2{n
`ecs 3{n`1 }B ν v} H 1 pp0,τ q,L 2 pΓqq , s ě s 0 or equivalently C}q ´q} L 2 pM q ď 1 s 1{n

`ecs 3{n`1 }B ν v} H 1 pp0,τ q,L 2 pΓqq , s ě s 0 .

We end up getting the expected inequality by minimizing with respect to s. $ & % B t u ´∆u `qpxqu " gptqf pxq in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " 0 and set Q " M ˆp0, τ q.

We recall that the anisotropic Sobolev space H 2,1 pQq is given as follows H 2,1 pQq " L 2 pp0, τ q, H 2 pM qq X H 1 pp0, τ q, L 2 pM qq.

From classical parabolic regularity theorems for any f P L 2 pM q, g P L 2 p0, τ q and q P L 8 pM q the IBVP (5.20) has a unique solution u " upq, f, gq P H 2,1 pQq.

Furthermore if ℵ ą 0 then there exists a constant C ą 0 so that (5.21) }u} H 2,1 pQq ď C}g} L 2 p0,τ q }f } L 2 pM q for any q P L 8 pM q satisfying }q} L 8 pM q ď ℵ.

If in addition g P H 1 p0, τ q then it is not hard to check that B t u is the solution of the IBVP (5.20) with g substituted by g 1 . Hence B t u P H 2,1 pQq and

(5.22) }B t u} H 2,1 pQq ď C}g 1 } L 2 p0,τ q }f } L 2 pM q
for any q P L 8 pM q satisfying }q} L 8 pM q ď ℵ, where C is the constant in (5.21). We derive that B ν u is well defined as an element of H 1 pp0, τ q, L 2 pΓqq. Therefore by (5.21), (5.22) and the continuity of the trace operator on Γ we have }B ν u} H 1 pp0,τ q,L 2 pΓqq ď C}g} H 1 p0,τ q }f } L 2 pM q , where the constant C is as in (5.21).

The following result will be useful in the sequel.

Proposition 5.1. Let ℵ ą 0. There exist two constants c ą 0 and C ą 0 so that for any q P L 8 pM q satisfying }q} L 8 pM q ď ℵ, f P H 1 0 pM q and g P H 1 p0, τ q with gp0q ‰ 0 we have

(5.23) C}f } L 2 pM q ď 1 ? }f } H 1 0 pM q `1 |gp0q| e τ }g 1 } 2 L 2 p0,τ q {|gp0q| 2 e c }B ν u} H 1 pp0,τ q,L 2 pΓqq
for any ě 1, where u " upq, f, gq is the solution of the IBVP (5.20).

Proof. Pick q P L 8 pM q satisfying }q} L 8 pM q ď ℵ, f P H 1 0 pM q and g P H 1 p0, τ q with gp0q ‰ 0. We may assume without loss of generality that q ě 0. This is achieved by substituting u by ue ´ℵt , which is the solution of the IBVP (5.20) when q is replaced by q `ℵ.

Let v " vpq, f q P H 2,1 pQq be the unique solution of the IBVP

$ & % B t v ´∆v `qpxqv " 0 in M ˆp0, τ q, v " 0 on BM ˆp0, τ q, vp¨, 0q " f.
Then B ν v is well defined as an element of L 2 pΓ ˆp0, τ qq. As for the wave equation we have

B ν u| Γ p¨, tq " ż t 0 gpt ´sqB ν v| Γ p¨, sqds. Therefore (5.24) }B ν v} L 2 pΓˆp0,τ qq ď ? 2 |gp0q| e τ }g 1 } 2 L 2 pp0,τ qq {|gp0q| 2 }B ν u} H 1 pp0,τ q,L 2 pΓqq .
From the final time observability inequality in Theorem 2.3 we have (5.25) }vp¨, τ q} L 2 pM q ď K}B ν v} L 2 pΓˆp0,τ qq , for some constant K ą 0 independent of q and f . A combination of (5.24) and (5.25) yields

(5.26) C}vp¨, τ q} L 2 pM q ď 1 |gp0q| e τ }g 1 } 2 L 2 pp0,τ qq {|gp0q| 2 }B ν u} H 1 pp0,τ q,L 2 pΓqq .
Denote by 0 ă λ 1 ď λ 2 ď . . . ď λ k Ñ 8 the sequence of eigenvalues of the ´∆ `q with domain H 1 0 pM q X H 2 pM q. Let pφ k q be a sequence of eigenfunctions, each φ k is associated to λ k , so that pφ k q form an orthonormal basis of L 2 pM q.

We have vp¨, τ q " ÿ ě1 e ´λk τ pf, φ qφ , where p¨, ¨q is the usual scalar product on L 2 pM q. Hence pf, φ q 2 ď e 2λ τ }vp¨, τ q} 2 L 2 pM q , ě 1.

Whence

k ÿ "1 pf, φ q 2 ď ke 2λ k τ }vp¨, τ q} 2 L 2 pM q
for any integer k ě 1.

This and the fact that

´ř ě1 λ p¨, φ q 2 L 2 pΩq ¯1{2 is an equivalent norm on H 1 0 pM q lead }f } 2 L 2 pM q " k ÿ "1 pf, φ q 2 `ÿ ěk`1 pf, φ q 2 ď k ÿ "1
pf, φ q 2 `1 λ k`1 ÿ ěk`1 λ pf, φ q 2 ď ke 2λ k τ }vp¨, τ q} 2 L 2 pM q `1 λ k`1 }f } 2 H 1 0 pM q . Until the end of this proof C and c denote generic constants independent of q, f and g.

We get from inequality (5.14)

(5.27) C}f } 2 L 2 pM q ď ke ck 2{n }vp¨, τ q} 2 L 2 pM q `1 pk `1q 2{n }f } 2 H 1 0 pM q .

Let ě 1 and k ě 1 be the unique integer so that k ď n{2 ă k `1. We obtain in a straightforward manner from (5.27) (5.28) C}f } 2 L 2 pM q ď e c }vp¨, τ q} 2 L 2 pM q `1 }f } 2 H 1 pM q . Then (5.26) in (5.28) gives the expected inequality.

Minimizing the right hand side of (5.23) with respect to we obtain the following result in which Φpρq " |ln ρ| ´1{2 `ρ for ρ ą 0 and Φp0q " 0 Theorem 5.6. Let ℵ ą 0. There exists a constant C ą 0 so that for any q, q P W 1,8 pM q satisfying }q} W 1,8 pM q ď ℵ, }q} W 1,8 pM q ď ℵ,

we have

C}r q ´q} L 2 pM q ď Θ p}N pqq ´N pqq}q .

Here Θpρq " |ln ρ| ´1{p1`4nq `ρ for ρ ą 0 and Θp0q " 0.

Proof. Let q, q P W 1,8 pM q satisfying }q} W 1,8 pM q ď ℵ, }q} W 1,8 pM q ď ℵ.

As in the preceding subsection we may assume without loss of generality that q ě 0. Denote by 0 ă λ 1 ď λ 2 ď . . . ď λ k Ñ 8 the sequence of eigenvalues of the operator ´∆`q with domain H 1 0 pM qXH 2 pM q. Let pφ k q a sequence of the corresponding eigenfunctions so that pφ k q form an orthonormal basis of L 2 pM q.

Taking into account that upq, φ k q " e ´λk t φ k we obtain that v " upq, φ k q ´upq, φ k q is the solution of the IBVP $ & % B t v ´∆v `qpxqv " pq ´qqφ k e ´λk t in M ˆp0, τ q, uv " 0 on BM ˆp0, τ q, vp¨, 0q " 0. Therefore N pqqpφ k q ´N pqqpφ k q " B ν v from which we deduce }B ν v} H 1 pp0,τ q,L 2 pΓqq ď Cλ k }N pr qq ´N pqq}.

Here and henceforth C and c denote generic constants independent of q and q.

As in the preceding subsection we get from (5.23)

(5.32) C|pq ´q, φ k q| ď ? λ k ? `eτλ 2 k e c λ 2 k }N pqq ´N pqq} for any ě 1, where we used the inequality }pq ´qqφ k } H 1 0 pM q ď C ? λ k . Inequality (5.32) then gives (5.33)

C ÿ k"1
|pq ´q, φ k q 2 L 2 pM q ď λ ` e cλ 2 e c }N pr qq ´N pqq} 2 for any arbitrary integer ě 1.

Similarly to the proof of Theorem 5.5 inequality (5.33) yields C}q ´q} 2 L 2 pM q ď s 1`2{n `1 s 2{n `ecs 1`4{n e c }N pqq ´N pqq} 2 , s ě 1.

The proof is then completed in the same manner like that of Theorem 5.5.

In other words u is the solution of (6.1) with w " wpaq. We find by applying Proposition 6.1 (6.6) }wpaq} V 1 ď Ce λ k τ 2 }B ν u} L 2 pΓ1ˆp0,τ qq .

By noting that pa 1 b a 2 qφ k P V even if a 1 b a 2 R V we obtain a 1 p0q ˇˇˇż Γ1 paφ k q 2 dσ ˇˇˇ" 1 ? λ k |wpaqppa 1 b a 2 qφ k q| (6.7)

ď 1 ? λ k }wpaq} V 1 }pa 1 b a 2 qφ k } V ,
where we used that a 1 p0q " a 2 p0q and (6.8)

}pa 1 b a 2 qφ k } V ď C 0 a λ kl }a 1 b a 2 } H 1 pΩq .
Here and henceforth C 0 is a generic constant independent of a and φ k . Now a combination of (6.6), (6.7) and (6.8) yields

a 1 p0q ´}a 1 φ k } 2 L 2 p0,1q `}a 2 φ } 2 L 2 p0,1q
ď C}a 1 } H 1 p0,1q }a 2 } H 1 p0,1q e λ k τ 2 2 }B ν u} L 2 pΓ1ˆp0,τ qq , where φ k psq " ? 2 cos ppk `1{2q πsq. This, a ď a j p0q and }a j } H 1 p0,1q ď ℵ imply }a 1 φ k } 2 L 2 p0,1q `}a 2 φ } 2 L 2 p0,1q ď C 0 e λ k τ 2 2 }B ν u} L 2 pΓ1ˆp0,τ qq .

Hence, where j " 1 or 2, (6.9) }a j φ k } 2 L 2 p0,1q ď C 0 e k 2 τ 2 π 2 }B ν u} L 2 pΓ1ˆp0,τ qq .

Let δ P p0, 1q be fixed. Observing that φ 0 psq " πps ´1q{2 as s Ñ 1 we deduce that |φ 0 | ´δ P L 1 p0, 1q. Then we obtain by following the proof of Lemma 3.2 }a j } L 2 p0,1q ď }|φ 0 | ´δ } 1{p2`δq L 1 p0,1q }a j } 2{p2`δq L 8 p0,1q }a j φ 0 } δ{p2`δq L 2 p0,1q (6.10) ď C}a j φ 0 } δ{p2`δq L 2 p0,1q . A combination of inequalities (6.10) and (6.9) with k " 0 yields }a j } L 2 p0,1q ď C}B ν u} δ{r2p2`δqs L 2 pΓ1ˆp0,τ qq . This achieves the proof of the expected inequality.

z 1

 1 ptq " Azptq `λptqx, zp0q " 0 and set (4.5) yptq " C zptq, t P r0, τ s. By Duhamel's formula we have (4.6) yptq "

Proof.`ż t 0 λ 1

 01 Taking first the derivative with respect to t of both sides of the integral equation ż t 0 λpt ´sqϕpsqds " ψptq we get the following Volterra integral equation of second kind λp0qϕptq pt ´sqϕpsqds " ψ 1 ptq.

5. 1 .

 1 Inverse source problem for the wave equation. Consider the IBVP for the wave equation(5.1) 

5. 3 .

 3 Determining the potential in a wave equation without geometric control condition. Consider the IBVP(5.13) 

5. 4 .

 4 Inverse source problem for the heat equation. Consider the following IBVP for the heat equation(5.20) 

  1 p2Bq X L 8 p2Bq and satisfies ż order to obtain that |ũ| ´δ P L 1 pBq, for some δ ą 0 depending on u. Whence |u| ´δ P L 1 pB `q.

					ż		
	(3.6)		|ũ| 2 dx ď C	|ũ| 2 dx,
		B2r		Br		
	(3.7)	sup Br	|ũ| 2 ď	C |B 2r |	ż B2r	|ũ|	2 dx,
	for any ball B 2r of radius 2r contained in 2B.		
	Inequalities (3.6) and (3.7) at hand we mimic the proof of [9, Theorem 4.2, page
	1784] in						

Here Cx " tY P TxM ; =xX, Y y ă αu, for some X P TxM .
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Corollary 5.1. Let ℵ ą 0, q P L 8 pM q and g P H 1 p0, τ q satisfying gp0q ‰ 0. There exists a constant C ą 0, depending of ℵ, q and g, so that for any f P H 1 0 pΩq with }f } H 1 0 pM q ď ℵ we have C}f } L 2 pM q ď Φ `}B ν u} H 1 pp0,τ q,L 2 pΓqq ˘,

where u " upq, f, gq is the solution of the IBVP (5.20). $ & % B t u ´∆u `qpxqu " 0 in M ˆp0, τ q, u " 0 on BM ˆp0, τ q, up¨, 0q " u 0 .

Again, with reference to classical regularity theorems we have that, for q P L 8 pM q and u 0 P H 1 0 pM q, the IBVP(5.29) has unique solution u " upq, u 0 q P H 2,1 pQq. Furthermore for any ℵ ą 0 there exists a constant C ą 0 so that (5.30) }upq, u 0 q} H 2,1 pM ˆp0,τ qq ď C}u 0 } H 1 0 pM q for any q P L 8 pM q satisfying }q} L 8 pM q ď ℵ. Define H 0 pM q " tw P H 1 0 pM q; ∆w P H 1 0 pM qu that we equip with its natural norm }w} H0pM q " }w} H 1 0 pM q `}∆w} H 1 0 pM q . If q P W 1,8 pM q and u 0 P H 0 pM q then it is straightforward to check that B t upq, u 0 q " upq, ∆u 0 ´qu 0 q.

We get by applying (5.30) with u 0 substituted by ∆u 0 ´qu 0 (5.31) }B t u} H 2,1 pM ˆp0,τ qq ď C}u 0 } H0pM q for any q P W 1,8 pM q satisfying }q} W 1,8 pM q ď ℵ, where the constant C is independent of q.

Bearing in mind that the trace operator w P H 2,1 pQq Þ Ñ B ν w P L 2 pΓ ˆp0, τ qq is bounded we obtain that B ν u P H 1 pp0, τ q, L 2 pΓqq provided that u 0 P H 0 pM q and q P W 1,8 pM q. Further we get from (5.30) and (5.31)

for any q P W 1,8 pM q satisfying }q} W 1,8 pM q ď ℵ, where the constant C is independent of q.

That is we proved that the operator

is bounded and }N pqq} BpH0pM q,H 1 pp0,τ q,L 2 pΓqqq ď C for any q P W 1,8 pM q satisfying }q} W 1,8 pM q ď N , where the constant C is independent of q.

Henceforward for convenience }N pqq ´N pqq} BpH0pM q,H 1 pp0,τ q,L 2 pΓqqq is simply denoted by }N pqq ´N pqq}. 

Let V " tu P H 1 pΩq; u " 0 on Γ 0 u and define on V ' L 2 pΩq the operator A a , a P A , by A a " pw, ∆vq, DpA a q " tpv, wq P V ' V ; ∆v P L 2 pΩq and B ν v " ´aw on Γ 1 u.

We are going to apply Theorem 4.2 with H " V ' L 2 pΩq, H 1 " DpA a q equipped with its graph norm and Y " L 2 pΓ 1 q.

Denote by H ´1 the dual of H 1 with respect to the pivot space H. If p0, wq P H ´1 and λ P H 1 p0, τ q then the IBVP (6.1) has a unique solution upwq so that pupwq, B t upwqq P Cpr0, τ s; V ' L 2 pΩqq and B ν upwq| Γ1ˆp0,τ q P L 2 pΓ 1 ˆp0, τ qq.

Taking into account that t0u ˆV 1 Ă H ´1, where V 1 is the dual space of V , we obtain the following consequence of Theorem 4.2. Proposition 6.1. There exists a constant C ą 0 so that for any λ P H 1 p0, τ q and w P V 1 we have

}B ν u w } L 2 pΓ1ˆp0,τ qq .

Determining the boundary damping coefficient in a wave equation.

Let Ω and Γ i , i " 1, 2 as in the preceding subsection and consider the IBVP (6.3)

For pu 0 , u 1 q P H 1 the IBVP (6.3) admits a unique solution u " upa, pu 0 , u 1 qq so that pu a , B t u a q P Cpr0, 8q, H 1 q X C 1 pr0, 8q, Hq. Fix 0 ă a ď ℵ and set

H 1 p0,1q'H 1 p0,1q ď ℵu. Let U 0 given by U 0 " tv P V ; ∆v P L 2 pΩq and B ν v " 0 on Γ 1 u and observe that U 0 ˆt0u Ă H 1 for any a P A . We endow U 0 with the norm

Define the initial-to-boundary operator Λpaq :

where u " upa, pu 0 , u 1 q is the solution of the IBVP (6.3). Then Λpaq P BpU 0 , L 2 pΓ 1 ˆp0, τ qqq.

Henceforward for convenience the norm of Λpaq ´Λp0q in BpU 0 , L 2 pΓ 1 ˆp0, τ qqq will simply denoted by }Λpaq ´Λp0q}.

The following Hölder stability inequality improve the result in [4].

Theorem 6.1. Let δ P p0, 1q. There exists a constant C only depending of δ, a and ℵ so that (6.4) }a ´0} L 2 p0,1q'L 2 p0,1q ď C}Λpaq ´Λp0q} δ{r2p2`δqs for each a P A .

Proof. We first observe that upaq is also the unique solution of

up0q " u 0 , u 1 p0q " u 1 .

Therefore u " upaq ´u, where u " up0, pu 0 , u 1 qq, is the solution of the following problem (6.5)

up0q " 0, u 1 p0q " 0.

For k, P Z set

and observe that u " cosp ? λ k tqφ k when pu 0 , u 1 q " pφ k , 0q. Fix k and and set λptq " cosp ?

Whence, (6.5) becomes

up0q " 0, u 1 p0q " 0.