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A UNIFIED APPROACH TO SOLVING SOME INVERSE
PROBLEMS FOR EVOLUTION EQUATIONS BY USING
OBSERVABILITY INEQUALITIES

KAIS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

ABSTRACT. We survey some of our recent results on inverse problems for evo-
lution equations. The goal is to provide a unified approach to solve various
types of evolution equations. The inverse problems we consider consist in de-
termining unknown coefficients from boundary measurements by varying initial
conditions. Based on observability inequalities and a special choice of initial
conditions, we provide uniqueness and stability estimates for the recovery of
volume and boundary lower order coefficients in wave and heat equations.
Some of the results presented here are slightly improved from their original
versions.
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1. INTRODUCTION

Inverse coefficient problems for evolution equations have been a very active area
in mathematical and numerical research over the last decades, driven by numerous
applications. They are intrinsically difficult to solve: this fact is due in part to
their very mathematical structure and to the fact that generally only partial data
is available [17]. We survey in this paper some of our recent results on inverse
problems for evolution equations concerning heat and wave equations. In [2] the
authors proposed a general method to deal with inverse source problems for evo-
lution equations. Starting from the ideas in [2], we developed an approach based
on observability inequalities and a spectral decomposition to solve some inverse
coefficients problems in evolution equations [3, 4, 5]. However the approach is older
than that. Inverse coefficient problems in heat and wave equations using control
techniques have been studied by a large community of people (see for instance
[29, 21, 15, 16, 25, 24, 8, 6] and the references therein). It would be impossible to
present here all the relevant results that have been proved in this research direc-
tion. We will be mainly focusing on the results that are closely connected to the
considered inverse coefficient problems in heat and wave equations.

The measurements are made on a sub-boundary by varying initial conditions.
The key idea in our analysis consists in reducing the inverse coefficients problems
to inverse source problems. This is achieved by using a spectral decomposition and
unique continuation property of eigenfunctions.

For simplicity convenience we limited ourselves to initial boundary value prob-
lems for wave and heat equations. But our analysis can be extended to other types
of evolution equations such as dynamical Schrédinger equation.

The main ingredient in our approach is observability inequalities. We point
out that the wave and the heat equations have different observability properties.
We know that, under some appropriate conditions, the wave equation is exactly
observable, while the heat equation is only final time observable [28, 30]. We refer to
Section 2 for details. In Section 3, we establish weighted interpolation inequalities
involving the eigenfunctions of Laplace-Beltrami operator that are useful in the
analysis of the stability issue of the studied inverse coefficient problems. These
inequalities have been obtained by quantifying the unique continuation property
for the Laplace-Beltrami operator through weighted energy estimates with the aid
of Carleman type inequalities. We present an abstract framework for the inverse
source problem in Section 4. Based on the introduced observability inequalities we
provide uniqueness and stability inequalities of the recovery of volume and boundary
lower order coefficients in wave and heat equations from boundary measurements
in respectively Sections 5 and 6.

2. OBSERVABILITY INEQUALITIES

We collect in this section various observability inequalities that are necessary to
the analysis of the inverse problems we want to tackle in this text. Since most of
these results are well recorded in the literature we limited ourselves to give their
precise statement and provide the references where the proofs can be found.

2.1. Wave and heat equations in a Riemannian manifold. Let n > 2 be an
integer and consider M = (M, g) a compact n-dimensional Riemannian manifold
with boundary. By a manifold with boundary we mean a C* manifold and its
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boundary is C* manifold of dimension n — 1. Throughout, we adopt the Einstein
convention summation for repeated indices. If in any term the same index name
appears twice, as both an upper and a lower index, that term is assumed to be
summed from 1 to n.

In local coordinates system z = (z!,...,2"),

g= gijd:vi ®da’.
Let (01, ...,0,) be the dual basis of (z*,...,2™). For two vector fields X = X0;
and Y = Y70, over M, set

and | X| = 4/(X, X).
Recall that the gradient of uw € C®(M) is the vector field given by
Vu = g% 0iu0;
and the Laplace-Beltrami operator is the operator acting as follows

Ay = %‘cgaj ( detggijaju) ,

<X7 Y> = ginin

where (¢g%/) denote the inverse of the metric (g;;).

We are first concerned with observability inequalities for the wave equation.
Consider then the following initial-boundary value problem, abbreviated to IBVP’s
in the sequel, for the wave equation:

02u— Au+ q(z)u +a(z)dpu=0  in M x (0,7),
(2.1) u=0 on 0M x (0,7),
u(+,0) = ug, dpu(-,0) = uy.

The usual energy space for the wave equation is given by
H = Hy(M)® L*(M).

According to [10, sections 5 and 6, Chapter XVIII] or [7, Chapter 2]), for any
qg,a € L*®(M), 7> 0 and (ug,u1) € Ho, the IBVP (2.1) has a unique solution

u = u(q, a, (ug,u1)) € C([0, 7], Hy (M)
so that d,u € C([0,7], L*>(M)). If in addition
lalleo + allo <R,
for some constant N > 0, then by the energy estimate
(2.2) lulleo,,m )y + [0eullogor.z2 ) < Cl(uo, u1)|3,,

holds with C' = C'(X) > 0 is a nondecreasing function.
Denote by v the unit normal vector field pointing inward M and set d,u =
(Vu,v). From [7, Lemma 2.4.1] d,u € L*(0M x (0,7)) and

(2.3) l0vull 2o 0,7y) < emr (o, ur) 200 + lqu + adullLr0,7),2(ar)) »
where cjps is a constant depending only on M.

In light of (2.2), (2.3) yields
(2.4) |0 ull 2@ x (0,7)) < C| (o, ur)lln,

with a constant C' of the same form as in (2.2).
Let I be a non empty open subset of dM and 7 > 0 so that (I, 7) geometrically
control M. This means that every generalized geodesic traveling at speed one in



4 KATIS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

M meets T in a non-diffractive point at a time ¢ € (0,7) (we refer to [19] for more
details).

Fix (qo,a0) € L*®(M) x L®(M). 1In light of [19, theorem page 169] (which
remains valid for the wave operator plus an operator involving space derivatives of
first order) and bearing in mind that controllability is equivalent to observability
we can state the following inequality
(2.5) 2r0] (uo, ur) ¢ < [0u° | L2(0x(0,7))

for some constant kg > 0, where we set u® = u(ag, qo, (ug,u1)) for (ug,u;) € H.

By a perturbation argument, there exists 8 > 0, depending on (qo,ag) and ko,
so that, for any (¢,a) = (qo,a0) + (¢, a), with (§,a) € L*(M) x L*(M) satisfying
1(G; @) Lo (aryx Lo (ary < B, We have

Kol (uo, u1) [ < Ol L2 (rx(0,7))-

Here ko > 0 is the same as in previous inequality and u = u(a, g, (up, u1)).
Theorem 2.1. Let (qo,a9) € L*(M)x L* (M) and assume that (T, ) geometrically
control M. There exist k > 0 and 8 > 0, only depending on T', M and (qo,ap), such
that for any (q,a) = (qo,a0) + (¢, a) with (,a) satisfying

1(G, @) || Lo (pyx Lo a1y < B

we have
(2.6) k] (o, ur) mo < [Ovufz2(rx0.7)):
where u = u(q, a, (ug,u1)).

Next, we examine the case where we do not assume that (I',7) geometrically
control M. Define

d(T") = sup{d(z,T); z € M},
let
v = v(q, (ug, vo)) = u(q, 0, (ug, u1))
and set
H oy =L*(M)H ' (M).
In light of [18, Corollary 3.2] we have

Theorem 2.2. Let X > 0. Under the assumption 7 > 2d(T") there exist positive
constants C, k and €y so that for any q € L* (M) with ||q| L=y <X we have

1
(2.7) C(uo,u1)lla_, <e™[0v|L2rx(0,7)) + EH(U()aul)HHa (uo,u1) € H, € = €.
Here v = v(qa (U’Oa’UO))'
We now give an observability inequality for a parabolic equation. Consider then

the IBVP

Oru — Au+ g(x)u=0 in M x (0,7),
(2.8) u=20 on oM x (0,7),
u(+,0) = uo.

For g € L®(M) let A, = A — ¢ with domain D(A,) = Hj(M) n H*(M). As
Ao (that is A, with ¢ = 0) is an m-dissipative operator we deduce form the well
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established theory of continuous semigroups that A, generates a strongly continuous
semigroup e*4e. Therefore, for any ug € L?(M), the IBVP has a unique solution

u=u(q,ug) = ethayg € C([O,T],L2(M)) A C’l(]O,T],HZ(M) 8 H&(M))

The perturbation argument we used previously for the wave equation is in fact
stated in general abstract setting [28, Proposition 6.3.3, page 189], which is also
applicable for the heat equation. This together with [20, Corollary 4] yield the
following final time observability inequality.

Theorem 2.3. Let 7 > 0, T' a non empty open subset of OM and X > 0. There
exists a constant C > 0 so that for any q € L™ (M) satisfying |q||r>ar) < R we have

(2.9) lu(, )2 (ary) < ClovulL2(rx(0,r)s
where u = u(q, ug) with ug € L*>(M).

2.2. The wave equation in a rectangular domain with boundary damping.
Consider on ©Q = (0,1) x (0,1) the IBVP

2u—Au =0 in Q2 x (0,7),
w=0 onT'o x (0,7),
(2.10) dou + adsu = 0 onI'y x (0,7),
u(+,0) = ug, dpu(-,0) = uy.
Here

Lo = ((0,1) x {1}) u ({1} x (0,1)),

Iy = ((0,1) x {0}) v ({0} x (0,1))
and 0, = v - V is the derivative along v, the unit normal vector pointing outward
of ). Note that v is everywhere defined except at the vertices of ).

We identify in the sequel a|(,1)x{0} by a1 = ai(z), z € (0,1) and algoyx(0,1) by
as = as(y), y € (0,1). In that case it is natural to identify a, defined on 'y, by the
pair (a1, az).

Fix 1/2 < a < 1 and let

A = {b= (b1,b2) € C*([0,1]) ® C*([0,1]), b1(0) = b2(0), b; = 0}.

Let V = {ue HY(Q); u =0 on Iy} and define on V @ L?(2) the unbounded

operator A, a € o/, by
Ay = (w,Av), D(Ay) = {(v,w) e VOV; Ave L*(Q) and d,v = —aw on T'y}.

From [4] A, generates a strongly continuous semigroup e‘4«. Whence, for any
(ug,u1) € D(A,), the IBVP (2.10) has a solution u = u(a, (ug,u1)) so that

(u, dpu) € C([0,7], D(Aq)) n CH([0, 7], V @ L*(2)).

We proved in [4, Corollary 2.2] the following observability inequality
Theorem 2.4. Fiz 0 < §g < 61. Then there exist 79 > 0 and k > 0, depending
only on dy and §1, so that for any T = 19 and a € &7 satisfying g < a < 61 on I’y
we have

K[ (uo, w1)verz) < |0vu] L2, x(0,7))s
where u = u(a, (ug,u1)), with (ug,ur) € D(Ag).
It is worth noticing that I'; satisfies the geometric control condition given in the

multiplier method. We also point out that a special case was considered by the
third author and Ren [27] in which the observation is made only on one side of T';.
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3. WEIGHTED INTERPOLATION INEQUALITIES

We aim in the present section establishing two weighted interpolation inequali-
ties. These inequalities will be useful in the proof of Holder stability estimates for
certain inverse problems we discuss in the coming sections.

As in the preceding section M is a compact n-dimensional Riemannian manifold
with boundary.

Consider the Hardy’s inequality

T 2
(3.1) | wrwpav = o remon.

for some constant ¢ > 0, where dV is the volume form on M, d is the geodesic
distance introduced previously and d(-,0M) is the distance to oM.

Define r;(v) = inf{|t|; vz.,(t) ¢ M}, where 7, , is the geodesic satisfying the
initial condition 7., = x and 4., = v. It was observed in [26] that Hardy’s
inequality (3.1) holds for any open subset O, of a complete Riemannian manifold,
whenever O has the following uniform interior cone property: there are an angle
a > 0 and a constant ¢y > 0 so that, for any x € M, there exists an a-angled cone
C, c T, M ] with the property that r,(v) < cod(x, 0M), for all v € C,. The proof
of this result follows the method by Davies [11, page 25] for the flat case. Since in
our case M is a compact Riemannian manifold, it is obvious that it satisfies the
uniform interior cone property. Then slight modifications of the proof in [26] show
that Hardy’s inequality is satisfied for any compact Riemannian manifold.

It is worth mentioning that Hardy’s inequality holds for any bounded Lipschitz
domain of R™ with constant ¢ < 1/4, with equality if and only if 2 is convex.

The following Hopf’s maximum principle is a key ingredient in establishing our
first weighted interpolation inequality.

Lemma 3.1. Let g€ C(M) and ue C?*(M) n HY (M) satisfying ¢ < 0 and Au +
qu < 0. If u is non identically equal to zero then w > 0 in M and d,u(y) =
(Vu(y),v(y)y >0 for any y € OM.

Proof. Similar to that of [12, Lemma 3.4, page 34 and Theorem 3.5, page 35]. The
tangent ball in the classical Hopf’s lemma is substitute by a tangent geodesic ball
(see the construction in [23, Proof of Theorem 9.2, page 51]). g

Proposition 3.1. Let ¢ € C(M) and u € C*(M) n H} (M) satisfying ¢ < 0 and
Au+ qu < 0. If u is non identically equal to zero then

w(z) = cyd(x,0M), x€ M,
where the constant c,, only depends on u and M.

Proof. Let 0 < € to be specified later. Let x € M so that d(z,0M) < € and
y € OM satisfying d(x,0M) = d(z,y). Since M is complete there exist a unit speed
minimizing geodesic v : [0,7] — M such that v(0) = y, v(r) = z and 4(0) = v(y),
where we set r = d(x, M) (see for instance [22, page 150]).

Define ¢(t) = u(7y(t)). Then

¢'(t) = du(y(£)(¥(1))
¢"(t) = d*u(y(t))(3(£), ¥(t)) + du((£))(5(1)).

MHere Cy = {Y € Tu M; £(X,Y) < a}, for some X € Ty M.
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Here 4(t) = 4'(t)0; € T.,y- Observe that by the geodesic equation
ARt = = ()Y (0T (4(1)),

where Ffj are the Christoffel symbols associated to the metric g.
We get by taking into account that ¢'(0) = du(y)(v(y)) = Vu(y),v(y)) =
dvu(y)
2
o(r) = rouly) + 56 ().
for some 0 < s < 1. Hence there exists ¢ > 0 depending on u and M so that
o(r) = 2rn —cr® =y + r(n — ce),
with 21 = minyer d,u(y) > 0 (by the compactness of M and Lemma 3.1). Thus

o(r) =
provided that e < n/c. In other words we proved
(3.2) u(z) = ¢(r) = rn = nd(z,0M).

On the other hand an elementary compactness argument yields, where M€¢ =
{x e M; d(x,0M) > €},
. min e pre u(z)
. = =
(3.3) u(@) oy u(z) max_ epre d(z, OM)
In light of (3.2) and (3.3) we end up getting
u(x) = cpd(x,0M), xe€ M.

The proof is then complete. (Il

d(z,0M), xe M°".

A consequence of Proposition 3.1 is the following corollary.

Corollary 3.1. Let g€ C(M), ¢ <0, and u € C*(M) n HY(M) non identically
equal to zero satisfying Au + qu < 0. There exists a constant C, only depending
on u and M so that we have

1 1
for any f e H*(M).
Proof. By Proposition 3.1 u(x) > c,d(z,dM). Therefore

u

2 -1 fz)*u(x)?

Combined with Hardy’s inequality (3.1) this estimate gives

(3.4) | tarpave <qle| muo@Pve.
M M
But from usual interpolation inequalities we have

1 1
[l on < ClfulEaga | Fulfean,

where the constant C only depends on M.
Whence (3.4) implies

1 1
£z < CallFulZa a1 £

which is the expected inequality [
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Let 0 < g € C*(M) be fixed and consider the operator A = —A + ¢ with domain
D(A) = H?*(M) n HY(M). An extension of [12, Theorem 8.38, page 214] to a
compact Riemannian manifold with boundary shows that the first eigenvalue of A,
denoted by A1, is simple and has a positive eigenfunction. Let then ¢; € C%(M)
(by elliptic regularity) be the unique first eigenfunction satisfying ¢; > 0 and
normalized by [¢1|z2a) = 1. Since A¢y — g1 = —A1¢1 the Hopf’s maximum
principle is applicable to ¢;. Therefore a particular weight in the preceding corollary
is obtained by taking u = ¢;.

Corollary 3.2. There exists a constant ¢ > 0, depending on ¢1, so that we have

1 1
for any f e H*(M).
The second weighted interpolation inequality relies on the following proposition.

Proposition 3.2. Let p € L®(M) and u € W"(M) satisfying (A +p)p = 0 in
M and p? € W3™(M). Then there exists 6 = §(¢) > 0 so that |¢|~% € LY(M).

It is worth mentioning that in general § < 1 as soon as ¢ vanishes at some point
xo € M. Consider for instance in the flat case 1(x) ~ |z — xg|* near zo if x¢ is a
zero of order k. Tt is then clear that || =9 is locally integrable in a neighborhood
of x¢ if and only if 0k < n — 1. In consequence § < 1 whenever k > n — 1.

Sketch of the proof. First step. Denote by B the unit ball of R™ and let B, =

B n R%, with R} = {z = (2/,2,) € R"; x, > 0}. Let L be a second order

differential operator acting as follows
Lu = &j (aijﬁiu) +V -Vu+ du.
Assume that (a;;) is a symmetric matrix with entries in C'(2B;), V € L®(2B4)"
is real valued and d € L* (2B, ) is complex valued. Suppose furthermore that
aij(2)§; - & > kolé|*, = €2By, E€R™,

for some ko > 0. o
Let u € W*"™(2B4) n C°(2B,) be a weak solution of Lu = 0 satisfying u = 0 on
d(2B1) nR% and |ul? € W2™(2B1) n C°(2By). From [1, Theorem 1.1, page 942

there exists a constant C, depending of u, so that the following doubling inequality

at the boundary
f lu*dz < C lu?dz,
Ba.nBy B,.nBy

holds for any ball By, of radius 2r contained in 2B5.
On the other hand simple calculations yield, where v = Ru and w = Su,
0j(aij0lul®) +2V - Viul* + 4(|Rd| + [3d])[uf*
= Zaijéivajv + 2aij6iw6jw >0 in2By
and |u|? = 0 on d(2B4) N RY.
Harnak’s inequality at the boundary (see [12, Theorem 9.26, page 250]) then
yields

c
sup [ul” Jul*da,

< —
B, By |Bar| JB,.~B,
for any ball Bs, of radius 2r contained in 2B.
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Define @ by
(2, xn) = u(a',z,) if (', 2,) € 2By,
W@, zy) = u(x', —z,) if (¢',—z,) € 2B;.

Therefore @ belongs to H'(2B) n L*(2B) and satisfies

(3.6) f ||?dx < cf || d,
BQT ™
C
(3.7) sup |a|? < |a|*da,
B, |B 7’| Bs,

for any ball Bs, of radius 2r contained in 2B.

Inequalities (3.6) and (3.7) at hand we mimic the proof of [9, Theorem 4.2, page
1784] in order to obtain that |@|~° € L(B), for some § > 0 depending on u. Whence
|ul~* € L' (By).

Second step. As M is compact there exists a finite cover (U,) of 0M and C*-
diffeomorphisms f, : U, — 2B so that fo,(UsnM) = 2B, fo(UyndM) = 230@
and, for any x € OM, x € V,, = f,;1(B), for some a. Then u, = o f, ! satisfies
Loug = 0 in 2B and u = 0 on d(2B4) n R7? for some L = L, satisfying the
conditions of the first step. Hence |u,| % € L'(B,) and then |p| % e L'(V,).
Let V' the union of V,’s. Since u € L*(V) we get |u|~% e L*(V) with 6y = min d,.
Next, let e sufficiently small in such a way that M\M, < V, where M, = {z €
M; dist(xz,0M) > €}. Proceeding as previously it is not hard to get that there
exists 61 so that [p|™% € L'(M,). Finally, as it is expected we obtain that
lo| =% € L' (M) with § = min (g, 61). O

Lemma 3.2. Let ¢ be as in Proposition 3.2. There exists a constant C' > 0,
depending on ¢, so that we have

1flz2n) < CIFIEE a1 £l Z00r,
for any f e L*(M)

Proof. Let 6 = 6(p) given as in the preceding proposition. Since ¢ belongs to
L*®(M), substituting ¢ by min(1,¢) if necessary, we may assume that § < 2. We
get by applying Cauchy-Schwarz’s inequality

J F12AV < 1F el 1 o e 15 -
But by Hoélder’s inequality
1/2 — /2
1ol Fary < VOLAM) 2= fio] 37 .

Whence

(3.8) HF1°2 1 ary < Vol(M) =4 £ 32 Il =2 1 -
On the other hand

(3.9) | £lz2ny < IFIE=n A2 -

A combination of (3.8) and (3.9) yields

1-5/4 5/4
1£1z2an) < CUAL 0 L F 2l ar
which is the expected inequality. [
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4. INVERSE SOURCE PROBLEM: ABSTRACT FRAMEWORK

Let H be a Hilbert space and A : D(A) € H — H be the generator of continuous
semigroup T'(t). An operator ¥ € Z(D(A),Y), Y is another Hilbert space which
is identified with its dual space, is called an admissible observation for T'(¢) if for
some (and hence for all) 7 > 0 the operator ¥ € Z(D(A), L?((0,7),Y)) given by

(Vz)(t) =€T(t)x, te[0,7], xe D(A),

has a bounded extension to H.
We introduce the definition of exact observability for the system

(4.1) 2'(t) = Az(t), =2(0) =z,
(42) y(t) = T2(0),

where € is an admissible observation for T'(¢). The pair (A,%) is said exactly
observable at time 7 > 0 if there is a constant x such that the solution (z,y) of
(4.1) and (4.2) satisfies

LHmm@ﬁ>nﬂﬂ%7xeDM)

Or equivalently

(4.3) L [(P2) ()3 dt > w2[2]Z, o€ D(A).
Consider the Cauchy problem
(4.4) Z(t) = Az(t) + A(t)z, 2(0) =0
and set
(4.5) y(t) =€=(t), tel0,7].
By Duhamel’s formula we have
t ¢
(4.6) y(t) = f Mt — $)ET(s)ads — f At — 5)(Uz) (s)ds.
0 0
Let

Hfl((077—)7y) = {u € Hl((O’T)7Y); u(O) = O} .
Define the operator S : L*((0,7),Y) — H}((0,7),Y) by

(@7) (Sh)(t) = JO At — s)h(s)ds.
If E = ST then (4.6) takes the form
y(t) = (Bx)(t).

Theorem 4.1. Assume that (A,€) is exactly observable for T = 79, for some
0 > 0. Let X € H'(0,7) satisfies A(0) # 0. Then E is one-to-one from H onto
H}((0,7),Y) and

1212

SMO)]

(4.8) e TR0 oy < |Bxlpyo.ny) @€ H.

S
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Proof. Taking first the derivative with respect to ¢t of both sides of the integral
equation

| A= (s = vt

0
we get the following Volterra integral equation of second kind

meo+Lxuf@w@w=¢w»

Mimicking the proof of [14, Theorem 2, page 33] we obtain that this integral equa-
tion has a unique solution ¢ € L%((0,7),Y) and
HSD||L2((0,T),Y) S CW ||L2 (0,7),Y)
< ClYla0,m).)-

Here C = C()) is a constant.
For estimating the constant C' above we first use the elementary convexity in-
equality (a + b)? < 2(a? + b?) in order to get

. CIN(E - s) ? -
nxmwuwy<2(oMm|[umnww>ﬂd§ NS

Thus ” H
|M®Fwaw%<2——iﬂﬁﬁj\ 0)1%[o(5)[3-ds + 2|4/ ()3

by the Cauchy-Schwarz’s inequality. Therefore using Gronwall’s lemma we obtain
in a straightforward manner

V12,
o,

e T POP ¢ L2 ((0.1).v)

V2

lellz2c0,m),v) <

[A(0)]
and then )

N 132 0.y

lelzz(0,m),v) < )¢ PO Sl 1 (0,7),v)-
In light of (4.3) we end up getting
1312
K|A(0)] —r£200.0)
”Ex”Hel((O,'r),Y) = |\/(§)e IXO)] HxHH

This is the expected inequality. ([

We shall need a variant of Theorem 4.1. If (A, %) is as in Theorem 4.1 then, as
in the preceding section, by the perturbation argument in [28, Proposition 6.3.3,
page 189], there exist X > 0 and x > 0 such that for any P € Z#(H) satisfying
| P| <X we have that (A + P, %) is exactly observable with k(P + A) > k.

Define E¥ similarly to E by substituting in £ A by A + P.

Theorem 4.2. Assume that (A,€) is exactly observable for T = 79, for some
70> 0, and let X € H(0,7) satisfies A(0) # 0. There exist X > 0 and k > 0 so that
for any P € B(H) satisfying | P| < R we have that E¥ is one-to-one from H onto
H}((0,7),Y) and

sMO)]
V2

(4.9) OE ol < |E" 2l iy 0,y @€ H.
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We will consider inverse source problems with singular sources. For this purpose
we need to extend Theorem 4.1. Fix then p in the resolvent set of A. Let H;
be the space D(A) equipped with the norm |z|; = ||(¢ — A)z| and denote by
H_ the completion of H with respect to the norm |x|_1 = (0 — A)"'z|. As we
observed in [28, Proposition 4.2, page 1644] and its proof, when € H_; (which
is the dual space of H; with respect to the pivot space H) and A € H*(0,7), then
according to the classical extrapolation theory of semigroups the Cauchy problem
(4.1) has a unique solution z € C([0, 7], H). In addition y given in (4.2) belongs to
L2((0,7),Y).

If x € H we have by Duhamel’s formula

¢ t
(4.10) y(t) = J Mt — )T (s)zds J At — ) (W) (s)ds.
0 0
Let
Hél((077—)7 Y) = {u € Hl((oa T),Y); u(O) = O} .
We define the operator S : L((0,7),Y) — H}((0,7),Y) by
t
(4.11) (Sh)(t) = J At — s)h(s)ds.

0

Hence E = ST then (4.10) the form

y(t) = (Ez)(t).
Let Z = (9 — A*)" (X + €*Y).

Theorem 4.3. Assume that (A, €) is exactly observable at time 7. Then

(i) E is one-to-one from H onto H}((0,7),Y).

(ii) E is extended to an isomorphism, denoted by E, from Z' onto L*((0,7),Y).
(iii) There exists a constant &, independent of A\, so that

2
A HLQ((OYT))

(4.12) le]z < &IAO) e PO Ex 2 ((0,0),v)-
Proof. We give the proof of (ii) and (iii) and we note that (i) is contained in
Theorem 4.1. We first observe that S*, the adjoint of S, maps L?((0,7),Y) into
H((0,7),Y), where

Hp((0,7),Y) = {ue H'((0,7),Y); u(r) = 0},

Moreover

S*h(t) = JT M(s —t)h(s)ds, he L*((0,7),Y).

Fix h e L?((0,7),Y) and set k = S*h. Then

K'(t) = MO)h(t) — J N(s —t)h(s)ds.

t
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Hence

O [A()]? < ( f ' W[wonh(s)]ds n |k’<t>)

T |/\/(S o t)| 2 ) ,
<2 (L M[IA(O)IIh(S)I]ds> + 2K (t)|

IXIZ: 0y [

<2 f [IAO)[A(s)17ds + 2]k (2)]*.

IAO) o

The last estimate is obtained by applying Cauchy-Schwarz’s inequality.
Then Gronwall’s lemma yields

A2
INI25 0

(IO [A) ]2 < 26" B@F 7|k (1)

Therefore
NG) N2 5 0. B
12 L2 (0,7),v) < Wew Il L2((0,7),v)-
Whence
X132 0. r
(4.13) 1Pl 2¢0,7),v) < WCWTHS*h”H},((O,TLY)'

!

The adjoint operator of S*, acting as a bounded operator from [H}((0,7);Y)]
into L2((0,7);Y), gives an extension of S. We denote by S this operator. By [28,
Proposition 4.1, page 1644] S defines an isomorphism from [H,.((0,1);Y)]’ onto
L2((0,7);Y). In light of the identity

1Stz 0. 1:z2(0.m).v) = 1S* @2 (07w )2 ((0m).7))
(4.13) implies
A2

IA0)] —leraomy
(4.14) s ¢ " < Slsamenyrony

On the other hand according to [28, Proposition 2.13, page 1641] ¥ possesses a
unique bounded extension, denoted by V¥, from Z’ into [H}((0,7);Y)]’ and there
exists a constant ¢ > 0 so that

(4.15) 19| 527 1m2 (0,07 = €

The operator E = S¥ gives the unique extension of E to an isomorphism from 2’
onto L2((0,7),Y).
We end up the proof by noting that (4.12) follows from (4.14) and (4.15). O

5. INVERSE PROBLEMS FOR EVOLUTION EQUATIONS ASSOCIATED TO
LAPLACE-BELTRAMI OPERATOR

Throughout this section M is a compact n-dimensional Riemannian manifold
with boundary, 7 > 0 and I' is a nonempty open subset of M.
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5.1. Inverse source problem for the wave equation. Consider the IBVP for
the wave equation

2u — Au+ q(z)u + a(z)dpu = g(t) f(z) in M x (0,7),
(5.1) u=0 on dM x (0,7),
u(-,0) =0, dwu(-,0) =0.
Assume that (I',7) geometrically control M. Fix (go,a) € L*(M) @ L* (M)
and denote by 2k the observability constant for (go,ap). In light of Theorem 2.1

there exists a constant 5 > 0 only depending on I'; M and (qo, ag) such that, for
any (q,a) = (qo,a0) + (g, a) with (§,a) € L*(M) @ L*(M) satisfying
(5.2) 1(G; @)l oo (aryx oo (ary < B
the observability contant for (g,a) is k. We denote the set of couples (g,a) €
L*(M) @& L*(M) of the form (g,a) = (qo,a0) + (§,a), where (¢,a) € L*(M) ®
L*(M) satisfies (5.2), by 2.

Let f e L?(M) and g € H(0,7) with g(0) # 0. We have according to Theorem
4.1

V2 Hg’uiz(oﬂ

5.3 < e BOF |j, r ;
(5.3) (FAVZISYS! RO 10| 1 0,7y, 2 (1))
where u = u(q, a, f, g) denotes the solution of the IBVP (5.1).

An immediate consequence of this inequality is the following theorem.

Theorem 5.1. Assume that (I',7) geometrically control M. Let g € H'(0,7)
satisfying g(0) # 0. Then there exists a constant C, only depending on (qo,ao), &,
T, 7 and g, so that for any (q,a) € 9 we have

[flz2an) < Clovularo.m).L2r))-
Here u = u(q, a, f,g) denotes the solution of the IBVP (5.1).

Set for simplicity v = v(q, f,g) = u(q,0, f,g). That is v is the solution of the
IBVP
O?u— Au + q(z)u = g(t) f(x) in M x (0,7),
(5.4) u=0 on oM x (0,7),
u(-,0) =0, dwu(-,0)=0.

Using Duhamel’s formula it is not hard to check that

vz, t) = j g(t — s)w(zx, s)ds,

0
where w = w(f) is the solution of the IBVP
2w —Aw+q(z)w =0  in M x (0,7),
(5.5) w=0 on oM x (0,7),
U}(,O) = fv atw(?o) =0.
Let
H;((0,7),L*(T) = {ue H'((0,7), L*(I")); u(0) = 0}
and define the operator S : L*(T" x (0,7)) — H}((0,7), L*(T")) by
¢

(Sh)(t) = f g(t — s)h(s)ds.

0



INVERSE PROBLEMS FOR EVOLUTION EQUATIONS 15

We have seen in the proof of Theorem 4.1 that S is an isomorphism and

12
NI
Hhlez(FX(O,T)) < 7I€|g(0)|e 19(0)]2 HShHHl((O,T),L2(F))'

Whence
12
'\/i THQ “LQ((01T)>
(5.6) lovwlr2rx o) < e WO Aol ((0,0),22(T)) -

k1g(0)]
Let ® > 0, assume that d(T") < o0 and let 7 > 2d(T"). From Theorem 2.2 there
exist three constants C, k and €q so that for any g € L% (M) with ||g| L= (ar) < R we
have

KE 1
(5.7) Clfllzzy < € vwlr2rx(0,)) + z”f”Hé(M), € = €.
Now (5.6) in (5.7) yields
2
e V2 2 1
(5.8) C||fHL2(M) <e m(e 19(0)] ”aVUHHl((O,T)’Lz(F)) + EHfHHé(M)

for any € > €.
Let
U(p) =p[~t+p, p>0,
and ¥(0) = 0. Then a standard minimization argument with respect to € in (5.8)
enables us establishing the following result.

Theorem 5.2. Let X > 0, R > 0 and 7 > 2d(T"). Let g € H*(0,7) satisfying
g(0) # 0. Then there exists a constant C > 0, only depending on X, R, T, 7 and
g, so that for any q € L* (M) with |q|p=r) < N and any f € Hy(M) satisfying
|f | 2 (ary < R we have

| fllz2ary < C¥ ([00v] m((0.7).22(r))) »
where v = v(q, f,g) is the solution of the IBVP (5.4).

5.2. Determining the potential and the damping coefficient in a wave
equation. Introduce the IBVP for the wave equation

02u — Au + q(z)u + a(x)dpu = 0 in M x (0,7),
(5.9) u=0 on oM x (0,7),

u(-,0) = ug, Opu(-,0) = uy.

Let X > 0 and recall that Ho = HE(M) ® L?*(M). We have seen in Section 1
that, for any (¢,a) € L®(M)@® L*(M), 7 > 0 and (up,u1) € Ho, the IBVP (5.9)
has a unique solution

u = u(Qa a, (u()vul)) € C([OvT]a H(%(M))
so that dyu € C([0,7],L?(M)) and 0,u € L?(0M x (0,7)). Moreover under the
assumption
1(g, @)L an@re=(ar) < R
we have
(5.10) lulle o, a2 (any) + [0l co,m,22an)) < Cll(uo, w1l
and

(5.11) |0vull 2 onrx(0,7)) < O (w0, u1)|#,-
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Here C' = C(N) is a nondecreasing function.
Define the initial-to-boundary operator A(q,a) as follows

A(g,a) : (uo,ur) € Ho — dyu(g, a, (ug, ur)) € L*(T x (0,7)).
Let
My = (Hy(M) n H*(M)) ® Hy (M).
Observing that
dru(q, a, (ug, u1)) = u(g, a, (u1, Aug — quo — aus))
we easily obtain that A(g,a) € B(H1, H*((0,7), L*(T))). Furthermore we get as a
consequence of (5.11)
1A(a, )l 2 s (0,7, 220y < C

where the constant C is similar to that in (5.11).

Denote by % the set 2 in the case where (go,ag) = (go,0) with go = 0. Define
then 2;(R) as the subset of % consisting in couples (q,a) € H?(M) @ H*(M)
satisfying

(g, )| 2 (any@ 2 vy < R
It is then clear that Z;(R) is nonempty provided that X > Rg, for some Xy = R(3).

Theorem 5.3. Assume that (T',7) geometrically control M and let X = Ny. There
exists a constant C > 0, depending on R and qo, so that for any (q,a) € Z1(R) we
have

lg — qOHLz(M) + Ja— OHLQ(M) < C|A(g, a) — Alqo, )HJg Hi,H1((0,7),L2(D)))"

Proof. Let 0 < ¢1 be the first eigenfunction of the operator —A + gg with domain
H?(M) n H§(M). This eigenfunction is normalized by [¢1r2(a) = 1. If

up = u(qo, 0, (61,18 A1) = eV Mt and  w = ulg, a, (61,iv/ M1 61))

then v = u — ug is the solution of the following IBVP

(5.12)
20— Av + qu + adw = —[(q — qo) + ivAraleV i, in M x (0,7),
v=0 on oM x (0,7),
v(-,0) =0, dw(-,0)=0.

Bearing in mind that (', 7) geometrically control M we get from Theorems 5.1
lp1(q = qo)lz2(ary + |Pra] L2 (ary < Clovv]a(0,7),22(20))-
This inequality combined with Corollary 3.1 yields
lg — qollz2(ary + @ = Ol L2 (ary < €0, UH1/2 7),L2(T))
which gives in a straightforward manner the expected result. O

Denote the sequence of eigenvalues, counted according to their multiplicity, of
A = —A with domain H?(M) n H}(M) by 0 < A1 < A2 <...< A\, — 0.
Consider on Hg the operators

A=<_OA é) D(A) = H,
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and A(q,a) = A+ B(q,a) with D(A(q,a)) = D(A), where
0 0
B - (

—q —a
From [28, Proposition 3.7.6, page 100] A is skew-adjoint operator with 0 € p(.A)

and
-1 0 —A!
)

We note that, since A~! : H — H; is bounded and the embedding H; < H is
compact, A7! : H — H is compact.

Also, from [28, Proposition 3.7.6, page 100] A is diagonalizable and its spectrum
consists in the sequence (iv/Ag).

Introduce the bounded operator

C(g,a) = (iA™")(~iB(g, a)) (iA™").
Let s;(C(q,a)), k = 1, denote the singular values of C(g, a), that is the eigenvalues
of [C(g,a)*C(q,a)]2. In light of [13, formulas (2.2) and (2.3), page 27] we have
s1(C(q,a)) < [ B(g, a)|sk(GA™Y)* = [Blg,a)| A,

where ||B(g,a)| denote the norm of B(q,a) in B(H).
On the other hand referring to Weyl’s asymptotic formula we get A\, = O(k?/™).
Hence C, , belongs to the Shatten class S, for any p > n/2, that is

D [s1(Clg.a))]P < 0.

k=1

) € B(Ho).

We get by applying [13, Theorem 10.1, page 276] that the spectrum of A(g, a) con-
sists in a sequence of eigenvalues (ux(q, a)), counted according to their multiplicity,
and the corresponding eigenfunctions (¢x(q, a)) form a Riesz basis of H.

Fix (q,a) and k. Set g = ur(g,a) and ¢ = ¢r(q,a) = (p,) € Hy be an
eigenfunction associated to p. Then it is straightforward to check that ¥ = pe and
(~A+q+ap+p?)p =0in M. Since —Ap = f in M with f = —(q + au + pu?)p
we can use iteratively [12, Corollary 7.11, page 158] (Sobelev embedding theorem)
together with [12, Theorem 9.15, page 241] in order to obtain that ¢ € WP (M)
for any 1 < p < oo. In particular ¢, [p]? € W2 (M) n C°(M). In other words ¢
satisfies the assumption of Proposition 3.2.

Set, for (¢,a),(¢,a) € 2,

u=u(g,a,¢) and a=u(q,a,e).
Then similarly to Theorem 5.3 we prove, where v = @ — u,
le(@ = a)lzzcany + (@ = a)[r2ary < ClOvv] 10,7, £2(001))-
This and Lemma 3.1 yield

Theorem 5.4. Assume that (T, 7) geometrically control M and fix (¢,a) € 2.
Then there exists two constants C > 0 and a > 0, depending of (q,a), so that for
any (4,a) € 9 we have

1G = all2a) + @ — al L2y < CIA(G: @) — Mg, a) G20, 11 ((0,7),22(1)))-
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5.3. Determining the potential in a wave equation without geometric
control condition. Consider the IBVP

Zu— Au+q(z)u=0 in M x (0,7),
(5.13) u=0 on oM x (0,7),

u(+,0) = up, Jpu(-,0)=0.

From the preceding subsection the initial-to-boundary mapping
A(q) = ug € HY (M) n H*(M) — 0,u e H*((0,7), L*(T")),
where u = u(q, ug) is the solution on the IBVP, defines a bounded operator. More-
over for any N > 0 there exists a constant C' > 0, depending of R, so that for any
q € L*(M) satisfying | q||z(ar) < R we have
M a1 vty 12 (00, 11 (0,7), L2(0))) < C-
Theorem 5.5. Let X > 0 and suppose that T > 2d(T"). There exists a constant
C > 0 so that for any 0 < g€ L*(M), g€ L®(M) satisfying q—qG € WH* (M) and
lallzeary <N, [@lzemn <X, g —dlwrenn <X

we have
lg = dl 2y < CP (HA(q) - A(@)||@(Hg(M)mHZ(M),Hl((0,T>7L2(F)))) ;
with ®(p) = [Inp|~Y"*3) + p p >0, and ®(0) = 0.

Proof. Let 0 < q € L*(M) satistying |q|z ) < R. Denote by 0 < A1 < Ag... <
Ak ... the sequence of eigenvalues of the operator —A + ¢ with domain H} (M) n
H?(M). Let (¢) an orthonormal basis of L?(M) consisting in eigenfunctions, each
¢ is an eigenvalue for \;. Note that according to the usual elliptic regularity we
have ¢ € C®(M) for each k.
By the Weyl’s asymptotic formula and the min-max principle there exists a
constant s > 1, depending on X but not in g, so that
(5.14) A <N < sk
Set, for ¢ € L (M) satistying |G[ L= (ar) < R,
u = U(q, ¢k) = COS(Akt)¢k and @ = U((j, ¢k)
Then v = @ — u is the solution of the IBVP, where gy (t) = cos(v/Axt),
Ofu—Au+qu=(§—q)drgr(t)  inM x (0,7),
(5.15) u=0 on oM x (0,7),
u(-,O) = 0, (3’tu(70) = 0.

We have H%”%z( ) < Ax7. Hence

0,7
(5.16) 9k 720,y < Tk

by (5.14).
In the rest of this proof C' and ¢ denote generic constant only depending of M,
N, T" and 7. From (5.8) we have

~ re ck?/™ L.
(5.17)  CI(G — a)brllr2(ary < €€ " |0u0] 112 (0,7),12(r) + EH((J — @)%kl an)

for any € > €.
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On the other hand

1@ — @)kl 2 ary < 17— alwroean |6kl 2 an)

< 2N/ A

< kY™ by (5.14).
This in (5.17) gives

~ K€ e /m kl/n
CH (q - q)¢kHL2(M) <e K ||a UHHl((O 7),L2(T)) + €= €
But we have by Cauchy-Schwarz’s inequality
(@ — q,61)* < Vol(M)|(G — @)bxll 2 (ar)-
Whence
/ kw
C(G—q,61)° < ™ |0,0] (0., L2r)) + — €=
Also
1d—alZ2an = D@ —a,08)* + Z (G- g 01)°
k<l k>/¢
< DG q.61)7 + Zxk i — q, 0x)°
k<t L k>e
N2
i—aq,06) + g
Z;* (€+1)%
Thus
1 £1+1/n

- € 2/n
(5:18)  Cld—qliar) < Le™e™ |0l mro,m Loy + SECR

Let s > 1 be a real number and let ¢ be the unique integer so that £ < s < £ + 1.
Then (5.18) with that ¢ yields
1 81+1/n
+
s2/n €

(5.19) Cllg — QH%Q(M) < sercec” ||a V] E1(0,m),22(m)) +

We then get by taking e = s%/"+1 in (5.19), where sy = max (1, eg/("+3)),

~ 1 2/n4+1 3/N+1
Clq— (IH%%M) < $2/n + e e Hauqul((o,T),m(r)), 52 5.
Therefore
- 1 3/n+1
Cla = qlizqan < 2m t e vl ai0,m),L2(r))s S = S0

or equivalently

. 1 3/n+1
Clq = dqlz>@any < it e |0vv] £ ((0,7),L2(r))» 8 = So-

We end up getting the expected inequality by minimizing with respect to s. O
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5.4. Inverse source problem for the heat equation. Consider the following
IBVP for the heat equation
Ou — Au + q(x)u = g(t) f(x) in M x (0,7),
(5.20) u=0 on oM x (0,7),
u(-,0) =0
and set Q = M x (0, 7).
We recall that the anisotropic Sobolev space H%1(Q) is given as follows
H*1(Q) = L*((0,7), H*(M)) n H'((0,7), L*(M)).

From classical parabolic regularity theorems for any f € L?(M), g € L*(0,7) and
q € L*(M) the IBVP (5.20) has a unique solution

u=u(q, f,g9) € H(Q).

Furthermore if ¥ > 0 then there exists a constant C > 0 so that

(5.21) lullzr21(@) < Cllglrzo,m I fz2car)
for any ¢ € L*(M) satisfying |q] zar) < N.

If in addition g € H'(0,7) then it is not hard to check that d,u is the solution of
the IBVP (5.20) with g substituted by ¢’. Hence d;u € H*'(Q) and

(5.22) |0vul 210y < Clg' Il (0,0 fll L2 o)

for any q € L*(M) satisfying || L= (ar) < R, where C is the constant in (5.21).
We derive that d,u is well defined as an element of H*((0,7), L?(T')). Therefore
by (5.21), (5.22) and the continuity of the trace operator on I" we have

|0vul 1 (0,7y,22(r)) < Clgllzr o) | flz2arys

where the constant C is as in (5.21).
The following result will be useful in the sequel.

Proposition 5.1. Let X > 0. There exist two constants ¢ > 0 and C > 0 so that
for any q € L*(M) satisfying |qllp=) < R, f € Hi(M) and g € H'(0,7) with
9(0) # 0 we have
(5.23) CHfHLQ(M) < inHHl(M) + LGTHQ,H%%U’T)/‘Q(O)‘QeceHauuHHl((O,r),L2(F))
Ve l9(0)]
for any € = 1, where u = u(q, f,g) is the solution of the IBVP (5.20).
Proof. Pick q € L*(M) satistying ||q|=an <R, f € H} (M) and g € H(0, 7) with
g(0) # 0. We may assume without loss of generality that ¢ = 0. This is achieved
by substituting u by ue™®*, which is the solution of the IBVP (5.20) when ¢ is
replaced by ¢ + XN.
Let v = v(q, f) € H>'(Q) be the unique solution of the IBVP
O —Av+q(z)v=0 in M x (0,7),
v=20 on oM x (0,7),
'U(-, 0) = f.
Then 0,v is well defined as an element of L2(I" x (0,7)). As for the wave equation
we have

oyulr(-,t) = J;) g(t — 8)d,v|r (-, s)ds.
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Therefore

2 a2 2
(5.24) V2 19 2 0. 9O 3,

10uv]l L2 (0,7)) < 50 ((0,7),L3(T)) -

From the final time observability inequality in Theorem 2.3 we have
(5.25) [v(-s T2y < K[0uvllL2(rx(0,7))>

for some constant K > 0 independent of ¢ and f.
A combination of (5.24) and (5.25) yields

]_ T 72 0 2
(5.26) CleCsDlzqan < e 1922090 ) 411 0.y, 2200y
Denote by 0 < A1 < Ay < ... < A\ — o the sequence of eigenvalues of the
—A + q with domain H3(M) n H2(M). Let (¢x) be a sequence of eigenfunctions,

each ¢y, is associated to Ay, so that (¢) form an orthonormal basis of L?(M).
We have

= > e (£, d0)ér,

=1
where (-, -) is the usual scalar product on L?(M). Hence

(f,00)* < vl ) T2ary, €2 1.
Whence .
SU(f. 60 < kMol ) oo,

=1
for any integer k > 1

1/2
This and the fact that (2621 Aoy gbg)%z(m) is an equivalent norm on H} (M)
lead

k
11320y = D (£ 00>+ > (f,00)
=1 L=k+1
k
(f, ¢e)? Ae(fs de)?

< ke”’”l\v(wﬂl\iaw) + m“f“?qg(z\/[

Until the end of this proof C' and ¢ denote generic constants independent of g,
f and g.
We get from inequality (5.14)

2/n 1
S T T Z2ar) + m“fﬁzg(m

(5.27) Clf 72 ar) < ke

Let € > 1 and k > 1 be the unique integer so that k < €/? < k 4+ 1. We obtain
in a straightforward manner from (5.27)

Cce 1
(5.28) Clf1Z2ary < oGz + g”f”%p(M
Then (5.26) in (5.28) gives the expected inequality. O

Minimizing the right hand side of (5.23) with respect to € we obtain the following
result in which ®(p) = \lnp|71/2 + p for p> 0 and ®(0) =0
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Corollary 5.1. Let X >0, ge L®(M) and g € H'(0,7) satisfying g(0) # 0. There
exists a constant C' > 0, depending of X, q and g, so that for any f € H}(Q) with
1 £ 22 (ary < N we have

Clflz2eary < @ (10vull rr(0,m),22(r) »
where u = u(q, f,g) is the solution of the IBVP (5.20).

5.5. Determining the zeroth order coefficient in a heat equation. Consider
the IBVP

Oru — Au+ g(x)u=0 in M x (0,7),
(5.29) u=0 on oM x (0,7),

u(+,0) = uo.

Again, with reference to classical regularity theorems we have that, for g € L% (M)
and ug € H}(M), the IBVP(5.29) has unique solution u = u(q,up) € H**(Q).
Furthermore for any X > 0 there exists a constant C' > 0 so that

(5.30) lu(g, wo)ll 2 (arx (0,7)) < Clluwolmzar)
for any q € L*(M) satisfying |q]zr) <N
Define
Ho(M) = {w e Hy(M); Aw e Hy(M)}
that we equip with its natural norm
w0 (ar) = HwHHg(M) + ||Aw”H5(M)~
If ge WH®(M) and ug € Ho(M) then it is straightforward to check that
Oru(g; uo) = u(q, Aug — quo).
We get by applying (5.30) with ug substituted by Aug — qug
(5.31) HatuHHzl(MX(OJ)) < CHU;O”'HO(M)

for any g € Wh (M) satisfying | q|w1.«(ar) < R, where the constant C'is indepen-
dent of g.
Bearing in mind that the trace operator

we H*(Q) — d,w e L*(T x (0,7))

is bounded we obtain that d,u € H'((0,7), L?(T")) provided that ug € Ho(M) and
q € WH*(M). Further we get from (5.30) and (5.31)

I0vull e 0,7y, 22(r)) < Cluolw(an)

for any g € WH* (M) satisfying |q|
dent of q.
That is we proved that the operator

N(q) : ug € Ho(M) — d,u e H*((0,7), L*(T"))

wie () < N, where the constant C' is indepen-

is bounded and

IN (@230 (a0, 17 (0.7), L2 0y < C
for any g € WH® (M) satisfying lgllw.ary < N, where the constant C'is indepen-
dent of q.

Henceforward for convenience |N'(q) — N(q)||z o), H1((0,7),L2(r))) 18 simply
denoted by [N'(@) — A(g)l.
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Theorem 5.6. Let X > 0. There exists a constant C > 0 so that for any q, § €
WL2(M) satisfying
lalwreary <N ldlwrean <N,
we have
Clg—dlr2(ary < © (IN () = N(g)]) -
Here ©(p) = |1np|_1/(1+4n) + p for p >0 and ©(0) = 0.
Proof. Let q, G € Wh®(M) satisfying

lalwren <R, dlwre@n < X.

As in the preceding subsection we may assume without loss of generality that ¢ > 0.
Denote by 0 < A1 < Ao < ... < Ay — o the sequence of eigenvalues of the opera-
tor —A+q with domain H} (M)~ H?(M). Let (¢y) a sequence of the corresponding
eigenfunctions so that (¢y) form an orthonormal basis of L?(M).
Taking into account that u(q, ¢x) = e ***¢; we obtain that

v = u(d7 ¢k) - u<Q7 (bk)
is the solution of the IBVP

0w — Av +q(z)v = (G- @)gpe™™  in M x (0,7),
ww =0 on oM x (0,7),
v(+,0) = 0.

Therefore
N(@)(ox) = N(q)(¢r) = dov

from which we deduce

l0vol 11 ((0,7),22(r)) < CA|N(Q) = N ()]

Here and henceforth C' and ¢ denote generic constants independent of ¢ and §.
As in the preceding subsection we get from (5.23)
~ \% )\k A2 ce ~
(5.32) Cl(qd—q,9n)] <t M NN (@) — N(g)]
for any € > 1, where we used the inequality (¢ — q)xl m (ar) < CV Ak
Inequality (5.32) then gives

¢ o) )
(5.33) CY G~ a08)F2 ) < TZ + et e |N(@) — N(q)|

k=1
for any arbitrary integer ¢ > 1.
Similarly to the proof of Theorem 5.5 inequality (5.33) yields

81+2/n 1

Clq—alizan < —  tamTe

Csl+4/n

IN@ - N@P, s=>1.

The proof is then completed in the same manner like that of Theorem 5.5. (]
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6. DETERMINING A BOUNDARY COEFFICIENT IN A WAVE EQUATION

6.1. Inverse source problem for the wave equation with boundary damp-
ing. In this subsection Q = (0,1) x (0,1) and

Lo = ((0,1) x {1}) v ({1} x (0, 1)),
Iy = ((0,1) x {0}) v ({0} x (0,1)).
Consider the IBVP

OPu— Au = \Nt)w in Q x (0,7),
(6.1) u=0 on Ty x (0,7),
’ Oyt + adyu =0 onTy x (0,7),

U(-,O) =0, atu(vo) =
Fix%<a<1&ndlet
o = {b = (b1,b2) € C%([0,1]) ® C*([0,1]), b1(0) = b2(0), b; = 0}.

Let V = {ue HY(Q); u=0on Ty} and define on V & L%(Q) the operator A,,
a€ o, by

Ay = (w, Av),
D(A,) = {(v,w) e VO V; Ave L*(Q) and d,v = —aw on T }.

We are going to apply Theorem 4.2 with H = V@ L?(Q), H; = D(A,) equipped
with its graph norm and Y = L?(T).

Denote by H_; the dual of H; with respect to the pivot space H.

If (0,w) € H_; and X\ € H*(0,7) then the IBVP (6.1) has a unique solution u(w)
so that (u(w), dyu(w)) € C([0,7]; V@ L*(Q)) and d,u(w)|r, x(0,r) € L*(F1 x (0,7)).

Taking into account that {0} x V' < H_;, where V' is the dual space of V', we
obtain the following consequence of Theorem 4.2.

Proposition 6.1. There exists a constant C > 0 so that for any A\ € H'(0,7) and
w e V' we have

(6.2) lwlv: < CIA©)[e™!

2 A(0))?
220, /1M O)] 100t [ L2 (1, x (0,7)) -

6.2. Determining the boundary damping coefficient in a wave equation.
Let 2 and [';, ¢ = 1,2 as in the preceding subsection and consider the IBVP

u—Au=0 in Q x (0,7),
(6.3) u=0 onTy x (0,7),
’ oyu+ adiu =0 onTy x (0,7),

u(-,0) = ug, Jpu(-,0) = uy.

For (ug,u1) € Hy the IBVP (6.3) admits a unique solution v = u(a, (ug,u1)) so
that

(ta, Orug) € C([0,00), Hy) n C*([0,00), H).
Fix 0 < a < N and set
o ={b=(b1,by) € & 0 H'(0,1) @ H'(0,1); a < by, ba, [b]F10.1y@m1(0,1) < R}-
Let Uy given by
Uy={veV; Ave L*(Q)and d,v = 0on T}
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and observe that Uy x {0} < H; for any a € &f. We endow Uy with the norm

1/2
Juolas = (luolfy + [ AuolEz(ey) -
Define the initial-to-boundary operator
A(a) : ug € Uy — d,ue L*(T'y x (0,7)),
where u = u(a, (ug,u1) is the solution of the IBVP (6.3). Then
A(a) € B(Uy, L* (T x (0,7))).

Henceforward for convenience the norm of A(a) — A(0) in B(Uy, L*(T'y x (0,7)))
will simply denoted by |A(a) — A(0)].
The following Holder stability inequality improve the result in [4].

Theorem 6.1. Let § € (0,1). There exists a constant C only depending of 0, a
and R so that

(6.4) la =0l 220, n@r2(0,1) < ClA(a) — A(0)[*/ )
for each a € o .

Proof. We first observe that u(a) is also the unique solution of
J u” (t)vde = J Vu(t) - Vudx — J av' (t)v, veV.
Q Q T

u(0) = up, u'(0) = uy.

Therefore u = u(a) — u, where u = u(0, (ug, u1)), is the solution of the following
problem

(©5) JQ u” (t)vde = JQ Vu(t) - Vudx — Ll au’(t)v — Ll au/ (0)(t)v, veV.

u(0) =0, «/(0)=0.
For k, £ € Z set

ke = l<k+ ;)2 + <€+ ;)2] w2
bre(z,y) = 2cos (</€ + ;) ﬂ:c) cos (<€+ ;) 7Ty> )

and observe that u = cos(v/Ake t)dre when (ug, u1) = (Pre, 0).
Fix k and ¢ and set A(¢) = cos(v/Aget). Define w(a) € V' by

w(a)(v) = f\/)TdL adpev.

Whence, (6.5) becomes

Lz u’ (t)vdx = JQ Vu(t) - Vodx — J-n au' (t)v + AMt)w(a)(v), wveV.
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In other words u is the solution of (6.1) with w = w(a). We find by applying
Proposition 6.1

2
(6.6) Jw(a)v: < Ce ™ |0 ul L2r, x (0.7) -
By noting that (a1 ® a2)gre € V even if a1 ® az ¢ V' we obtain

f (agf)kg)QdO'
I'y

_ ! lw(a)((a1 ® az)pre)]

1
< m\\’w(a)ﬂv' I(a1 ® a2)drellv,
where we used that a1(0) = a2(0) and
(6.8) [(a1 ® az)pre|v < Cov/ Arillar ® az| g1 (q)-

Here and henceforth Cj is a generic constant independent of a and ¢yy.
Now a combination of (6.6), (6.7) and (6.8) yields

a1(0) (a1 e 1320, +lazdelF2 o))

72
< Cla|mo,nllaz]mro,ne™ = |0uu] L2 ry < (0,7))

where ¢ (s) = v/2cos ((k + 1/2) 7s). This, a < a;(0) and [a;|g1(0,1) < N imply

2
la19k72(0.1) + a2l 20,1y < Coe™* T [Ouull L2(r, x(0,7))-
Hence, where j =1 or 2,
2.2 2
(6.9) lajdrlZ2(0,1) < Coe® ™™ [ 0uul L2 0y x (0.7

Let 6 € (0,1) be fixed. Observing that ¢¢(s) ~ w(s —1)/2 as s — 1 we deduce that
|po| % € L(0,1). Then we obtain by following the proof of Lemma 3.2

—sn1/(2+8 2/(2+6 §/(2+6
(6.10) lajl 2201y < ool =1 ooy s 250 3 lasdol 9oy
5/(2+46)

< CHCL]¢0HL2(0 1)
A combination of inequalities (6.10) and (6.9) with k = 0 yields

5/[2(2+6)]
lajlz2(0,1) < Clo HL/2(1£1§(()J )"

This achieves the proof of the expected inequality. O
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