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A UNIFIED APPROACH TO SOLVING SOME INVERSE
PROBLEMS FOR EVOLUTION EQUATIONS BY USING

OBSERVABILITY INEQUALITIES

KAÏS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

Abstract. We survey some of our recent results on inverse problems for evo-
lution equations. The goal is to provide a unified approach to solve various
types of evolution equations. The inverse problems we consider consist in de-
termining unknown coefficients from boundary measurements by varying initial
conditions. Based on observability inequalities and a special choice of initial
conditions, we provide uniqueness and stability estimates for the recovery of
volume and boundary lower order coefficients in wave and heat equations.
Some of the results presented here are slightly improved from their original
versions.

Contents

1. Introduction 2
2. Observability inequalities 2
2.1. Wave and heat equations in a Riemannian manifold 2
2.2. The wave equation in a rectangular domain with boundary damping 5
3. Weighted interpolation inequalities 6
4. Inverse source problem: abstract framework 10
5. Inverse problems for evolution equations associated to Laplace-Beltrami

operator 13
5.1. Inverse source problem for the wave equation 14
5.2. Determining the potential and the damping coefficient in a wave

equation 15
5.3. Determining the potential in a wave equation without geometric

control condition 18
5.4. Inverse source problem for the heat equation 20
5.5. Determining the zeroth order coefficient in a heat equation 22
6. Determining a boundary coefficient in a wave equation 24
6.1. Inverse source problem for the wave equation with boundary damping 24
6.2. Determining the boundary damping coefficient in a wave equation 24
References 26

2010 Mathematics Subject Classification. 35R30.
Key words and phrases. Evolution equations, Laplace-Beltrami operator, observability inequal-

ity, geometric control, initial-to-boundary operator.
The research of MC and FT was supported in part by grant LabEx PERSYVAL-Lab (ANR-

11-LABX- 0025-01) and grant ANR-17-CE40-0029 of the French National Research Agency ANR
(project MultiOnde).

1



2 KAÏS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

1. Introduction

Inverse coefficient problems for evolution equations have been a very active area
in mathematical and numerical research over the last decades, driven by numerous
applications. They are intrinsically difficult to solve: this fact is due in part to
their very mathematical structure and to the fact that generally only partial data
is available [17]. We survey in this paper some of our recent results on inverse
problems for evolution equations concerning heat and wave equations. In [2] the
authors proposed a general method to deal with inverse source problems for evo-
lution equations. Starting from the ideas in [2], we developed an approach based
on observability inequalities and a spectral decomposition to solve some inverse
coefficients problems in evolution equations [3, 4, 5]. However the approach is older
than that. Inverse coefficient problems in heat and wave equations using control
techniques have been studied by a large community of people (see for instance
[29, 21, 15, 16, 25, 24, 8, 6] and the references therein). It would be impossible to
present here all the relevant results that have been proved in this research direc-
tion. We will be mainly focusing on the results that are closely connected to the
considered inverse coefficient problems in heat and wave equations.

The measurements are made on a sub-boundary by varying initial conditions.
The key idea in our analysis consists in reducing the inverse coefficients problems
to inverse source problems. This is achieved by using a spectral decomposition and
unique continuation property of eigenfunctions.

For simplicity convenience we limited ourselves to initial boundary value prob-
lems for wave and heat equations. But our analysis can be extended to other types
of evolution equations such as dynamical Schrödinger equation.

The main ingredient in our approach is observability inequalities. We point
out that the wave and the heat equations have different observability properties.
We know that, under some appropriate conditions, the wave equation is exactly
observable, while the heat equation is only final time observable [28, 30]. We refer to
Section 2 for details. In Section 3, we establish weighted interpolation inequalities
involving the eigenfunctions of Laplace-Beltrami operator that are useful in the
analysis of the stability issue of the studied inverse coefficient problems. These
inequalities have been obtained by quantifying the unique continuation property
for the Laplace-Beltrami operator through weighted energy estimates with the aid
of Carleman type inequalities. We present an abstract framework for the inverse
source problem in Section 4. Based on the introduced observability inequalities we
provide uniqueness and stability inequalities of the recovery of volume and boundary
lower order coefficients in wave and heat equations from boundary measurements
in respectively Sections 5 and 6.

2. Observability inequalities

We collect in this section various observability inequalities that are necessary to
the analysis of the inverse problems we want to tackle in this text. Since most of
these results are well recorded in the literature we limited ourselves to give their
precise statement and provide the references where the proofs can be found.

2.1. Wave and heat equations in a Riemannian manifold. Let n ě 2 be an
integer and consider M “ pM, gq a compact n-dimensional Riemannian manifold
with boundary. By a manifold with boundary we mean a C8 manifold and its
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boundary is C8 manifold of dimension n´ 1. Throughout, we adopt the Einstein
convention summation for repeated indices. If in any term the same index name
appears twice, as both an upper and a lower index, that term is assumed to be
summed from 1 to n.

In local coordinates system x “ px1, . . . , xnq,
g “ gijdx

i b dxj .

Let pB1, . . . , Bnq be the dual basis of px1, . . . , xnq. For two vector fields X “ XiBi

and Y “ Y jBj over M , set
xX,Y y “ gijX

iY j

and |X| “
a

xX,Xy.
Recall that the gradient of u P C8pMq is the vector field given by

∇u “ gijBiuBj

and the Laplace-Beltrami operator is the operator acting as follows

∆u “ 1
?
det g

Bi

´

a

det g gijBju
¯

,

where pgijq denote the inverse of the metric pgijq.
We are first concerned with observability inequalities for the wave equation.

Consider then the following initial-boundary value problem, abbreviated to IBVP’s
in the sequel, for the wave equation:

(2.1)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ 0 inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

The usual energy space for the wave equation is given by
H “ H1

0 pMq ‘ L
2pMq.

According to [10, sections 5 and 6, Chapter XVIII] or [7, Chapter 2]), for any
q, a P L8pMq, τ ą 0 and pu0, u1q P H0, the IBVP (2.1) has a unique solution

u “ upq, a, pu0, u1qq P Cpr0, τ s, H1
0 pMqq

so that Btu P Cpr0, τ s, L2pMqq. If in addition
}q}8 ` }a}8 ď ℵ,

for some constant ℵ ą 0, then by the energy estimate
(2.2) }u}Cpr0,τs,H1

0 pMqq
` }Btu}Cpr0,τs,L2pMqq ď C}pu0, u1q}H0 ,

holds with C “ Cpℵq ą 0 is a nondecreasing function.
Denote by ν the unit normal vector field pointing inward M and set Bνu “

x∇u, νy. From [7, Lemma 2.4.1] Bνu P L2pBM ˆ p0, τqq and
(2.3) }Bνu}L2pBMˆp0,τqq ď cM

`

}pu0, u1q}H0 ` }qu` aBtu}L1pp0,τq,L2pMq

˘

,

where cM is a constant depending only on M .
In light of (2.2), (2.3) yields

(2.4) }Bνu}L2pBMˆp0,τqq ď C}pu0, u1q}H,

with a constant C of the same form as in (2.2).
Let Γ be a non empty open subset of BM and τ ą 0 so that pΓ, τq geometrically

control M . This means that every generalized geodesic traveling at speed one in
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M meets Γ in a non-diffractive point at a time t P p0, τq (we refer to [19] for more
details).

Fix pq0, a0q P L8pMq ˆ L8pMq. In light of [19, theorem page 169] (which
remains valid for the wave operator plus an operator involving space derivatives of
first order) and bearing in mind that controllability is equivalent to observability
we can state the following inequality

(2.5) 2κ0}pu0, u1q}H ď }Bνu
0}L2pΓˆp0,τqq,

for some constant κ0 ą 0, where we set u0 “ upa0, q0, pu0, u1qq for pu0, u1q P H.
By a perturbation argument, there exists β ą 0, depending on pq0, a0q and κ0,

so that, for any pq, aq “ pq0, a0q ` pq̃, ãq, with pq̃, ãq P L8pMq ˆ L8pMq satisfying
}pq̃, ãq}L8pMqˆL8pMq ď β, we have

κ0}pu0, u1q}H ď }Bνu}L2pΓˆp0,τqq.

Here κ0 ą 0 is the same as in previous inequality and u “ upa, q, pu0, u1qq.

Theorem 2.1. Let pq0, a0q P L
8pMqˆL8pMq and assume that pΓ, τq geometrically

control M . There exist κ ą 0 and β ą 0, only depending on Γ,M and pq0, a0q, such
that for any pq, aq “ pq0, a0q ` pq̃, ãq with pq̃, ãq satisfying

}pq̃, ãq}L8pMqˆL8pMq ď β

we have

(2.6) κ}pu0, u1q}H0 ď }Bνu}L2pΓˆp0,τqq,

where u “ upq, a, pu0, u1qq.

Next, we examine the case where we do not assume that pΓ, τq geometrically
control M . Define

dpΓq “ suptdpx,Γq; x PMu,
let

v “ vpq, pu0, v0qq “ upq, 0, pu0, u1qq

and set
H´1 “ L2pMq ‘H´1pMq.

In light of [18, Corollary 3.2] we have

Theorem 2.2. Let ℵ ą 0. Under the assumption τ ą 2dpΓq there exist positive
constants C, κ and ε0 so that for any q P L8pMq with }q}L8pMq ď ℵ we have

(2.7) C}pu0, u1q}H´1 ď eκε}Bνv}L2pΓˆp0,τqq `
1
ε
}pu0, u1q}H, pu0, u1q P H, ε ě ε0.

Here v “ vpq, pu0, v0qq.

We now give an observability inequality for a parabolic equation. Consider then
the IBVP

(2.8)

$

&

%

Btu´∆u` qpxqu “ 0 inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0.

For q P L8pMq let Aq “ ∆ ´ q with domain DpAqq “ H1
0 pMq X H2pMq. As

A0 (that is Aq with q “ 0) is an m-dissipative operator we deduce form the well
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established theory of continuous semigroups that Aq generates a strongly continuous
semigroup etAq . Therefore, for any u0 P L

2pMq, the IBVP has a unique solution
u “ upq, u0q “ etAqu0 P Cpr0, τ s, L2pMqq X C1ps0, τ s, H2pMq XH1

0 pMqq.

The perturbation argument we used previously for the wave equation is in fact
stated in general abstract setting [28, Proposition 6.3.3, page 189], which is also
applicable for the heat equation. This together with [20, Corollary 4] yield the
following final time observability inequality.
Theorem 2.3. Let τ ą 0, Γ a non empty open subset of BM and ℵ ą 0. There
exists a constant C ą 0 so that for any q P L8pMq satisfying }q}L2pMq ď ℵ we have
(2.9) }up¨, τq}L2pMq ď C}Bνu}L2pΓˆp0,τqq,

where u “ upq, u0q with u0 P L
2pMq.

2.2. The wave equation in a rectangular domain with boundary damping.
Consider on Ω “ p0, 1q ˆ p0, 1q the IBVP

(2.10)

$

’

’

&

’

’

%

B2
t u´∆u “ 0 in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

Here
Γ0 “ pp0, 1q ˆ t1uq Y pt1u ˆ p0, 1qq,
Γ1 “ pp0, 1q ˆ t0uq Y pt0u ˆ p0, 1qq

and Bν “ ν ¨∇ is the derivative along ν, the unit normal vector pointing outward
of Ω. Note that ν is everywhere defined except at the vertices of Ω.

We identify in the sequel a|p0,1qˆt0u by a1 “ a1pxq, x P p0, 1q and a|t0uˆp0,1q by
a2 “ a2pyq, y P p0, 1q. In that case it is natural to identify a, defined on Γ1, by the
pair pa1, a2q.

Fix 1{2 ă α ď 1 and let
A “ tb “ pb1, b2q P C

αpr0, 1sq ‘ Cαpr0, 1sq, b1p0q “ b2p0q, bj ě 0u.
Let V “ tu P H1pΩq; u “ 0 on Γ0u and define on V ‘ L2pΩq the unbounded

operator Aa, a P A , by
Aa “ pw,∆vq, DpAaq “ tpv, wq P V ‘ V ; ∆v P L2pΩq and Bνv “ ´aw on Γ1u.

From [4] Aa generates a strongly continuous semigroup etAa . Whence, for any
pu0, u1q P DpAaq, the IBVP (2.10) has a solution u “ upa, pu0, u1qq so that

pu, Btuq P Cpr0, τ s, DpAaqq X C1pr0, τ s, V ‘ L2pΩqq.
We proved in [4, Corollary 2.2] the following observability inequality

Theorem 2.4. Fix 0 ă δ0 ă δ1. Then there exist τ0 ą 0 and κ ą 0, depending
only on δ0 and δ1, so that for any τ ě τ0 and a P A satisfying δ0 ď a ď δ1 on Γ1
we have

κ}pu0, u1q}V‘L2pΩq ď }Bνu}L2pΓ1ˆp0,τqq,

where u “ upa, pu0, u1qq, with pu0, u1q P DpAaq.
It is worth noticing that Γ1 satisfies the geometric control condition given in the

multiplier method. We also point out that a special case was considered by the
third author and Ren [27] in which the observation is made only on one side of Γ1.
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3. Weighted interpolation inequalities

We aim in the present section establishing two weighted interpolation inequali-
ties. These inequalities will be useful in the proof of Hölder stability estimates for
certain inverse problems we discuss in the coming sections.

As in the preceding section M is a compact n-dimensional Riemannian manifold
with boundary.

Consider the Hardy’s inequality

(3.1)
ż

M

|∇fpxq|2dV ě c

ż

M

|fpxq|2

dpx, BMq2
dV, f P H1

0 pMq,

for some constant c ą 0, where dV is the volume form on M , d is the geodesic
distance introduced previously and dp¨, BMq is the distance to BM .

Define rxpvq “ inft|t|; γx,vptq R Mu, where γx,v is the geodesic satisfying the
initial condition γx,v “ x and 9γx,v “ v. It was observed in [26] that Hardy’s
inequality (3.1) holds for any open subset O, of a complete Riemannian manifold,
whenever O has the following uniform interior cone property: there are an angle
α ą 0 and a constant c0 ą 0 so that, for any x PM , there exists an α-angled cone
Cx Ă TxM

r1s with the property that rxpvq ď c0dpx, BMq, for all v P Cx. The proof
of this result follows the method by Davies [11, page 25] for the flat case. Since in
our case M is a compact Riemannian manifold, it is obvious that it satisfies the
uniform interior cone property. Then slight modifications of the proof in [26] show
that Hardy’s inequality is satisfied for any compact Riemannian manifold.

It is worth mentioning that Hardy’s inequality holds for any bounded Lipschitz
domain of Rn with constant c ď 1{4, with equality if and only if Ω is convex.

The following Hopf’s maximum principle is a key ingredient in establishing our
first weighted interpolation inequality.

Lemma 3.1. Let q P CpMq and u P C2pMq XH1
0 pMq satisfying q ď 0 and ∆u `

qu ď 0. If u is non identically equal to zero then u ą 0 in M and Bνupyq “
x∇upyq, νpyqy ą 0 for any y P BM .

Proof. Similar to that of [12, Lemma 3.4, page 34 and Theorem 3.5, page 35]. The
tangent ball in the classical Hopf’s lemma is substitute by a tangent geodesic ball
(see the construction in [23, Proof of Theorem 9.2, page 51]). �

Proposition 3.1. Let q P CpMq and u P C2pMq X H1
0 pMq satisfying q ď 0 and

∆u` qu ď 0. If u is non identically equal to zero then
upxq ě cudpx, BMq, x PM,

where the constant cu only depends on u and M .

Proof. Let 0 ă ε to be specified later. Let x P M so that dpx, BMq ď ε and
y P BM satisfying dpx, BMq “ dpx, yq. Since M is complete there exist a unit speed
minimizing geodesic γ : r0, rs Ñ M such that γp0q “ y, γprq “ x and 9γp0q “ νpyq,
where we set r “ dpx, BMq (see for instance [22, page 150]).

Define φptq “ upγptqq. Then
φ1ptq “ dupγptqqp 9γptqq

φ2ptq “ d2upγptqqp 9γptq, 9γptqq ` dupγptqqp:γptqq.

1Here Cx “ tY P TxM ; =xX,Y y ă αu, for some X P TxM .
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Here 9γptq “ 9γiptqBi P Tγptq. Observe that by the geodesic equation

:γkptq “ ´ 9γiptq 9γjptqΓkijpγptqq,

where Γkij are the Christoffel symbols associated to the metric g.
We get by taking into account that φ1p0q “ dupyqpνpyqq “ x∇upyq, νpyqy “

Bνupyq

φprq “ rBνupyq `
r2

2 φ
2pstq,

for some 0 ă s ă 1. Hence there exists c ą 0 depending on u and M so that
φprq ě 2rη ´ cr2 ě rη ` rpη ´ cεq,

with 2η “ minyPΓ Bνupyq ą 0 (by the compactness of BM and Lemma 3.1). Thus
φprq ě rη

provided that ε ď η{c. In other words we proved
(3.2) upxq “ φprq ě rη “ ηdpx, BMq.

On the other hand an elementary compactness argument yields, where M ε “

tx PM ; dpx, BMq ě εu,

(3.3) upxq ě min
zPMε

upzq ě
minzPMε upzq

maxzPMε dpz, BMq
dpx, BMq, x PM ε.

In light of (3.2) and (3.3) we end up getting
upxq ě cudpx, BMq, x PM.

The proof is then complete. �

A consequence of Proposition 3.1 is the following corollary.

Corollary 3.1. Let q P CpMq, q ď 0, and u P C2pMq X H1
0 pMq non identically

equal to zero satisfying ∆u ` qu ď 0. There exists a constant Cu only depending
on u and M so that we have

}f}L2pMq ď Cu}fu}
1
2
L2pMq}f}

1
2
H2pMq

for any f P H2pMq.

Proof. By Proposition 3.1 upxq ě cudpx, BMq. Therefore
ż

M

fpxq2dV pxq ď c´1
u

ż

M

fpxq2upxq2

dpx, BMq2
dV pxq.

Combined with Hardy’s inequality (3.1) this estimate gives

(3.4)
ż

M

fpxq2dV pxq ď c´1
u c

ż

M

|∇pfuqpxq|2dV pxq.

But from usual interpolation inequalities we have

}fu}H1pMq ď C}fu}
1
2
L2pMq}fu}

1
2
H2pMq,

where the constant C only depends on M .
Whence (3.4) implies

}f}L2pMq ď Cu}fu}
1
2
L2pMq}f}

1
2
H2pMq,

which is the expected inequality �
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Let 0 ď q P C1pMq be fixed and consider the operator A “ ´∆` q with domain
DpAq “ H2pMq X H1

0 pMq. An extension of [12, Theorem 8.38, page 214] to a
compact Riemannian manifold with boundary shows that the first eigenvalue of A,
denoted by λ1, is simple and has a positive eigenfunction. Let then φ1 P C

2pMq
(by elliptic regularity) be the unique first eigenfunction satisfying φ1 ą 0 and
normalized by }φ1}L2pMq “ 1. Since ∆φ1 ´ qφ1 “ ´λ1φ1 the Hopf’s maximum
principle is applicable to φ1. Therefore a particular weight in the preceding corollary
is obtained by taking u “ φ1.

Corollary 3.2. There exists a constant c ą 0, depending on φ1, so that we have

(3.5) }f}L2pMq ď c}fφ1}
1
2
L2pMq}f}

1
2
H2pMq

for any f P H2pMq.

The second weighted interpolation inequality relies on the following proposition.

Proposition 3.2. Let p P L8pMq and u P W 2,npMq satisfying p∆ ` pqϕ “ 0 in
M and ϕ2 PW 2,npMq. Then there exists δ “ δpϕq ą 0 so that |ϕ|´δ P L1pMq.

It is worth mentioning that in general δ ă 1 as soon as ϕ vanishes at some point
x0 P M . Consider for instance in the flat case ψpxq „ |x ´ x0|

k near x0 if x0 is a
zero of order k. It is then clear that |ϕ|´δ is locally integrable in a neighborhood
of x0 if and only if δk ă n´ 1. In consequence δ ă 1 whenever k ě n´ 1.

Sketch of the proof. First step. Denote by B the unit ball of Rn and let B` “

B X Rn`, with Rn` “ tx “ px1, xnq P Rn; xn ą 0u. Let L be a second order
differential operator acting as follows

Lu “ BjpaijBiuq ` V ¨∇u` du.
Assume that paijq is a symmetric matrix with entries in C1p2B`q, V P L8p2B`qn
is real valued and d P L8p2B`q is complex valued. Suppose furthermore that

aijpxqξj ¨ ξj ě κ0|ξ|
2, x P 2B`, ξ P Rn,

for some κ0 ą 0.
Let u PW 2,np2B`qXC0p2B`q be a weak solution of Lu “ 0 satisfying u “ 0 on

Bp2B`q X Rn` and |u|2 P W 2,np2B`q X C0p2B`q. From [1, Theorem 1.1, page 942]
there exists a constant C, depending of u, so that the following doubling inequality
at the boundary

ż

B2rXB`

|u|
2
dx ď C

ż

BrXB`

|u|
2
dx,

holds for any ball B2r of radius 2r contained in 2B.
On the other hand simple calculations yield, where v “ <u and w “ =u,

BjpaijBi|u|
2q ` 2V ¨∇|u|2 ` 4p|<d| ` |=d|q|u|2

ě 2aijBivBjv ` 2aijBiwBjw ě 0 in 2B`
and |u|2 “ 0 on Bp2B`q X Rn`.

Harnak’s inequality at the boundary (see [12, Theorem 9.26, page 250]) then
yields

sup
BrXB`

|u|
2
ď

C

|B2r|

ż

B2rXB`

|u|
2
dx,

for any ball B2r of radius 2r contained in 2B.
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Define ũ by
ũpx1, xnq “ upx1, xnq if px1, xnq P 2B`,
ũpx1, xnq “ upx1,´xnq if px1,´xnq P 2B`.

Therefore ũ belongs to H1p2Bq X L8p2Bq and satisfies
ż

B2r

|ũ|2dx ď C

ż

Br

|ũ|2dx,(3.6)

sup
Br

|ũ|2 ď
C

|B2r|

ż

B2r

|ũ|
2
dx,(3.7)

for any ball B2r of radius 2r contained in 2B.
Inequalities (3.6) and (3.7) at hand we mimic the proof of [9, Theorem 4.2, page

1784] in order to obtain that |ũ|´δ P L1pBq, for some δ ą 0 depending on u. Whence
|u|´δ P L1pB`q.

Second step. As BM is compact there exists a finite cover pUαq of BM and C8-
diffeomorphisms fα : Uα Ñ 2B so that fαpUαXMq “ 2B`, fαpUαXBMq “ 2BXRn`
and, for any x P BM , x P Vα “ f´1

α pBq, for some α. Then uα “ ϕ ˝ f´1
α satisfies

Lαuα “ 0 in 2B and u “ 0 on Bp2B`q X Rn` for some L “ Lα satisfying the
conditions of the first step. Hence |uα|´δα P L1pB`q and then |ϕ|´δα P L1pVαq.
Let V the union of Vα’s. Since u P L8pV q we get |u|´δ0 P L1pV q with δ0 “ min δα.
Next, let ε sufficiently small in such a way that MzMε Ă V , where Mε “ tx P
M ; distpx, BMq ą εu. Proceeding as previously it is not hard to get that there
exists δ1 so that |ϕ|´δ1 P L1pMε{2q. Finally, as it is expected we obtain that
|ϕ|´δ P L1pMq with δ “ minpδ0, δ1q. �

Lemma 3.2. Let ϕ be as in Proposition 3.2. There exists a constant C ą 0,
depending on ϕ, so that we have

}f}L2pMq ď C}f}
2

2`δ
L8pMq}fϕ}

δ
2`δ
L2pMq,

for any f P L8pMq

Proof. Let δ “ δpϕq given as in the preceding proposition. Since ϕ belongs to
L8pMq, substituting δ by minp1, δq if necessary, we may assume that δ ă 2. We
get by applying Cauchy-Schwarz’s inequality

ż

M

|f |δ{2dV ď }|fϕ|δ}
1{2
L1pMq}|ϕ|

´δ}
1{2
L1pMq.

But by Hölder’s inequality

}|fϕ|δ}
1{2
L1pMq ď VolpMqp2´δq{4}fϕ}δ{2L2pMq.

Whence
(3.8) }|f |δ{2}L1pMq ď VolpMqp2´δq{4}fϕ}δ{2L2pMq}|ϕ|

´δ}
1{2
L1pMq.

On the other hand
(3.9) }f}L2pMq ď }f}

1´δ{4
L8pMq}|f |

δ{2}
1{2
L1pMq.

A combination of (3.8) and (3.9) yields

}f}L2pMq ď C}f}
1´δ{4
L8pMq}fϕ}

δ{4
L2pMq,

which is the expected inequality. �
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4. Inverse source problem: abstract framework

Let H be a Hilbert space and A : DpAq Ă H Ñ H be the generator of continuous
semigroup T ptq. An operator C P BpDpAq, Y q, Y is another Hilbert space which
is identified with its dual space, is called an admissible observation for T ptq if for
some (and hence for all) τ ą 0 the operator Ψ P BpDpAq, L2pp0, τq, Y qq given by

pΨxqptq “ CT ptqx, t P r0, τ s, x P DpAq,

has a bounded extension to H.
We introduce the definition of exact observability for the system

z1ptq “ Azptq, zp0q “ x,(4.1)
yptq “ C zptq,(4.2)

where C is an admissible observation for T ptq. The pair pA,C q is said exactly
observable at time τ ą 0 if there is a constant κ such that the solution pz, yq of
(4.1) and (4.2) satisfies

ż τ

0
}yptq}2Y dt ě κ2}x}2H , x P DpAq.

Or equivalently

(4.3)
ż τ

0
}pΨxqptq}2Y dt ě κ2}x}2H , x P DpAq.

Consider the Cauchy problem

(4.4) z1ptq “ Azptq ` λptqx, zp0q “ 0

and set

(4.5) yptq “ C zptq, t P r0, τ s.

By Duhamel’s formula we have

(4.6) yptq “

ż t

0
λpt´ sqCT psqxds “

ż t

0
λpt´ sqpΨxqpsqds.

Let
H1
` pp0, τq, Y q “

 

u P H1pp0, τq, Y q; up0q “ 0
(

.

Define the operator S : L2pp0, τq, Y q ÝÑ H1
` pp0, τq, Y q by

(4.7) pShqptq “

ż t

0
λpt´ sqhpsqds.

If E “ SΨ then (4.6) takes the form

yptq “ pExqptq.

Theorem 4.1. Assume that pA,C q is exactly observable for τ ě τ0, for some
τ0 ą 0. Let λ P H1p0, τq satisfies λp0q ‰ 0. Then E is one-to-one from H onto
H1
` pp0, τq, Y q and

(4.8) κ|λp0q|
?

2
e
´τ

}λ1}2
L2p0,τq
|λp0q|2 }x}H ď }Ex}H1

`
pp0,τq,Y q, x P H.
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Proof. Taking first the derivative with respect to t of both sides of the integral
equation

ż t

0
λpt´ sqϕpsqds “ ψptq

we get the following Volterra integral equation of second kind

λp0qϕptq `
ż t

0
λ1pt´ sqϕpsqds “ ψ1ptq.

Mimicking the proof of [14, Theorem 2, page 33] we obtain that this integral equa-
tion has a unique solution ϕ P L2pp0, τq, Y q and

}ϕ}L2pp0,τq,Y q ď C}ψ1}L2pp0,τq,Y q

ď C}ψ}H1
`
pp0,τq,Y q.

Here C “ Cpλq is a constant.
For estimating the constant C above we first use the elementary convexity in-

equality pa` bq2 ď 2pa2 ` b2q in order to get

}|λp0q|ϕptq}2Y ď 2
ˆ
ż t

0

|λ1pt´ sq

|λp0q| r|λp0q|}ϕpsq}Y s ds
˙2

` 2}ψ1ptq}2Y .

Thus

|λp0q|2}ϕptq}2Y ď 2
}λ1}2L2pp0,τqq

|λp0q|2

ż t

0
|ϕp0q|2}ϕpsq}2Y ds` 2}ψ1ptq}2Y

by the Cauchy-Schwarz’s inequality. Therefore using Gronwall’s lemma we obtain
in a straightforward manner

}ϕ}L2pp0,τq,Y q ď

?
2

|λp0q|e
τ
}λ1}2

L2pp0,τqq
|λp0q|2 }ψ1}L2pp0,τq,Y q

and then

}ϕ}L2pp0,τq,Y q ď

?
2

|λp0q|e
τ
}λ1}2

L2pp0,τqq
|λp0q|2 }Sϕ}H1

`
pp0,τq,Y q.

In light of (4.3) we end up getting

}Ex}H1
`
pp0,τq,Y q ě

κ|λp0q|
?

2
e
´τ

}λ1}2
L2pp0,τqq
|λp0q|2 }x}H .

This is the expected inequality. �

We shall need a variant of Theorem 4.1. If pA,C q is as in Theorem 4.1 then, as
in the preceding section, by the perturbation argument in [28, Proposition 6.3.3,
page 189], there exist ℵ ą 0 and κ ą 0 such that for any P P BpHq satisfying
}P } ď ℵ we have that pA` P,C q is exactly observable with κpP `Aq ě κ.

Define EP similarly to E by substituting in E A by A` P .

Theorem 4.2. Assume that pA,C q is exactly observable for τ ě τ0, for some
τ0 ą 0, and let λ P H1p0, τq satisfies λp0q ‰ 0. There exist ℵ ą 0 and κ ą 0 so that
for any P P BpHq satisfying }P } ď ℵ we have that EP is one-to-one from H onto
H1
` pp0, τq, Y q and

(4.9) κ|λp0q|
?

2
e
´τ

}λ1}2
L2p0,τq
|λp0q|2 }x}H ď }E

Px}H1
`
pp0,τq,Y q, x P H.
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We will consider inverse source problems with singular sources. For this purpose
we need to extend Theorem 4.1. Fix then % in the resolvent set of A. Let H1
be the space DpAq equipped with the norm }x}1 “ }p% ´ Aqx} and denote by
H´1 the completion of H with respect to the norm }x}´1 “ }p% ´ Aq´1x}. As we
observed in [28, Proposition 4.2, page 1644] and its proof, when x P H´1 (which
is the dual space of H1 with respect to the pivot space H) and λ P H1p0, τq, then
according to the classical extrapolation theory of semigroups the Cauchy problem
(4.1) has a unique solution z P Cpr0, τ s, Hq. In addition y given in (4.2) belongs to
L2pp0, τq, Y q.

If x P H we have by Duhamel’s formula

(4.10) yptq “

ż t

0
λpt´ sqCT psqxds “

ż t

0
λpt´ sqpΨxqpsqds.

Let

H1
` pp0, τq, Y q “

 

u P H1pp0, τq, Y q; up0q “ 0
(

.

We define the operator S : L2pp0, τq, Y q ÝÑ H1
` pp0, τq, Y q by

(4.11) pShqptq “

ż t

0
λpt´ sqhpsqds.

Hence E “ SΨ then (4.10) the form

yptq “ pExqptq.

Let Z “ p%´A˚q´1pX ` C ˚Y q.

Theorem 4.3. Assume that pA,C q is exactly observable at time τ . Then
(i) E is one-to-one from H onto H1

` pp0, τq, Y q.
(ii) E is extended to an isomorphism, denoted by Ẽ, from Z 1 onto L2pp0, τq, Y q.
(iii) There exists a constant κ̃, independent of λ, so that

(4.12) }x}Z1 ď κ̃|λp0q|e
}λ1}2

L2pp0,τqq
|λp0q|2

τ
}Ẽx}L2pp0,τq,Y q.

Proof. We give the proof of (ii) and (iii) and we note that (i) is contained in
Theorem 4.1. We first observe that S˚, the adjoint of S, maps L2pp0, τq, Y q into
H1
r pp0, τq, Y q, where

H1
r pp0, τq, Y q “

 

u P H1pp0, τq, Y q; upτq “ 0
(

.

Moreover

S˚hptq “

ż τ

t

λps´ tqhpsqds, h P L2pp0, τq, Y q.

Fix h P L2pp0, τq, Y q and set k “ S˚h. Then

k1ptq “ λp0qhptq ´
ż τ

t

λ1ps´ tqhpsqds.
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Hence

|λp0q}hptq}2 ď
ˆ
ż τ

t

|λ1ps´ tq|

|λp0q| r|λp0q|}hpsq}sds` }k1ptq}
˙2

ď 2
ˆ
ż τ

t

|λ1ps´ tq|

|λp0q| r|λp0q|}hpsq}sds
˙2
` 2}k1ptq}2

ď 2
}λ1}2L2pp0,τqq

|λp0q|2

ż t

0
r|λp0q|}hpsq}s2ds` 2}k1ptq}2.

The last estimate is obtained by applying Cauchy-Schwarz’s inequality.
Then Gronwall’s lemma yields

r|λp0q|}hptq}s2 ď 2e2
}λ1}2

L2pp0,τqq
|λp0q|2

τ
}k1ptq}2.

Therefore

}h}L2pp0,τq,Y q ď

?
2

|λp0q|e
}λ1}2

L2pp0,τqq
|λp0q|2

τ
}k1}L2pp0,τq,Y q.

Whence

(4.13) }h}L2pp0,τq,Y q ď

?
2

|λp0q|e
}λ1}2

L2pp0,τqq
|λp0q|2

τ
}S˚h}H1

r pp0,τq,Y q.

The adjoint operator of S˚, acting as a bounded operator from rH1
r pp0, τq;Y qs1

into L2pp0, τq;Y q, gives an extension of S. We denote by S̃ this operator. By [28,
Proposition 4.1, page 1644] S̃ defines an isomorphism from rHrpp0, 1q;Y qs1 onto
L2pp0, τq;Y q. In light of the identity

}S̃}BprH1
r pp0,τq;Y qs1;L2pp0,τq,Y qq “ }S

˚}BpL2pp0,τq;Y q;H1
r pp0,τq,Y qq,

(4.13) implies

(4.14) |λp0q|
?

2
e
´

}λ1}2
L2pp0,τqq
|λp0q|2

τ
ď }S̃}BprH1

r pp0,τq;Y qs1;L2pp0,τq;Y qq.

On the other hand according to [28, Proposition 2.13, page 1641] Ψ possesses a
unique bounded extension, denoted by Ψ̃, from Z 1 into rH1

r pp0, τq;Y qs1 and there
exists a constant c ą 0 so that

(4.15) }Ψ̃}BpZ1;rH1
r pp0,τq;Y qs1q ě c.

The operator Ẽ “ S̃Ψ̃ gives the unique extension of E to an isomorphism from Z 1
onto L2pp0, τq, Y q.

We end up the proof by noting that (4.12) follows from (4.14) and (4.15). �

5. Inverse problems for evolution equations associated to
Laplace-Beltrami operator

Throughout this section M is a compact n-dimensional Riemannian manifold
with boundary, τ ą 0 and Γ is a nonempty open subset of BM .
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5.1. Inverse source problem for the wave equation. Consider the IBVP for
the wave equation

(5.1)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ gptqfpxq inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Assume that pΓ, τq geometrically control M . Fix pq0, a0q P L
8pMq ‘ L8pMq

and denote by 2κ the observability constant for pq0, a0q. In light of Theorem 2.1
there exists a constant β ą 0 only depending on Γ, M and pq0, a0q such that, for
any pq, aq “ pq0, a0q ` pq̃, ãq with pq̃, ãq P L8pMq ‘ L8pMq satisfying
(5.2) }pq̃, ãq}L8pMqˆL8pMq ď β,

the observability contant for pq, aq is κ. We denote the set of couples pq, aq P
L8pMq ‘ L8pMq of the form pq, aq “ pq0, a0q ` pq̃, ãq, where pq̃, ãq P L8pMq ‘
L8pMq satisfies (5.2), by D .

Let f P L2pMq and g P H1p0, τq with gp0q ‰ 0. We have according to Theorem
4.1

(5.3) }f}L2pMq ď

?
2

κ|gp0q|e
τ
}g1}2

L2p0,τq
|gp0q|2 }Bνu}H1pp0,τq,L2pΓqq,

where u “ upq, a, f, gq denotes the solution of the IBVP (5.1).
An immediate consequence of this inequality is the following theorem.

Theorem 5.1. Assume that pΓ, τq geometrically control M . Let g P H1p0, τq
satisfying gp0q ‰ 0. Then there exists a constant C, only depending on pq0, a0q, κ,
Γ, τ and g, so that for any pq, aq P D we have

}f}L2pMq ď C}Bνu}H1pp0,τq,L2pΓqq.

Here u “ upq, a, f, gq denotes the solution of the IBVP (5.1).

Set for simplicity v “ vpq, f, gq “ upq, 0, f, gq. That is v is the solution of the
IBVP

(5.4)

$

&

%

B2
t u´∆u` qpxqu “ gptqfpxq inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Using Duhamel’s formula it is not hard to check that

vpx, tq “

ż t

0
gpt´ sqwpx, sqds,

where w “ wpfq is the solution of the IBVP

(5.5)

$

&

%

B2
tw ´∆w ` qpxqw “ 0 inM ˆ p0, τq,
w “ 0 on BM ˆ p0, τq,
wp¨, 0q “ f, Btwp¨, 0q “ 0.

Let
H1
` pp0, τq, L2pΓqq “

 

u P H1pp0, τq, L2pΓqq; up0q “ 0
(

and define the operator S : L2pΓˆ p0, τqq ÝÑ H1
` pp0, τq, L2pΓqq by

pShqptq “

ż t

0
gpt´ sqhpsqds.
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We have seen in the proof of Theorem 4.1 that S is an isomorphism and

}h}L2pΓˆp0,τqq ď

?
2

κ|gp0q|e
τ
}g1}2

L2pp0,τqq
|gp0q|2 }Sh}H1pp0,τq,L2pΓqq.

Whence

(5.6) }Bνw}L2pΓˆp0,τqq ď

?
2

κ|gp0q|e
τ
}g1}2

L2pp0,τqq
|gp0q|2 }Bνv}H1pp0,τq,L2pΓqq.

Let ℵ ą 0, assume that dpΓq ă 8 and let τ ą 2dpΓq. From Theorem 2.2 there
exist three constants C, κ and ε0 so that for any q P L8pMq with }q}L8pMq ď ℵ we
have

(5.7) C}f}L2pMq ď eκε}Bνw}L2pΓˆp0,τqq `
1
ε
}f}H1

0 pMq
, ε ě ε0.

Now (5.6) in (5.7) yields

(5.8) C}f}L2pMq ď eκε
?

2
κ|gp0q|e

τ
}g1}2

L2pp0,τqq
|gp0q|2 }Bνv}H1pp0,τq,L2pΓqq `

1
ε
}f}H1

0 pMq

for any ε ě ε0.
Let

Ψpρq “ | ln ρ |´1 ` ρ, ρ ą 0,
and Ψp0q “ 0. Then a standard minimization argument with respect to ε in (5.8)
enables us establishing the following result.

Theorem 5.2. Let ℵ ą 0, R ą 0 and τ ą 2dpΓq. Let g P H1p0, τq satisfying
gp0q ‰ 0. Then there exists a constant C ą 0, only depending on ℵ, R, Γ, τ and
g, so that for any q P L8pMq with }q}L8pMq ď ℵ and any f P H1

0 pMq satisfying
}f}H1

0 pMq
ď R we have

}f}L2pMq ď CΨ
`

}Bνv}H1pp0,τq,L2pΓqq
˘

,

where v “ vpq, f, gq is the solution of the IBVP (5.4).

5.2. Determining the potential and the damping coefficient in a wave
equation. Introduce the IBVP for the wave equation

(5.9)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ 0 inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

Let ℵ ą 0 and recall that H0 “ H1
0 pMq ‘ L2pMq. We have seen in Section 1

that, for any pq, aq P L8pMq ‘ L8pMq, τ ą 0 and pu0, u1q P H0, the IBVP (5.9)
has a unique solution

u “ upq, a, pu0, u1qq P Cpr0, τ s, H1
0 pMqq

so that Btu P Cpr0, τ s, L2pMqq and Bνu P L2pBM ˆ p0, τqq. Moreover under the
assumption

}pq, aq}L8pMq‘L8pMq ď ℵ
we have
(5.10) }u}Cpr0,τs,H1

0 pMqq
` }Btu}Cpr0,τs,L2pMqq ď C}pu0, u1q}H0

and
(5.11) }Bνu}L2pBMˆp0,τqq ď C}pu0, u1q}H0 .
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Here C “ Cpℵq is a nondecreasing function.
Define the initial-to-boundary operator Λpq, aq as follows

Λpq, aq : pu0, u1q P H0 ÞÑ Bνupq, a, pu0, u1qq P L
2pΓˆ p0, τqq.

Let
H1 “ pH

1
0 pMq XH

2pMqq ‘H1
0 pMq.

Observing that

Btupq, a, pu0, u1qq “ upq, a, pu1,∆u0 ´ qu0 ´ au1qq

we easily obtain that Λpq, aq P BpH1, H
1pp0, τq, L2pΓqqq. Furthermore we get as a

consequence of (5.11)

}Λpq, aq}BpH1,H1pp0,τq,L2pΓqqq ď C,

where the constant C is similar to that in (5.11).
Denote by D0 the set D in the case where pq0, a0q “ pq0, 0q with q0 ě 0. Define

then D1pℵq as the subset of D0 consisting in couples pq, aq P H2pMq ‘ H2pMq
satisfying

}pq, aq}H2pMq‘H2pMq ď ℵ.
It is then clear that D1pℵq is nonempty provided that ℵ ě ℵ0, for some ℵ0 “ ℵpβq.

Theorem 5.3. Assume that pΓ, τq geometrically control M and let ℵ ě ℵ0. There
exists a constant C ą 0, depending on ℵ and q0, so that for any pq, aq P D1pℵq we
have

}q ´ q0}L2pMq ` }a´ 0}L2pMq ď C}Λpq, aq ´ Λpq0, 0q}1{2BpH1,H1pp0,τq,L2pΓqqq.

Proof. Let 0 ď φ1 be the first eigenfunction of the operator ´∆` q0 with domain
H2pMq XH1

0 pMq. This eigenfunction is normalized by }φ1}L2pMq “ 1. If

u0 “ upq0, 0, pφ1, i
a

λ1φ1qq “ ei
?
λ1 tφ1 and u “ upq, a, pφ1, i

a

λ1 φ1qq

then v “ u´ u0 is the solution of the following IBVP
(5.12)

$

&

%

B2
t v ´∆v ` qv ` aBtv “ ´rpq ´ q0q ` i

?
λ1ase

i
?
λ1tφ1 inM ˆ p0, τq,

v “ 0 on BM ˆ p0, τq,
vp¨, 0q “ 0, Btvp¨, 0q “ 0.

Bearing in mind that pΓ, τq geometrically control M we get from Theorems 5.1

}φ1pq ´ q0q}L2pMq ` }φ1a}L2pMq ď C}Bνv}H1pp0,τq,L2pBMqq.

This inequality combined with Corollary 3.1 yields

}q ´ q0}L2pMq ` }a´ 0}L2pMq ď C}Bνv}
1{2
H1pp0,τq,L2pΓqq

which gives in a straightforward manner the expected result. �

Denote the sequence of eigenvalues, counted according to their multiplicity, of
A “ ´∆ with domain H2pMq XH1

0 pMq by 0 ă λ1 ă λ2 ď . . . ď λk Ñ8.
Consider on H0 the operators

A “

ˆ

0 I
´A 0

˙

, DpAq “ H1
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and Apq, aq “ A` Bpq, aq with DpApq, aqq “ DpAq, where

Bpq, aq “
ˆ

0 0
´q ´a

˙

P BpH0q.

From [28, Proposition 3.7.6, page 100] A is skew-adjoint operator with 0 P ρpAq
and

A´1 “

ˆ

0 ´A´1

I 0

˙

.

We note that, since A´1 : H Ñ H1 is bounded and the embedding H1 ãÑ H is
compact, A´1 : H Ñ H is compact.

Also, from [28, Proposition 3.7.6, page 100] A is diagonalizable and its spectrum
consists in the sequence pi

?
λkq.

Introduce the bounded operator

Cpq, aq “ piA´1qp´iBpq, aqqpiA´1q.

Let skpCpq, aqq, k ě 1, denote the singular values of Cpq, aq, that is the eigenvalues
of rCpq, aq˚Cpq, aqs 1

2 . In light of [13, formulas (2.2) and (2.3), page 27] we have

skpCpq, aqq ď }Bpq, aq}skpiA´1q2 “ }Bpq, aq}λ´1
k ,

where }Bpq, aq} denote the norm of Bpq, aq in BpHq.
On the other hand referring to Weyl’s asymptotic formula we get λk “ Opk2{nq.

Hence Cq,a belongs to the Shatten class Sp for any p ą n{2, that is
ÿ

kě1
rskpCpq, aqqsp ă 8.

We get by applying [13, Theorem 10.1, page 276] that the spectrum of Apq, aq con-
sists in a sequence of eigenvalues pµkpq, aqq, counted according to their multiplicity,
and the corresponding eigenfunctions pφkpq, aqq form a Riesz basis of H.

Fix pq, aq and k. Set µ “ µkpq, aq and φ “ φkpq, aq “ pϕ,ψq P H1 be an
eigenfunction associated to µ. Then it is straightforward to check that ψ “ µϕ and
p´∆` q ` aµ` µ2qϕ “ 0 in M . Since ´∆ϕ “ f in M with f “ ´pq ` aµ` µ2qϕ
we can use iteratively [12, Corollary 7.11, page 158] (Sobelev embedding theorem)
together with [12, Theorem 9.15, page 241] in order to obtain that ϕ P W 2,ppMq
for any 1 ă p ă 8. In particular ϕ, |ϕ|2 P W 2,npMq X C0pMq. In other words ϕ
satisfies the assumption of Proposition 3.2.

Set, for pq, aq, pq̃, ãq P D ,

u “ upq, a, φq and ũ “ upq̃, ã, φq.

Then similarly to Theorem 5.3 we prove, where v “ ũ´ u,

}ϕpq̃ ´ qq}L2pMq ` }ϕpã´ aq}L2pMq ď C}Bνv}H1pp0,τq,L2pBMqq.

This and Lemma 3.1 yield

Theorem 5.4. Assume that pΓ, τq geometrically control M and fix pq, aq P D .
Then there exists two constants C ą 0 and α ą 0, depending of pq, aq, so that for
any pq̃, ãq P D we have

}q̃ ´ q}L2pMq ` }ã´ a}L2pMq ď C}Λpq̃, ãq ´ Λpq, aq}αBpH1,H1pp0,τq,L2pΓqqq.
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5.3. Determining the potential in a wave equation without geometric
control condition. Consider the IBVP

(5.13)

$

&

%

B2
t u´∆u` qpxqu “ 0 inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ 0.

From the preceding subsection the initial-to-boundary mapping

Λpqq : u0 P H
1
0 pMq XH

2pMq ÞÑ Bνu P H
1pp0, τq, L2pΓqq,

where u “ upq, u0q is the solution on the IBVP, defines a bounded operator. More-
over for any ℵ ą 0 there exists a constant C ą 0, depending of ℵ, so that for any
q P L8pMq satisfying }q}L8pMq ď ℵ we have

}Λpqq}BpH1
0 pMqXH

2pMq,H1pp0,τq,L2pΓqqq ď C.

Theorem 5.5. Let ℵ ą 0 and suppose that τ ą 2dpΓq. There exists a constant
C ą 0 so that for any 0 ď q P L8pMq, q̃ P L8pMq satisfying q´ q̃ PW 1,8pMq and

}q}L8pMq ď ℵ, }q̃}L8pMq ď ℵ, }q ´ q̃}W 1,8pMq ď ℵ

we have

}q ´ q̃}L2pMq ď CΦ
´

}Λpqq ´ Λpq̃q}BpH1
0 pMqXH

2pMq,H1pp0,τq,L2pΓqqq

¯

,

with Φpρq “ | ln ρ|´1{pn`3q ` ρ, ρ ą 0, and Φp0q “ 0.

Proof. Let 0 ď q P L8pMq satisfying }q}L8pMq ď ℵ. Denote by 0 ă λ1 ď λ2 . . . ď

λk . . . the sequence of eigenvalues of the operator ´∆ ` q with domain H1
0 pMq X

H2pMq. Let pφkq an orthonormal basis of L2pMq consisting in eigenfunctions, each
φk is an eigenvalue for λk. Note that according to the usual elliptic regularity we
have φk P C8pMq for each k.

By the Weyl’s asymptotic formula and the min-max principle there exists a
constant κ ą 1, depending on ℵ but not in q, so that

(5.14) κ´1k2{n ď λk ď κk2{n.

Set, for q̃ P L8pMq satisfying }q̃}L8pMq ď ℵ,

u “ upq, φkq “ cospλktqφk and ũ “ upq̃, φkq.

Then v “ ũ´ u is the solution of the IBVP, where gkptq “ cosp
?
λktq,

(5.15)

$

&

%

B2
t u´∆u` q̃u “ pq̃ ´ qqφkgkptq inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

We have }g1k}2L2p0,τq ď λkτ . Hence

(5.16) }g1k}
2
L2p0,τq ď κτk2{n

by (5.14).
In the rest of this proof C and c denote generic constant only depending of M ,

ℵ, Γ and τ . From (5.8) we have

(5.17) C}pq̃ ´ qqφk}L2pMq ď eκεeck
2{n
}Bνv}H1pp0,τq,L2pΓqq `

1
ε
}pq̃ ´ qqφk}H1

0 pMq

for any ε ě ε0.
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On the other hand

}pq̃ ´ qqφk}H1
0 pMq

ď }rq ´ q}W 1,8pMq}φk}H1
0 pMq

ď 2N
a

λk

ď ck1{n by (5.14).

This in (5.17) gives

C}pq̃ ´ qqφk}L2pMq ď eκεeck
2{n
}Bνv}H1pp0,τq,L2pΓqq `

k1{n

ε
, ε ě ε0.

But we have by Cauchy-Schwarz’s inequality

pq̃ ´ q, φkq
2 ď VolpMq}pq̃ ´ qqφk}L2pMq.

Whence

Cpq̃ ´ q, φkq
2 ď eκεeck

2{n
}Bνv}H1pp0,τq,L2pΓqq `

k
1
n

ε
, ε ě ε0.

Also

}q̃ ´ q}2L2pMq “
ÿ

kď`

pq̃ ´ q, φkq
2 `

ÿ

ką`

pq̃ ´ q, φkq
2

ď
ÿ

kď`

pq̃ ´ q, φkq
2 `

1
λ``1

ÿ

ką`

λkpq̃ ´ q, φkq
2

ď
ÿ

kď`

pq̃ ´ q, φkq
2 `

N2

p`` 1q2{n
.

Thus

(5.18) C}q̃ ´ q}2L2pMq ď `eκεec`
2{n
}Bνv}H1pp0,τq,L2pΓqq `

1
p`` 1q2{n

`
`1`1{n

ε
.

Let s ě 1 be a real number and let ` be the unique integer so that ` ď s ă ` ` 1.
Then (5.18) with that ` yields

(5.19) C}q̃ ´ q}2L2pMq ď seκεecs
2{n
}Bνv}H1pp0,τq,L2pΓqq `

1
s2{n `

s1`1{n

ε
.

We then get by taking ε “ s3{n`1 in (5.19), where s0 “ max
´

1, εn{pn`3q
0

¯

,

C}q̃ ´ q}2L2pMq ď
1
s2{n ` e

cs2{n`1
eκs

3{N`1
}Bνv}H1pp0,τq,L2pΓqq, s ě s0.

Therefore

C}q̃ ´ q}2L2pMq ď
1
s2{n ` e

cs3{n`1
}Bνv}H1pp0,τq,L2pΓqq, s ě s0

or equivalently

C}q̃ ´ q}L2pMq ď
1
s1{n ` e

cs3{n`1
}Bνv}H1pp0,τq,L2pΓqq, s ě s0.

We end up getting the expected inequality by minimizing with respect to s. �
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5.4. Inverse source problem for the heat equation. Consider the following
IBVP for the heat equation

(5.20)

$

&

%

Btu´∆u` qpxqu “ gptqfpxq inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0

and set Q “M ˆ p0, τq.
We recall that the anisotropic Sobolev space H2,1pQq is given as follows

H2,1pQq “ L2pp0, τq, H2pMqq XH1pp0, τq, L2pMqq.

From classical parabolic regularity theorems for any f P L2pMq, g P L2p0, τq and
q P L8pMq the IBVP (5.20) has a unique solution

u “ upq, f, gq P H2,1pQq.

Furthermore if ℵ ą 0 then there exists a constant C ą 0 so that
(5.21) }u}H2,1pQq ď C}g}L2p0,τq}f}L2pMq

for any q P L8pMq satisfying }q}L8pMq ď ℵ.
If in addition g P H1p0, τq then it is not hard to check that Btu is the solution of

the IBVP (5.20) with g substituted by g1. Hence Btu P H2,1pQq and
(5.22) }Btu}H2,1pQq ď C}g1}L2p0,τq}f}L2pMq

for any q P L8pMq satisfying }q}L8pMq ď ℵ, where C is the constant in (5.21).
We derive that Bνu is well defined as an element of H1pp0, τq, L2pΓqq. Therefore

by (5.21), (5.22) and the continuity of the trace operator on Γ we have
}Bνu}H1pp0,τq,L2pΓqq ď C}g}H1p0,τq}f}L2pMq,

where the constant C is as in (5.21).
The following result will be useful in the sequel.

Proposition 5.1. Let ℵ ą 0. There exist two constants c ą 0 and C ą 0 so that
for any q P L8pMq satisfying }q}L8pMq ď ℵ, f P H1

0 pMq and g P H1p0, τq with
gp0q ‰ 0 we have

(5.23) C}f}L2pMq ď
1
?
ε
}f}H1

0 pMq
`

1
|gp0q|e

τ}g1}2
L2p0,τq{|gp0q|

2
ecε}Bνu}H1pp0,τq,L2pΓqq

for any ε ě 1, where u “ upq, f, gq is the solution of the IBVP (5.20).

Proof. Pick q P L8pMq satisfying }q}L8pMq ď ℵ, f P H1
0 pMq and g P H1p0, τq with

gp0q ‰ 0. We may assume without loss of generality that q ě 0. This is achieved
by substituting u by ue´ℵt, which is the solution of the IBVP (5.20) when q is
replaced by q ` ℵ.

Let v “ vpq, fq P H2,1pQq be the unique solution of the IBVP
$

&

%

Btv ´∆v ` qpxqv “ 0 inM ˆ p0, τq,
v “ 0 on BM ˆ p0, τq,
vp¨, 0q “ f.

Then Bνv is well defined as an element of L2pΓˆ p0, τqq. As for the wave equation
we have

Bνu|Γp¨, tq “

ż t

0
gpt´ sqBνv|Γp¨, sqds.
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Therefore

(5.24) }Bνv}L2pΓˆp0,τqq ď

?
2

|gp0q|e
τ}g1}2

L2pp0,τqq{|gp0q|
2
}Bνu}H1pp0,τq,L2pΓqq.

From the final time observability inequality in Theorem 2.3 we have
(5.25) }vp¨, τq}L2pMq ď K}Bνv}L2pΓˆp0,τqq,

for some constant K ą 0 independent of q and f .
A combination of (5.24) and (5.25) yields

(5.26) C}vp¨, τq}L2pMq ď
1

|gp0q|e
τ}g1}2

L2pp0,τqq{|gp0q|
2
}Bνu}H1pp0,τq,L2pΓqq.

Denote by 0 ă λ1 ď λ2 ď . . . ď λk Ñ 8 the sequence of eigenvalues of the
´∆` q with domain H1

0 pMq XH
2pMq. Let pφkq be a sequence of eigenfunctions,

each φk is associated to λk, so that pφkq form an orthonormal basis of L2pMq.
We have

vp¨, τq “
ÿ

`ě1
e´λkτ pf, φ`qφ`,

where p¨, ¨q is the usual scalar product on L2pMq. Hence
pf, φ`q

2 ď e2λ`τ }vp¨, τq}2L2pMq, ` ě 1.
Whence

k
ÿ

`“1
pf, φ`q

2 ď ke2λkτ }vp¨, τq}2L2pMq

for any integer k ě 1.

This and the fact that
´

ř

`ě1 λ`p¨, φ`q
2
L2pΩq

¯1{2
is an equivalent norm on H1

0 pMq

lead

}f}2L2pMq “

k
ÿ

`“1
pf, φ`q

2 `
ÿ

`ěk`1
pf, φ`q

2

ď

k
ÿ

`“1
pf, φ`q

2 `
1

λk`1

ÿ

`ěk`1
λ`pf, φ`q

2

ď ke2λkτ }vp¨, τq}2L2pMq `
1

λk`1
}f}2H1

0 pMq
.

Until the end of this proof C and c denote generic constants independent of q,
f and g.

We get from inequality (5.14)

(5.27) C}f}2L2pMq ď keck
2{n
}vp¨, τq}2L2pMq `

1
pk ` 1q2{n

}f}2H1
0 pMq

.

Let ε ě 1 and k ě 1 be the unique integer so that k ď εn{2 ă k ` 1. We obtain
in a straightforward manner from (5.27)

(5.28) C}f}2L2pMq ď ecε}vp¨, τq}2L2pMq `
1
ε
}f}2H1pMq.

Then (5.26) in (5.28) gives the expected inequality. �

Minimizing the right hand side of (5.23) with respect to ε we obtain the following
result in which Φpρq “ |ln ρ|´1{2

` ρ for ρ ą 0 and Φp0q “ 0
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Corollary 5.1. Let ℵ ą 0, q P L8pMq and g P H1p0, τq satisfying gp0q ‰ 0. There
exists a constant C ą 0, depending of ℵ, q and g, so that for any f P H1

0 pΩq with
}f}H1

0 pMq
ď ℵ we have

C}f}L2pMq ď Φ
`

}Bνu}H1pp0,τq,L2pΓqq
˘

,

where u “ upq, f, gq is the solution of the IBVP (5.20).

5.5. Determining the zeroth order coefficient in a heat equation. Consider
the IBVP

(5.29)

$

&

%

Btu´∆u` qpxqu “ 0 inM ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0.

Again, with reference to classical regularity theorems we have that, for q P L8pMq
and u0 P H

1
0 pMq, the IBVP(5.29) has unique solution u “ upq, u0q P H

2,1pQq.
Furthermore for any ℵ ą 0 there exists a constant C ą 0 so that
(5.30) }upq, u0q}H2,1pMˆp0,τqq ď C}u0}H1

0 pMq

for any q P L8pMq satisfying }q}L8pMq ď ℵ.
Define

H0pMq “ tw P H
1
0 pMq; ∆w P H1

0 pMqu

that we equip with its natural norm
}w}H0pMq “ }w}H1

0 pMq
` }∆w}H1

0 pMq
.

If q PW 1,8pMq and u0 P H0pMq then it is straightforward to check that
Btupq, u0q “ upq,∆u0 ´ qu0q.

We get by applying (5.30) with u0 substituted by ∆u0 ´ qu0

(5.31) }Btu}H2,1pMˆp0,τqq ď C}u0}H0pMq

for any q PW 1,8pMq satisfying }q}W 1,8pMq ď ℵ, where the constant C is indepen-
dent of q.

Bearing in mind that the trace operator
w P H2,1pQq ÞÑ Bνw P L

2pΓˆ p0, τqq
is bounded we obtain that Bνu P H1pp0, τq, L2pΓqq provided that u0 P H0pMq and
q PW 1,8pMq. Further we get from (5.30) and (5.31)

}Bνu}H1pp0,τq,L2pΓqq ď C}u0}H0pMq

for any q PW 1,8pMq satisfying }q}W 1,8pMq ď ℵ, where the constant C is indepen-
dent of q.

That is we proved that the operator
N pqq : u0 P H0pMq ÞÑ Bνu P H

1pp0, τq, L2pΓqq
is bounded and

}N pqq}BpH0pMq,H1pp0,τq,L2pΓqqq ď C

for any q PW 1,8pMq satisfying }q}W 1,8pMq ď N , where the constant C is indepen-
dent of q.

Henceforward for convenience }N pq̃q ´ N pqq}BpH0pMq,H1pp0,τq,L2pΓqqq is simply
denoted by }N pq̃q ´N pqq}.
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Theorem 5.6. Let ℵ ą 0. There exists a constant C ą 0 so that for any q, q̃ P
W 1,8pMq satisfying

}q}W 1,8pMq ď ℵ, }q̃}W 1,8pMq ď ℵ,

we have
C}rq ´ q}L2pMq ď Θ p}N pq̃q ´N pqq}q .

Here Θpρq “ |ln ρ|´1{p1`4nq
` ρ for ρ ą 0 and Θp0q “ 0.

Proof. Let q, q̃ PW 1,8pMq satisfying

}q}W 1,8pMq ď ℵ, }q̃}W 1,8pMq ď ℵ.

As in the preceding subsection we may assume without loss of generality that q ě 0.
Denote by 0 ă λ1 ď λ2 ď . . . ď λk Ñ8 the sequence of eigenvalues of the opera-

tor ´∆`q with domain H1
0 pMqXH

2pMq. Let pφkq a sequence of the corresponding
eigenfunctions so that pφkq form an orthonormal basis of L2pMq.

Taking into account that upq, φkq “ e´λktφk we obtain that

v “ upq̃, φkq ´ upq, φkq

is the solution of the IBVP
$

&

%

Btv ´∆v ` qpxqv “ pq̃ ´ qqφke´λkt inM ˆ p0, τq,
uv “ 0 on BM ˆ p0, τq,
vp¨, 0q “ 0.

Therefore
N pq̃qpφkq ´N pqqpφkq “ Bνv

from which we deduce

}Bνv}H1pp0,τq,L2pΓqq ď Cλk}N prqq ´N pqq}.

Here and henceforth C and c denote generic constants independent of q and q̃.
As in the preceding subsection we get from (5.23)

(5.32) C|pq̃ ´ q, φkq| ď

?
λk
?
ε
` eτλ

2
kecελ2

k}N pq̃q ´N pqq}

for any ε ě 1, where we used the inequality }pq̃ ´ qqφk}H1
0 pMq

ď C
?
λk.

Inequality (5.32) then gives

(5.33) C
ÿ̀

k“1
|pq̃ ´ q, φkq

2
L2pMq ď

`λ`
ε
` `ecλ

2
` ecε}N prqq ´N pqq}2

for any arbitrary integer ` ě 1.
Similarly to the proof of Theorem 5.5 inequality (5.33) yields

C}q̃ ´ q}2L2pMq ď
s1`2{n

ε
`

1
s2{n ` e

cs1`4{n
ecε}N pq̃q ´N pqq}2, s ě 1.

The proof is then completed in the same manner like that of Theorem 5.5. �
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6. Determining a boundary coefficient in a wave equation

6.1. Inverse source problem for the wave equation with boundary damp-
ing. In this subsection Ω “ p0, 1q ˆ p0, 1q and

Γ0 “ pp0, 1q ˆ t1uq Y pt1u ˆ p0, 1qq,
Γ1 “ pp0, 1q ˆ t0uq Y pt0u ˆ p0, 1qq.

Consider the IBVP

(6.1)

$

’

’

&

’

’

%

B2
t u´∆u “ λptqw in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Fix 1
2 ă α ď 1 and let

A “ tb “ pb1, b2q P C
αpr0, 1sq ‘ Cαpr0, 1sq, b1p0q “ b2p0q, bj ě 0u.

Let V “ tu P H1pΩq; u “ 0 on Γ0u and define on V ‘ L2pΩq the operator Aa,
a P A , by

Aa “ pw,∆vq,
DpAaq “ tpv, wq P V ‘ V ; ∆v P L2pΩq and Bνv “ ´aw on Γ1u.

We are going to apply Theorem 4.2 with H “ V ‘L2pΩq, H1 “ DpAaq equipped
with its graph norm and Y “ L2pΓ1q.

Denote by H´1 the dual of H1 with respect to the pivot space H.
If p0, wq P H´1 and λ P H1p0, τq then the IBVP (6.1) has a unique solution upwq

so that pupwq, Btupwqq P Cpr0, τ s;V ‘L2pΩqq and Bνupwq|Γ1ˆp0,τq P L
2pΓ1ˆp0, τqq.

Taking into account that t0u ˆ V 1 Ă H´1, where V 1 is the dual space of V , we
obtain the following consequence of Theorem 4.2.

Proposition 6.1. There exists a constant C ą 0 so that for any λ P H1p0, τq and
w P V 1 we have

(6.2) }w}V 1 ď C|λp0q|eτ}λ
1
}

2
L2p0,τq{|λp0q|

2
}Bνuw}L2pΓ1ˆp0,τqq.

6.2. Determining the boundary damping coefficient in a wave equation.
Let Ω and Γi, i “ 1, 2 as in the preceding subsection and consider the IBVP

(6.3)

$

’

’

&

’

’

%

B2
t u´∆u “ 0 in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

For pu0, u1q P H1 the IBVP (6.3) admits a unique solution u “ upa, pu0, u1qq so
that

pua, Btuaq P Cpr0,8q, H1q X C
1pr0,8q, Hq.

Fix 0 ă a ď ℵ and set

A “ tb “ pb1, b2q P A XH1p0, 1q ‘H1p0, 1q; a ď b1, b2, }b}
2
H1p0,1q‘H1p0,1q ď ℵu.

Let U0 given by

U0 “ tv P V ; ∆v P L2pΩq and Bνv “ 0 on Γ1u
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and observe that U0 ˆ t0u Ă H1 for any a P A . We endow U0 with the norm

}u0}U0 “

´

}u0}
2
V ` }∆u0}

2
L2pΩq

¯1{2
.

Define the initial-to-boundary operator

Λpaq : u0 P U0 ÞÑ Bνu P L
2pΓ1 ˆ p0, τqq,

where u “ upa, pu0, u1q is the solution of the IBVP (6.3). Then

Λpaq P BpU0, L
2pΓ1 ˆ p0, τqqq.

Henceforward for convenience the norm of Λpaq´Λp0q in BpU0, L
2pΓ1ˆp0, τqqq

will simply denoted by }Λpaq ´ Λp0q}.
The following Hölder stability inequality improve the result in [4].

Theorem 6.1. Let δ P p0, 1q. There exists a constant C only depending of δ, a
and ℵ so that

(6.4) }a´ 0}L2p0,1q‘L2p0,1q ď C}Λpaq ´ Λp0q}δ{r2p2`δqs

for each a P A .

Proof. We first observe that upaq is also the unique solution of
$

’

’

&

’

’

%

ż

Ω
u2ptqvdx “

ż

Ω
∇uptq ¨∇vdx´

ż

Γ1

au1ptqv, v P V.

up0q “ u0, u1p0q “ u1.

Therefore u “ upaq ´ u, where u “ up0, pu0, u1qq, is the solution of the following
problem

(6.5)

$

’

’

&

’

’

%

ż

Ω
u2ptqvdx “

ż

Ω
∇uptq ¨∇vdx´

ż

Γ1

au1ptqv ´

ż

Γ1

au1p0qptqv, v P V.

up0q “ 0, u1p0q “ 0.

For k, ` P Z set

λk` “

«

ˆ

k `
1
2

˙2
`

ˆ

``
1
2

˙2
ff

π2

φk`px, yq “ 2 cos
ˆˆ

k `
1
2

˙

πx

˙

cos
ˆˆ

``
1
2

˙

πy

˙

.

and observe that u “ cosp
?
λk` tqφk` when pu0, u1q “ pφk`, 0q.

Fix k and ` and set λptq “ cosp
?
λk` tq. Define wpaq P V 1 by

wpaqpvq “ ´
a

λk`

ż

Γ1

aφk`v.

Whence, (6.5) becomes
$

’

’

&

’

’

%

ż

Ω
u2ptqvdx “

ż

Ω
∇uptq ¨∇vdx´

ż

Γ1

au1ptqv ` λptqwpaqpvq, v P V.

up0q “ 0, u1p0q “ 0.
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In other words u is the solution of (6.1) with w “ wpaq. We find by applying
Proposition 6.1

(6.6) }wpaq}V 1 ď Ceλk`τ
2
}Bνu}L2pΓ1ˆp0,τqq.

By noting that pa1 b a2qφk` P V even if a1 b a2 R V we obtain

a1p0q
ˇ

ˇ

ˇ

ˇ

ż

Γ1

paφk`q
2dσ

ˇ

ˇ

ˇ

ˇ

“
1

?
λk`

|wpaqppa1 b a2qφk`q|(6.7)

ď
1

?
λk`
}wpaq}V 1}pa1 b a2qφk`}V ,

where we used that a1p0q “ a2p0q and

(6.8) }pa1 b a2qφk`}V ď C0
a

λkl}a1 b a2}H1pΩq.

Here and henceforth C0 is a generic constant independent of a and φk`.
Now a combination of (6.6), (6.7) and (6.8) yields

a1p0q
´

}a1φk}
2
L2p0,1q`}a2φ`}

2
L2p0,1q

¯

ď C}a1}H1p0,1q}a2}H1p0,1qe
λk`

τ2
2 }Bνu}L2pΓ1ˆp0,τqq,

where φkpsq “
?

2 cos ppk ` 1{2qπsq. This, a ď ajp0q and }aj}H1p0,1q ď ℵ imply

}a1φk}
2
L2p0,1q ` }a2φ`}

2
L2p0,1q ď C0e

λk`
τ2
2 }Bνu}L2pΓ1ˆp0,τqq.

Hence, where j “ 1 or 2,

(6.9) }ajφk}
2
L2p0,1q ď C0e

k2τ2π2
}Bνu}L2pΓ1ˆp0,τqq.

Let δ P p0, 1q be fixed. Observing that φ0psq „ πps´ 1q{2 as sÑ 1 we deduce that
|φ0|

´δ P L1p0, 1q. Then we obtain by following the proof of Lemma 3.2

}aj}L2p0,1q ď }|φ0|
´δ}

1{p2`δq
L1p0,1q }aj}

2{p2`δq
L8p0,1q}ajφ0}

δ{p2`δq
L2p0,1q(6.10)

ď C}ajφ0}
δ{p2`δq
L2p0,1q .

A combination of inequalities (6.10) and (6.9) with k “ 0 yields

}aj}L2p0,1q ď C}Bνu}
δ{r2p2`δqs
L2pΓ1ˆp0,τqq.

This achieves the proof of the expected inequality. �
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