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HOW TO USE OBSERVABILITY INEQUALITIES TO SOLVE SOME INVERSE

PROBLEMS FOR EVOLUTION EQUATIONS ? AN UNIFIED APPROACH

KAÏS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

Abstract. We survey some of our recent results on inverse problems for evolution equations. The goal

is to provide an unified approach to solve various type of evolution equations. The inverse problems we

consider consist in determining unknown coefficients from boundary measurements by varying initial con-
ditions. Based on observability inequalities, and a special choice of initial conditions we provide uniqueness

and stability estimates for the recovery of volume and boundary lower order coefficients in wave and heat

equations. Some of the results presented here are slightly improved from their original versions.
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1. Introduction

Inverse coefficient problems in heat and wave equations using control results has been developed by a
large community of people (see for instance [7, 26, 16, 17] and the references therein). In [2] the authors
initiated a general method to deal with inverse source problems for evolution equations. Starting from the
ideas in [2], we developed an approach based on observability inequalities and spectral decompositions to
solve some inverse coefficients problems in evolution equations [3, 4, 5]. The measurements are made on a
sub-boundary by varying initial conditions. The key idea in our analysis consists in reducing the inverse
coefficients problems to inverse source problems. This is achieved by using spectral decompositions.

For clarity’s sake we limit ourselves to initial boundary value problems for wave and heat equations. But
our analysis can be extended to other type of evolution equation such as dynamical Schrödinger equation.
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The main ingredient in our approach is observability inequalities. We point out that the wave and the
heat equations have different observability properties. We know that, under some appropriate conditions,
the wave equation is exactly observable, while the heat equation is only final time observable. We refer to
Section 2 for details.

2. Observability inequalities

In this section we collect various observability inequalities, necessary to the analysis of the inverse problems
we want to tackle in this text. Since most of these results are well recorded in the literature, we limit ourselves
to give precise statement of them and provide the references where the proofs can be found.

2.1. Wave and heat equations for the Laplace-Beltrami operator. Let n ě 2 be an integer, and
consider M “ pM, gq a compact n-dimensional Riemannian manifold with boundary. By a manifold with
boundary, we mean a C8 manifold and its boundary is C8 manifold of dimension n ´ 1. Throughout this
text, we adopt the Einstein convention summation for repeated indices. If in any term the same index name
appears twice, as both an upper and a lower index, that term is assumed to be summed from 1 to n.

In local coordinates system x “ px1, . . . , xnq,

g “ gijdx
i b dxj .

Let pB1, . . . , Bnq be the dual basis to px1, . . . , xnq. For two vector fields X “ XiBi and Y “ Y jBj over M ,

xX,Y y “ gijX
iY j .

Set |X| “
a

xX,Xy.

As usual, the gradient of u P C8pMq is the vector field given by

∇u “ gijBiuBj

and the Laplace-Beltrami operator is the operator acting as follows

∆u “
1

?
det g

Bi

´

a

det g gijBju
¯

,

where pgijq denote the inverse of the metric pgijq.

We are first concerned with observability inequalities for the wave equation.

Consider the following initial-boundary value problem, abbreviated to IBVP’s in the sequel, for the wave
equation:

(2.1)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ 0 in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

Recall that the usual energy space for the wave equation is

H0 “ H1
0 pMq ‘ L

2pMq.

According to [10, sections 5 and 6, Chapter XVIII] or [6, Chapter 2]), for any q, a P L8pΩq, τ ą 0 and
pu0, u1q P H0, the IBVP (2.1) has a unique solution

u “ upq, a, pu0, u1qq P Cpr0, τ s, H
1
0 pMqq

so that Btu P Cpr0, τ s, L
2pMqq. If, additionally

}q}8 ` }a}8 ď N,

for some constant N ą 0, then, by the energy estimate,

(2.2) }u}Cpr0,τs,H1
0 pMqq

` }Btu}Cpr0,τs,L2pMqq ď C}pu0, u1q}H0
,

holds with C “ CpNq ą 0 is a nondecreasing function.
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Denote by ν the unit normal vector field pointing inward M and set Bνu “ x∇u, νy. From [6, Lemma
2.4.1], Bνu P L

2pBq and

(2.3) }Bνu}L2pBMq ď cM
`

}pu0, u1q}H0
` }qu` aBtu}L1pp0,τq,L2pMq

˘

,

where cM is a constant depending only on M .

In light of (2.2), (2.3) entails

(2.4) }Bνu}L2pBMq ď C}pu0, u1q}H0
,

with a constant C of the same form as in (2.2).

Let Γ, a non empty open subset of BM , and τ ą 0 so that pΓ, τq geometrically control M . This means
that if every generalized geodesic traveling at speed one in M meets Γ in a non-diffractive point at a time
t P p0, τq. We refer to [20] for a precise definition of this assumption.

In light of [20, theorem page 169] (see also [18, Theorem 1.5]), and bearing in mind that exact controlla-
bility is equivalent to exact observability, we can state the following inequality

2κ0}pu0, u1q}H0
ď }Bνu

0}L2pΓˆp0,τqq,

for some constant κ0 ą 0, where we set u0 “ up0, 0, pu0, u1qq for pu0, u1q P H0.

The perturbation argument in [25, Proposition 6.3.3, page 189] allows us red to show the existence of
β ą 0 so that, for any pq, aq PW 1,8pMq ‘ L8pMq satisfying }pq, aq}W 1,8pMq‘L8pMq ď β,

κ0}pu0, u1q}H0
ď }Bνu}L2pΓˆp0,τqq.

Here κ0 ą 0 is as in previous inequality and u “ upq, a, pu0, u1qq.

Fix N ą 0. Repeating the preceding argument
”

N
β

ı

` 1 times in order to deduce that there exist κ ą 0

so that pq, aq PW 1,8pMq ‘ L8pMq satisfying

}pq, aq}W 1,8pMq‘L8pMq ď N,

we have

κ}pu0, u1q}H0
ď }Bνu}L2pΓˆp0,τqq,

where u “ upq, a, pu0, u1qq.
We point out that the authors in [8] have established an observability inequality in which the constant κ

depends only on the L8 bound of the potential.

Theorem 2.1. Let N ą 0 and assume that pΓ, τq geometrically control M . There exists κ ą 0 so that, for
any pq, aq PW 1,8pMq ‘ L8pMq satisfying

}pq, aq}W 1,8pMq‘L8pMq ď N,

we have

(2.5) κ}pu0, u1q}H0
ď }Bνu}L2pΓˆp0,τqq,

where u “ upq, a, pu0, u1qq.

Next, we examine the case where we do not assume that pΓ, τq geometrically control M . To this end,
define

dpΓq “ suptdpx,Γq; x PMu.

Introduce the notation

v “ vpq, pu0, v0qq “ upq, 0, pu0, u1qq

and set

H´1 “ L2pMq ‘H´1pMq.

In light of [18, Corollary 3.2] , we have
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Theorem 2.2. Let N ą 0 and assume that dpΓq ă 8. Under the assumption τ ą 2dpΓq, there exist strictly
positive constants C, κ and ε0 so that for any q P L8pMq with }q}L8pMq ď N , we have

(2.6) C}pu0, u1q}H´1 ď eκε}Bνv}L2pΓˆp0,τqq `
1

ε
}pu0, u1q}H0

, pu0, u1q P H0, ε ě ε0.

Here v “ vpq, pu0, v0qq.

Next, we a give an observability inequality for a parabolic equation. Consider then the IBVP

(2.7)

$

&

%

Btu´∆u` qpxqu “ 0 in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0.

For q P L8pMq, let Aq “ ∆ ´ q with domain DpAqq “ H1
0 pMq X H2pMq. As A0 is an m-dissipative

operator, we deduce form the well established theory of continuous semigroups that Aq generates a strongly
continuous semigroup etAq . Therefore, for any u0 P L

2pMq the IBVP has a unique solution

u “ upq, u0q “ etAqu0 P Cpr0, τ s, L
2pMqq X C1ps0, τ s, H2pMq XH1

0 pMqq.

The perturbation argument we used previously for the wave equation is stated in general abstract setting
[25, Proposition 6.3.3, page 189]. So it is in particular [25, Proposition 6.3.3, page 189] applicable for the
heat equation. This argument together with [19, Corollary 4] yield the following final time observability
inequality

Theorem 2.3. Let τ ą 0, Γ a non empty open subset of BM and N ą 0. There exists a constant κ ą 0 so
that, for any q P L8pMq satisfying }q}L2pMq ď N , we have

(2.8) }up¨, τq}L2pMq ď C}Bνu}L2pΓˆp0,τqq,

where u “ upq, u0q with u0 P L
2pMq.

2.2. Wave equation in a rectangular domain with boundary damping. In this subsection Ω “

p0, 1q ˆ p0, 1q. Consider

(2.9)

$

’

’

&

’

’

%

B2
t u´∆u “ 0 in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

Here

Γ0 “ pp0, 1q ˆ t1uq Y pt1u ˆ p0, 1qq,

Γ1 “ pp0, 1q ˆ t0uq Y pt0u ˆ p0, 1qq

and Bν “ ν ¨ ∇ is the derivative along ν, the unit normal vector pointing outward of Ω. Note that ν is
everywhere defined except at the vertices of Ω.

In the sequel we identify a|p0,1qˆt0u by a1 “ a1pxq, x P p0, 1q and a|t0uˆp0,1q by a2 “ a2pyq, y P p0, 1q. In
that case it is natural to identify a, defined on Γ1, by the pair pa1, a2q.

Fix 1
2 ă α ď 1 and let

A “ tb “ pb1, b2q P C
αpr0, 1sq ‘ Cαpr0, 1sq, b1p0q “ b2p0q, bj ě 0u.

Let V “ tu P H1pΩq; u “ 0 on Γ0u and consider on V ‘ L2pΩq the operator Aa, a P A , given by

Aa “ pw,∆vq, DpAaq “ tpv, wq P V ‘ V ; ∆v P L2pΩq and Bνv “ ´aw on Γ1u.

From [4], Aa generates a strongly continuous semigroup etAa . Whence, for any pu0, u1q P DpAaq, the IBVP
(2.9) has a solution u “ upa, pu0, u1qq so that

pu, Btuq P Cpr0, τ s, DpAaqq X C
1pr0, τ s, V ‘ L2pΩqq.

We proved in [4, Corollary 2.2] the following observability inequality
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Theorem 2.4. Fix 0 ă δ0 ă δ1. Then there exist τ0 ą 0 and κ ą 0, depending only on δ0 and δ1 so that
for any τ ě τ0 and a P A satisfying δ0 ď a ď δ1 on Γ1,

κ}pu0, u1q}V‘L2pΩq ď }Bνu}L2pΓ1ˆp0,τqq,

where u “ upa, pu0, u1qq, with pu0, u1q P DpAaq.

We notice here that this result is a direct consequence of the fact that the observation is made on Γ1

which fulfill the geometric control condition for τ ě τ0. If the observation is made only on one side of Γ1 we
obtain a Hölder type estimate (see [24]).

3. Weighted interpolation inequalities

We aim in the present section to establish two weighted interpolation inequalities. These inequalities are
useful in the proof of Hölder stability estimates for certain inverse problems we will discuss in the coming
sections.

As in the preceding section, M “ pM, gq is a compact n-dimensional Riemannian manifold with boundary.

Introduce the assumption:

pH q M is embedded in a n-dimensional complete manifold without boundary M0 “ pM0, gq and the
following Hardy’s inequality is fulfilled

(3.1)

ż

M

|∇fpxq|2dV ě c

ż

M

|fpxq|2

dpx, BMq2
dV, f P H1

0 pMq,

for some constant c ą 0, where dV is the volume form on M , d is the geodesic distance introduced previously,
and dp¨, BMq is the distance to BM .

Recall that Cx Ă TxM is α-angled cone if, for some X P TxM , Cx is of the form

Cx “ tY P TxM ; =xX,Y y ă αu.

Define rxpvq “ inft|t|; γx,vptq RMu, where γx,v is the geodesic satisfying the initial condition γx,vp0q “ x
and 9γx,vp0q “ v. Following [23], Hardy’s inequality (3.1) holds for M whenever M has the following uniform
interior cone property: there are an angle α ą 0 and a constant c0 ą 0 so that, for any x P M , there exists
an α-angled cone Cx Ă TxM with the property that rxpvq ď c0dpx, BMq, for all v P Cx. The proof in [23]
follows the method by Davies [11, page 25] for the flat case. Note that Hardy’s inequality holds for any
bounded Lipschitz domain of Rn, and c ď 1

4 with equality when Ω is convex.

The following Hopf’s maximum principle is a key ingredient for establishing our first weighted interpolation
inequality.

Lemma 3.1. Let q P CpMq and u P C2pMq X H1
0 pMq satisfying q ď 0 and ∆u ` qu ď 0. If u is non

identically equal to zero, then u ą 0 in 8M and Bνupyq “ x∇upyq, νpyqy ą 0 for any y P BM .

Proof. Similar to that of [13, Lemma 3.4, page 34 and Theorem 3.5, page 35]. The tangent ball in the classical
Hopf’s lemma is substitute by a tangent geodesic ball (see the construction in [22, Proof of Theorem 9.2,
page 51]). �

Proposition 3.1. Let q P CpMq and u P C2pMq XH1
0 pMq satisfying q ď 0 and ∆u ` qu ď 0. If u is non

identically equal to zero, then

upxq ě cudpx, BMq, x PM,

the constant cu only depends on u and M .

Proof. Let 0 ă ε to be specified later. Let x P M so that dpx, BMq ď ε and y P BM satisfying dpx, BMq “
dpx, yq. Since M is complete, there exist a unit speed minimizing geodesic γ : r0, rs ÑM such that γp0q “ y,
γprq “ x and 9γp0q “ νpyq, where we set r “ dpx, BMq (see for instance [21, page 150]).
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Define φptq “ upγptqq. Then

φ1ptq “ dupγptqqp 9γptqq

φ2ptq “ d2upγptqqp 9γptq, 9γptqq ` dupγptqqp:γptqq.

Here 9γptq “ 9γiptqBi P Tγptq. Observe that by the geodesic equation

:γkptq “ ´ 9γiptq 9γjptqΓkijpγptqq,

where Γkij are the Christoffel symbols associated to the metric g.

Taking into account that φ1p0q “ dupyqpνpyqq “ x∇upyq, νpyqy “ Bνupyq, we get

φprq “ rBνupyq `
r2

2
φ2pstq,

for some 0 ă s ă 1. Hence, there exist c ą 0 depending on u and M so that

φprq ě 2rη ´ cr2 ě rη ` rpη ´ cεq

with 2η “ minyPΓ Bνupyq ą 0 (by the compactness of BM and Lemma 3.1). Thus,

φprq ě rη

provided that ε ď η{c. In other words, we proved

(3.2) upxq “ φprq ě rη “ ηdpx, BMq.

On the other hand, an elementary compactness argument yields, where M ε “ tx PM ; dpx, BMq ě εu,

(3.3) upxq ě min
zPMε

upzq ě
minzPMε upzq

maxzPMε dpz, BMq
dpx, BMq, x PM ε.

In light of (3.2) and (3.3), we end up getting

upxq ě cudpx, BMq, x PM.

�

A consequence of Proposition 3.1 is

Corollary 3.1. Assume that pH q is satisfied. Let q P CpMq, q ď 0, and u P C2pMq X H1
0 pMq non

identically equal to zero satisfying ∆u ` qu ď 0. There exists a constant Cu, only depending on u and M ,
so that, for any f P H2pMq, we have

}f}L2pMq ď Cu}fu}
1
2

L2pMq}f}
1
2

H2pMq.

Proof. By Proposition 3.1, upxq ě cudpx, BMq. Therefore
ż

M

fpxq2dV pxq ď c´1
u

ż

M

fpxq2upxq2

dpx, BMq2
dV pxq.

Combined with Hardy’s inequality (3.1), this estimate gives

(3.4)

ż

M

fpxq2dV pxq ď c´1
u c

ż

M

|∇pfuqpxq|2dV pxq.

But, from usual interpolation inequalities,

}fu}H1pMq ď C}fu}
1
2

L2pMq}fu}
1
2

H2pMq,

where the constant C only depends on M .
Whence, (3.4) implies

}f}L2pMq ď Cu}fu}
1
2

L2pMq}f}
1
2

H2pMq,

which is the expected inequality �
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Let 0 ď q P C1pMq be fixed and consider the operator A “ ´∆`q, with domain DpAq “ H2pMqXH1
0 pMq.

An extension of [13, Theorem 8.38, page 214] to a compact Riemannian manifold with boundary shows that
the first eigenvalue of A, denoted by λ1 is simple and has a positive eigenfunction. Let then φ1 P C

2pMq
(by elliptic regularity) be the unique first eigenfunction satisfying φ1 ą 0 and normalized by }φ1}L2pMq “ 1.
Since ∆φ1´ qφ1 “ ´λ1φ1, the Hopf’s maximum principle is applicable to φ1. Therefore, a particular weight
in the preceding corollary is obtained by taking u “ φ1.

Corollary 3.2. Under assumption pH q, there exists a constant c ą 0, depending on φ1, so that, for any
f P H2pMq, we have

(3.5) }f}L2p 8Mq ď c}fφ1}
1
2

L2pMq}f}
1
2

H2pMq.

The second weighted interpolation inequality relies on the following proposition.

Proposition 3.2. Let p P L8pMq and u P W 2,npMq satisfying p∆ ` pqϕ “ 0 in M and ϕ2 P W 2,npMq.
Then there exists δ “ δpϕq ą 0 so that |ϕ|´δ P L1pMq.

It is worth mentioning that δ ă 1 as soon as ϕ vanishes at some point x0 P M . Indeed, in the flat case
ψpxq „ |x´ x0|

k near x0 if x0 is a zero of order k. Hence |ϕ|´δ is locally integrable in a neighborhood of x0

if and only if δk ă 1.

Sketch of the proof. First step. Denote by B the unit ball of Rn and let B` “ B X Rn`, with Rn` “ tx “
px1, xnq P Rn; xn ą 0u. Let L be a second order differential operator acting as follows

Lu “ BjpaijBiuq ` C ¨∇u` du.
Assume that paijq is a symmetric matrix with entries in C1p2B`q, C P L8p2B`q

n is real valued and
d P L8p2B`q is complex valued. Assume moreover that

aijpxqξj ¨ ξj ě κ0|ξ|
2, x P 2B`, ξ P Rn,

for some κ0 ą 0.

Let u P W 2,np2B`q X C0p2B`q be a weak solution of Lu “ 0 satisfying u “ 0 on Bp2B`q X Rn` and

|u|2 PW 2,np2B`q XC
0p2B`q. From [1, Theorem 1.1, page 942], there exists a constant C, that can depend

on u, so that the following doubling inequality at the boundary
ż

B2rXB`

|u|
2
dx ď C

ż

BrXB`

|u|
2
dx,

holds for any ball B2r, of radius 2r, contained in 2B.

On the other hand simple calculations yield, where v “ <u and w “ =u,

BjpaijBi|u|
2q ` 2C ¨∇|u|2 ` 4p|<d| ` |=d|q|u|2 ě 2aijBivBjv ` 2aijBiwBjw ě 0 in 2B`

and |u|2 “ 0 on Bp2B`q X Rn`.

Harnak’s inequality at the boundary (see [13, Theorem 9.26, page 250]) entails

sup
BrXB`

|u|
2
ď

C

|B2r|

ż

B2rXB`

|u|
2
dx,

for any ball B2r, of radius 2r, contained in 2B.

Define ru by

rupx1, xnq “ upx1, xnq if px1, xnq P 2B`, rupx1, xnq “ upx1,´xnq if px1,´xnq P 2B`.

Therefore ru belongs to H1p2Bq X L8p2Bq and satisfies
ż

B2r

|ru|2dx ď C

ż

Br

|ru|2dx,(3.6)

sup
Br

|ru|2 ď
C

|B2r|

ż

B2r

|ru|
2
dx,(3.7)
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for any ball B2r, of radius 2r, contained in 2B.

Inequalities (3.6) and (3.7) at hand, we mimic the proof of [9, Theorem 4.2, page 1784] in order to obtain
that |ru|´δ P L1pBq for some δ ą 0 depending on u. Whence |u|´δ P L1pB`q.

Second step. As BM is compact, there exists a finite cover pUαq of BM and C8-diffeomorphisms fα :

Uα Ñ 2B so that fαpUα X 8Mq “ 2B`, fαpUα X BMq “ 2B X Rn` and, for any x P BM , x P Vα “ f´1
α pBq,

for some α. Then uα “ ϕ ˝ f´1
α satisfies Lαuα “ 0 in 2B and u “ 0 on Bp2B`q X Rn` for some L “ Lα

obeying to the conditions of the first step. Hence |uα|
´δα P L1pB`q and then |ϕ|´δα P L1pVαq. Let V the

union of Vα’s. Since u P L8pV q, |u|´δ0 P L1pV q with δ0 “ min δα. Next, let ε sufficiently small in such a
way that MzMε Ă V , where Mε “ tx PM ; distpx, BMq ą εu. Proceeding as previously it is not hard to get
that there exists δ1 so that |ϕ|´δ1 P L1pMε{2q. Finally, as it is expected, we derive that |ϕ|´δ P L1pMq with
δ “ minpδ0, δ1q.

�

Lemma 3.2. Let δ ą 0 be as in Proposition 3.2. There exists a constant C ą 0, depending on ϕ, so that,
for any f P L8pMq, we have

}f}L2pMq ď C}f}
2

2`δ

L8pMq}fϕ}
δ

2`δ

L2pMq.

Proof. Since ϕ in Proposition 3.2 belongs to L8pMq, substituting δ by minp1, δq if necessary, we assume
that δ ă 2. We get by applying Cauchy-Schwarz’s inequality

ż

M

|f |δ{2dV ď }|fϕ|δ}
1{2
L1pMq}|ϕ|

´δ}
1{2
L1pMq.

But, by Hölder’s inequality,

}|fϕ|δ}
1{2
L1pMq ď VolpMqp2´δq{4}fϕ}

δ{2
L2pMq.

Whence

(3.8) }|f |δ{2}L1pMq ď VolpMqp2´δq{4}fϕ}
δ{2
L2pMq}|ϕ|

´δ}
1{2
L1pMq.

On the other hand

(3.9) }f}L2pMq ď }f}
1´δ{4
L8pMq}|f |

δ{2}
1{2
L1pMq.

A combination of (3.8) and (3.9) yields

}f}L2pMq ď C}f}
1´δ{4
L8pMq}fϕ}

δ{4
L2pMq,

which is the expected inequality.
�

4. Inverse source problem: abstract framework

Let H be a Hilbert space and A : DpAq Ă H Ñ H be the generator of continuous semigroup T ptq. An
operator C P BpDpAq, Y q, Y is another Hilbert space which is identified with its dual space, is called an
admissible observation for T ptq if for some (and hence for all) τ ą 0, the operator Ψ P BpDpAq, L2pp0, τq, Y qq,
given by

pΨxqptq “ CT ptqx, t P r0, τ s, x P DpAq,

has a bounded extension to H.

We introduce the notion of exact observability for the system

z1ptq “ Azptq, zp0q “ x,(4.1)

yptq “ Czptq,(4.2)

where C is an admissible observation for T ptq. Following the usual definition, the pair pA,Cq is said exactly
observable at time τ ą 0 if there is a constant κ such that the solution pz, yq of (4.1) and (4.2) satisfies

ż τ

0

}yptq}2Y dt ě κ2}x}2H , x P DpAq.
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Or equivalently

(4.3)

ż τ

0

}pΨxqptq}2Y dt ě κ2}x}2H , x P DpAq.

Consider the Cauchy problem

(4.4) z1ptq “ Azptq ` λptqx, zp0q “ 0

and set

(4.5) yptq “ Czptq, t P r0, τ s.

By Duhamel’s formula, we have

(4.6) yptq “

ż t

0

λpt´ sqCT psqxds “

ż t

0

λpt´ sqpΨxqpsqds.

Let

H1
` pp0, τq, Y q “

 

u P H1pp0, τq, Y q; up0q “ 0
(

.

We define the operator S : L2pp0, τq, Y q ÝÑ H1
` pp0, τq, Y q by

(4.7) pShqptq “

ż t

0

λpt´ sqhpsqds.

If E “ SΨ, then (4.6) takes the form

yptq “ pExqptq.

Theorem 4.1. We assume that pA,Cq is exactly observable for τ ě τ0, for some τ0 ą 0. Let λ P H1p0, τq
satisfies λp0q ‰ 0. Then E is one-to-one from H onto H1

` pp0, τq, Y q and

(4.8)
κ|λp0q|
?

2
e
´τ

}λ1}2
L2p0,τq

|λp0q|2 }x}H ď }Ex}H1
` pp0,τq,Y q

, x P H.

Proof. First, taking the derivative with respect to t of both sides of the integral equation
ż t

0

λpt´ sqϕpsqds “ ψptq,

we get a Volterra integral equation of second kind

λp0qϕptq `

ż t

0

λ1pt´ sqϕpsqds “ ψ1ptq.

Mimicking the proof of [15, Theorem 2, page 33], we obtain that this integral equation has a unique solution
ϕ P L2pp0, τq, Y q and

}ϕ}L2pp0,τq,Y q ď C}ψ1}L2pp0,τq,Y q

ď C}ψ}H1
` pp0,τq,Y q

.

Here C “ Cpλq is a constant.

To estimate the constant C above, we first use the elementary convexity inequality pa` bq2 ď 2pa2 ` b2q
in order to get

}|λp0q|ϕptq}2Y ď 2

ˆ
ż t

0

|λ1pt´ sq

|λp0q|
r|λp0q|}ϕpsq}Y s ds

˙2

` 2}ψ1ptq}2Y .

Thus,

|λp0q|2}ϕptq}2Y ď 2
}λ1}2L2pp0,τqq

|λp0q|2

ż t

0

|ϕp0q|2}ϕpsq}2Y ds` 2}ψ1ptq}2Y
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by the Cauchy-Schwarz’s inequality. Therefore, using Gronwall’s lemma, we obtain in a straightforward
manner

}ϕ}L2pp0,τq,Y q ď

?
2

|λp0q|
e
τ
}λ1}2

L2pp0,τqq

|λp0q|2 }ψ1}L2pp0,τq,Y q

and then

}ϕ}L2pp0,τq,Y q ď

?
2

|λp0q|
e
τ
}λ1}2

L2pp0,τqq

|λp0q|2 }Sϕ}H1
` pp0,τq,Y q

.

In light of (4.3), we end up getting

}Ex}H1
` pp0,τq,Y q

ě
κ|λp0q|
?

2
e
´τ

}λ1}2
L2pp0,τqq

|λp0q|2 }x}H .

�

We shall need a variant of Theorem 4.1. If pA,Cq is as in Theorem 4.1, then, as in the preceding section,
by the perturbation argument in [25, Proposition 6.3.3, page 189], for any N ą 0, there is κ ą 0 such that
for any P P BpHq satisfying }P } ď N , pA` P,Cq is exactly observable with κpP `Aq ě κ.

We define EP similarly to E by substituting A by A` P .

Theorem 4.2. Let N ą 0 and assume that pA,Cq is exactly observable for τ ě τ0, for some τ0 ą 0. Let
λ P H1p0, τq satisfies λp0q ‰ 0. For any P P BpHq, EP is one-to-one from H onto H1

` pp0, τq, Y q and

(4.9)
κ|λp0q|
?

2
e
´τ

}λ1}2
L2p0,τq

|λp0q|2 }x}H ď }E
Px}H1

` pp0,τq,Y q
, x P H.

Here κ is the observability inequality of A` P , depending on N but not in P .

We will consider inverse source problems with singular sources. So we need to extend Theorem 4.1. Fix
then β in the resolvent set of A. Let H1 be the space DpAq equipped with the norm }x}1 “ }pβ ´Aqx} and
denote by H´1 the completion of H with respect to the norm }x}´1 “ }pβ ´ Aq´1x}. As it is observed in
[25, Proposition 4.2, page 1644] and its proof, when x P H´1 (which is the dual space of H1 with respect
to the pivot space H) and λ P H1p0, τq, then, according to the classical extrapolation theory of semigroups,
the Cauchy problem (4.1) has a unique solution z P Cpr0, τ s, Hq. Additionally, y given in (4.2) belongs to
L2pp0, τq, Y q.

When x P H, we have by Duhamel’s formula

(4.10) yptq “

ż t

0

λpt´ sqCT psqxds “

ż t

0

λpt´ sqpΨxqpsqds.

Let
H1
` pp0, τq, Y q “

 

u P H1pp0, τq, Y q; up0q “ 0
(

.

We define the operator S : L2pp0, τq, Y q ÝÑ H1
` pp0, τq, Y q by

(4.11) pShqptq “

ż t

0

λpt´ sqhpsqds.

If E “ SΨ, then (4.10) takes the form
yptq “ pExqptq.

Let Z “ pβ ´A˚q´1pX ` C˚Y q.

Theorem 4.3. Assume that pA,Cq is exactly observable at time τ . Then
(i) E is one-to-one from H onto H1

` pp0, τq, Y q.

(ii) E is extended to an isomorphism, denoted by rE, from Z 1 onto L2pp0, τq, Y q.
(iii) There exists a constant rκ, independent on λ, so that

(4.12) }x}Z1 ď rκ|λp0q|e

}λ1}2
L2pp0,τqq

|λp0q|2
τ
} rEx}L2pp0,τq,Y q.
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Proof. We give the proof of (ii) and (iii). (i) is contained in Theorem 4.1. To do this, we start by observing
that S˚, the adjoint of S, maps L2pp0, τq, Y q into H1

r pp0, τq, Y q, where

H1
r pp0, τq, Y q “

 

u P H1pp0, τq, Y q; upτq “ 0
(

.

Moreover

S˚hptq “

ż τ

t

λps´ tqhpsqds, h P L2pp0, τq, Y q.

Fix h P L2pp0, τq, Y q and set k “ S˚h. Then

k1ptq “ λp0qhptq ´

ż τ

t

λ1ps´ tqhpsqds.

Hence

|λp0q}hptq}2 ď

ˆ
ż τ

t

|λ1ps´ tq|

|λp0q|
r|λp0q|}hpsq}sds` }k1ptq}

˙2

ď 2

ˆ
ż τ

t

|λ1ps´ tq|

|λp0q|
r|λp0q|}hpsq}sds

˙2

` 2}k1ptq}2

ď 2
}λ1}2L2pp0,τqq

|λp0q|2

ż t

0

r|λp0q|}hpsq}s2ds` 2}k1ptq}2.

The last estimate is obtained by applying Cauchy-Schwarz’s inequality.

A simple application of Gronwall’s lemma entails

r|λp0q|}hptq}s2 ď 2e
2
}λ1}2

L2pp0,τqq

|λp0q|2
τ
}k1ptq}2.

Therefore,

}h}L2pp0,τq,Y q ď

?
2

|λp0q|
e

}λ1}2
L2pp0,τqq

|λp0q|2
τ
}k1}L2pp0,τq,Y q.

This inequality yields

(4.13) }h}L2pp0,τq,Y q ď

?
2

|λp0q|
e

}λ1}2
L2pp0,τqq

|λp0q|2
τ
}S˚h}H1

r pp0,τq,Y q
.

The adjoint operator of S˚, acting as a bounded operator from rH1
r pp0, τq;Y qs

1 into L2pp0, τq;Y q, gives an

extension of S. We denote by rS this operator. By [25, Proposition 4.1, page 1644] rS defines an isomorphism
from rHrpp0, 1q;Y qs

1 onto L2pp0, τq;Y q. In light of the identity

}rS}BprH1
r pp0,τq;Y qs

1;L2pp0,τq,Y qq “ }S
˚}BpL2pp0,τq;Y q;H1

r pp0,τq,Y qq
,

(4.13) implies

(4.14)
|λp0q|
?

2
e
´
}λ1}2

L2pp0,τqq

|λp0q|2
τ
ď }rS}BprH1

r pp0,τq;Y qs
1;L2pp0,τq;Y qq.

On the other hand, according to [25, Proposition 2.13, page 1641], Ψ possesses a unique bounded extension,

denoted by rΨ from Z 1 into rH1
r pp0, τq;Y qs

1 and there exists a constant c ą 0 so that

(4.15) }rΨ}BpZ1;rH1
r pp0,τq;Y qs

1q ě c.

rE “ rS rΨ gives the unique extension of E to an isomorphism from Z 1 onto L2pp0, τq, Y q.

We end up the proof by noting that (4.12) is a consequence of (4.14) and (4.15). �

5. Inverse problems for evolution equations associated to Laplace-Beltrami operator

In this section M “ pM, gq is a compact n-dimensional Riemannian manifold with boundary, τ ą 0 and
Γ is a nonempty subset of BM .
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5.1. Inverse source problem for the wave equation. Consider the IBVP for the wave equation

(5.1)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ gptqfpxq in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Let Γ be a nonempty subset of BM and assume that pΓ, τq geometrically control M . Fix N ą 0 and
denote by κ the observability constant corresponding to arbitrary pq, aq PW 1,8pMq ‘ L8pMq satisfying

}pq, aq}W 1,8pMq‘L8pMq ď N.

For f P L2pMq and g P H1p0, τq with gp0q ‰ 0. According to Theorem 4.1, we have

(5.2) }f}L2pMq ď

?
2

κ|gp0q|
e
τ
}g1}2

L2p0,τq

|gp0q|2 }Bνu}H1pp0,τq,L2pΓqq,

where u “ upq, a, f, gq denotes the solution of the IBVP (5.1).

As an immediate consequence of this inequality, we have

Theorem 5.1. Assume that pΓ, τq geometrically control M . Let N ą 0 and g P H1p0, τq satisfying gp0q ‰ 0.
Then there exists a constant C, depending on κ, Γ, τ and g so that, for any pq, aq P W 1,8pMq ‘ L8pMq
with

}pq, aq}W 1,8pMq‘L8pMq ď N,

we have

}f}L2pMq ď C}Bνu}H1pp0,τq,L2pΓqq,

Here u “ upq, a, f, gq denotes the solution of the IBVP (5.1).

For simplicity’s sake, set v “ vpq, f, gq “ upq, 0, f, gq. That is v is the solution of the IBVP

(5.3)

$

&

%

B2
t u´∆u` qpxqu “ gptqfpxq in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Using Duhamel’s formula, it is not hard to check that

vpx, tq “

ż t

0

gpt´ sqwpx, sqds,

where w “ wpfq is the solution of the IBVP

(5.4)

$

&

%

B2
tw ´∆w ` qpxqw “ 0 in M ˆ p0, τq,
w “ 0 on BM ˆ p0, τq,
wp¨, 0q “ f, Btwp¨, 0q “ 0.

Let

H1
` pp0, τq, L

2pΓqq “
 

u P H1pp0, τq, L2pΓqq; up0q “ 0
(

and define the operator S : L2pΓˆ p0, τqq ÝÑ H1
` pp0, τq, L

2pΓqq by

pShqptq “

ż t

0

gpt´ sqhpsqds.

We have seen in the proof of Theorem 4.1 that S is an isomorphism and

}h}L2pΓˆp0,τqq ď

?
2

κ|gp0q|
e
τ
}g1}2

L2pp0,τqq

|gp0q|2 }Sh}H1pp0,τq,L2pΓqq.

Whence

(5.5) }Bνw}L2pΓˆp0,τqq ď

?
2

κ|gp0q|
e
τ
}g1}2

L2pp0,τqq

|gp0q|2 }Bνv}H1pp0,τq,L2pΓqq.
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Let N ą 0, assume that dpΓq ă 8 and τ ą 2dpΓq. From Theorem 2.2, there exist three constants C, κ
and ε0 so that for any q P L8pMq with }q}L8pMq ď N , we have

(5.6) C}f}L2pMq ď eκε}Bνw}L2pΓˆp0,τqq `
1

ε
}f}H1

0 pMq
, ε ě ε0.

Now (5.5) in (5.6) yields

(5.7) C}f}L2pMq ď eκε
?

2

κ|gp0q|
e
τ
}g1}2

L2pp0,τqq

|gp0q|2 }Bνv}H1pp0,τq,L2pΓqq `
1

ε
}f}H1

0 pMq
, ε ě ε0.

Let
Ψpρq “ | ln ρ |´1 ` ρ, ρ ą 0,

extended by continuity at ρ “ 0 by setting Ψp0q “ 0.

A standard minimization argument, with respect to ε in (5.7) enables us to establish

Theorem 5.2. Let N ą 0, R ą 0, assume that dpΓq ă 8 and τ ą 2dpΓq. Let g P H1p0, τq satisfying
gp0q ‰ 0. Then there exists a constant C ą 0, depending on N , R, Γ, τ and g so that, for any q P L8pMq
with }q}L8pMq ď N and any f P H1

0 pMq satisfying }f}H1
0 pMq

ď R, we have

}f}L2pMq ď CΨ
`

}Bνv}H1pp0,τq,L2pΓqq

˘

,

where v “ vpq, f, gq is the solution of the IBVP (5.3)

5.2. Determining the potential and the damping coefficient in a wave equation. Introduce the
IBVP for the wave equation

(5.8)

$

&

%

B2
t u´∆u` qpxqu` apxqBtu “ 0 in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

Recall that
H0 “ H1

0 pMq ‘ L
2pMq

and let N ą 0.

We have seen in Section 1 that, for any pq, aq P L8pMq ‘ L8pMq, τ ą 0 and pu0, u1q P H0, the IBVP
(5.8) has a unique solution

u “ upq, a, pu0, u1qq P Cpr0, τ s, H
1
0 pMqq

so that Btu P Cpr0, τ s, L
2pMqq and Bνu P L

2pBM ˆ p0, τqq. Moreover, under the assumption

}pq, aq}L8pMq‘L8pMq ď N,

we have

(5.9) }u}Cpr0,τs,H1
0 pMqq

` }Btu}Cpr0,τs,L2pMqq ď C}pu0, u1q}H0

and

(5.10) }Bνu}L2pBMˆp0,τqq ď C}pu0, u1q}H0
.

Here C “ CpNq is a nondecreasing function.

Define the initial-to-boundary operator Λpq, aq as follows

Λpq, aq : pu0, u1q P H0 ÞÑ Bνupq, a, pu0, u1qq P L
2pΓˆ p0, τqq.

Let
H1 “ pH

1
0 pMq XH

2pMqq ‘H1
0 pMq.

Observing that
Btupq, a, pu0, u1qq “ upq, a, pu1,∆u0 ´ qu0 ´ au1qq,

we easily obtain that Λpq, aq P BpH1, H
1pp0, τq, L2pΓqqq. Additionally, as a consequence of (5.10), we have

}Λpq, aq}BpH1,H1pp0,τq,L2pΓqqq ď C,
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where the constant C is similar to that in (5.10).

Theorem 5.3. Assume that pΓ, τq geometrically control M . Let N ą 0 and 0 ď q P H2pMq. There exists a
constant C ą 0, depending on N and q, so that, for any prq,raq P H2pMq ‘H2pMq satisfying

}prq,raq}H2pMq‘H2pMq ď N,

we have

}rq ´ q}L2pMq ` }ra´ 0}L2pMq ď C}Λprq,raq ´ Λpq, 0q}
1
2

BpH1,H1pp0,τq,L2pΓqqq.

Proof. Let 0 ď φ1 be the first eigenfunction of the operator ´∆ ` q with domain H2pMq XH1
0 pMq. This

eigenfunction is normalized by }φ1}L2pMq “ 1. If

u “ upq, 0, pφ1, i
a

λ1φ1qq “ ei
?
λ1 tφ1 and ru “ uprq,ra, pφ1, i

a

λ1 φ1qq,

then v “ ru´ u is the solution of the following IBVP

(5.11)

$

&

%

B2
t v ´∆v ` rqv ` rapxqBtv “ ´rprq ´ qq ` i

?
λ1rase

i
?
λ1tφ1 in M ˆ p0, τq,

v “ 0 on BM ˆ p0, τq,
vp¨, 0q “ 0, Btvp¨, 0q “ 0.

Bearing in mind that pΓ, τq geometrically control M , we get from Theorems 5.1

}φ1prq ´ qq}L2pMq ` }φ1ra}L2pMq ď C}Bνv}H1pp0,τq,L2pBMqq.

This inequality, combined with Corollary 3.1, yields

}rq ´ q}L2pMq ` }ra´ 0}L2pMq ď C}Bνv}
1
2

H1pp0,τq,L2pΓqq.

This inequality entails in a straightforward manner the expected one. �

Denote the sequence of eigenvalues, counted according to their multiplicity, of A “ ´∆ with domain
H2pMq XH1

0 pMq, by 0 ă λ1 ă λ2 ď . . . ď λk Ñ8.

Consider, on H0, the operators

A “
ˆ

0 I
´A 0

˙

, DpAq “ H1

and Apq, aq “ A` Bpq, aq with DpApq, aqq “ DpAq, where

Bpq, aq “
ˆ

0 0
´q ´a

˙

P BpH0q.

From [25, Proposition 3.7.6, page 100], A is skew-adjoint operator with 0 P ρpAq and

A´1
0 “

ˆ

0 ´A´1

I 0

˙

.

We note that, since A´1 : H Ñ H1 is bounded and the embedding H1 ãÑ H is compact, A´1 : H Ñ H is
compact.

Also, from [25, Proposition 3.7.6, page 100], A is diagonalizable and its spectrum consists in the sequence
pi
?
λkq.

Introduce the bounded operator Cpq, aq “ piA´1
0 qp´iBpq, aqqpiA´1q. Let skpCpq, aqq be the singular values

of Cpq, aq, that is the eigenvalues of rCpq, aq˚Cpq, aqs 12 . In light of [14, formulas (2.2) and (2.3), page 27], we
have

skpCpq, aqq ď }Bpq, aq}skpiA´1q2 “ }Bpq, aq}λ´1
k ,

where }Bpq, aq} denote the norm of Bpq, aq in BpH0q.

On the other hand, referring to Weyl’s asymptotic formula, we have λk “ Opk
2
n q. Hence, Cq,a belongs to

the Shatten class Sp for any p ą n
2 , that is

ÿ

kě1

rskpCpq, aqqsp ă 8.
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We apply [14, Theorem 10.1, page 276] in order to get that the spectrum of Aq,a consists in a sequence of
eigenvalues pµkpq, aqq, counted according to their multiplicity, and the corresponding eigenfunctions pφkpq, aqq
form a Riesz basis of H0.

Fix pq, aq and k. Set µ “ µkpq, aq and φ “ φkpq, aq “ pϕ,ψq P H1 be an eigenfunction associated to µ.
Then it is straightforward to check that ψ “ µϕ and p´∆` q ` aµ` µ2qϕ “ 0 in M . Since ´∆ϕ “ f in M
with f “ pq` aµ` µ2qϕ, we can use iteratively [13, Corollary 7.11, page 158] (Sobelev embedding theorem)
together with [13, Theorem 9.15, page 241] in order to obtain that ϕ P W 2,ppMq for any 1 ă p ă 8. In
particular ϕ, |ϕ|2 PW 2,npMq X C0pMq. In other words, ϕ satisfies the assumption of Proposition 3.2.

If

u “ upq, a, φq and ru “ uprq,ra, φq,

and v “ ru´ u, then, similarly to Theorem 5.3, we prove

}ϕprq ´ qq}L2pMq ` }ϕpra´ aq}L2pMq ď C}Bνv}H1pp0,τq,L2pBMqq.

This and Lemma 3.1 yield

Theorem 5.4. Assume that pΓ, τq geometrically control M . Let N ą 0 and pq, aq P W 1,8pMq ‘ L8pMq.
There exists two constants C ą 0 and α ą 0, depending on N and pq, aq so that, for any prq,raq PW 1,8pMq‘
L8pMq satisfying

}prq,raq}W 1,8pMq‘L8pMq ď N,

we have

}rq ´ q}L2pMq ` }ra´ a}L2pMq ď C}Λprq,raq ´ Λpq, aq}αBpH1,H1pp0,τq,L2pΓqqq.

5.3. Determining the potential in a wave equation without geometric control assumption. Con-
sider the IBVP

(5.12)

$

&

%

B2
t u´∆u` qpxqu “ 0 in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ 0.

From the preceding subsection, the initial-to-boundary mapping

Λpqq : u0 P H
1
0 pMq XH

2pMq ÞÑ Bνu P H
1pp0, τq, L2pΓqq,

where, u “ upq, u0q is the solution on the IBVP, defines a bounded operator. Moreover, for any N ą 0, there
exists a constant C ą 0, depending on N , so that for any q P L8pMq satisfying }q}L8pMq ď N , we have

}Λpqq}BpH1
0 pMqXH

2pMq,H1pp0,τq,L2pΓqqq ď C.

Theorem 5.5. Let N ą 0, assume that dpΓq ă 8 and τ ą 2dpΓq. There exists a constant C ą 0 so that,
for any 0 ď q P L8pMq, rq P L8pMq satisfying q ´ rq PW 1,8pMq and

}q}L8pMq, }rq}L8pMq, }q ´ rq}W 1,8pMq ď N,

we have

}q ´ rq}L2pMq ď CΦ
´

}Λpqq ´ Λprqq}BpH1
0 pMqXH

2pMq,H1pp0,τq,L2pΓqqq

¯

,

with Φpρq “ | ln ρ|´
1

n`3 ` ρ, ρ ą 0, extended by continuity at ρ “ 0 by setting Φp0q “ 0.

Proof. Let 0 ď q P L8pMq satisfying }q}L8pMq ď N . Denote by 0 ă λ1 ď λ2 . . . ď λk . . . the eigenvalues

of the operator ´∆` q with domain H1
0 pMq XH

2pMq. Let pφkq an orthonormal basis of L2pMq consisting
in eigenfunctions, each φk is an eigenvalue for λk. Note that according to the usual elliptic regularity,
φk P C

8pMq for each k.

By the Weyl’s asymptotic formula and the min-max principle, there exists a constant β ą 1, depending
on N but not in q, so that

(5.13) β´1k
2
n ď λk ď βk

2
n .
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For rq P L8pMq with }rq}L8pMq ď N , set

u “ upq, φkq “ cospλktqφk and ru “ uprq, φkq.

Then v “ ru´ u is the solution of the IBVP, where gkptq “ cosp
?
λktq,

(5.14)

$

&

%

B2
t u´∆u` rqu “ prq ´ qqφkgkptq in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

We have }g1k}
2
L2p0,τq ď λkτ . Hence

(5.15) }g1k}
2
L2p0,τq ď βτk

2
n ,

by (5.13)
In the rest of this proof, C and c denote generic constant, depending only on M , N , Γ and τ . From (5.7),

we have

(5.16) C}prq ´ qqφk}L2pMq ď eκεeck
2
n
}Bνv}H1pp0,τq,L2pΓqq `

1

ε
}prq ´ qqφk}H1

0 pMq
, ε ě ε0.

On the other hand,

}prq ´ qqφk}H1
0 pMq

ď }rq ´ q}W 1,8pMq}φk}H1
0 pMq

ď 2N
a

λk

ď ck
1
n by (5.13).

This in (5.16) gives

C}prq ´ qqφk}L2pMq ď eκεeck
2
n
}Bνv}H1pp0,τq,L2pΓqq `

k
1
n

ε
, ε ě ε0.

On the other hand, by Cauchy-Schwarz inequality

prq ´ q, φkq
2 ď VolpMq}prq ´ qqφk}L2pMq.

Whence

Cprq ´ q, φkq
2 ď eκεeck

2
n
}Bνv}H1pp0,τq,L2pΓqq `

k
1
n

ε
, ε ě ε0.

But

}rq ´ q}2L2pMq “
ÿ

kď`

prq ´ q, φkq
2 `

ÿ

ką`

prq ´ q, φkq
2

ď
ÿ

kď`

prq ´ q, φkq
2 `

1

λ``1

ÿ

ką`

λkprq ´ q, φkq
2

ď
ÿ

kď`

prq ´ q, φkq
2 `

N2

p`` 1q
2
n

.

Thus

(5.17) C}rq ´ q}2L2pMq ď `eκεec`
2
n
}Bνv}H1pp0,τq,L2pΓqq `

1

p`` 1q
2
n

`
`1`

1
n

ε
.

Let s ě 1 be a real number and let ` be the unique integer so that ` ď s ă ` ` 1. Then (5.17) with that `
entails

(5.18) C}rq ´ q}2L2pMq ď seκεecs
2
n
}Bνv}H1pp0,τq,L2pΓqq `

1

s
2
n

`
s1` 1

n

ε
.
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Take ε “ s
3
n`1 in (5.18) in order to get, where s0 “ max

´

1, ε
n
n`3

0

¯

,

C}rq ´ q}2L2pMq ď
1

s
2
n

` ecs
2
n
`1

eκs
3
n
`1

}Bνv}H1pp0,τq,L2pΓqq, s ě s0.

Therefore

C}rq ´ q}2L2pMq ď
1

s
2
n

` ecs
3
n
`1

}Bνv}H1pp0,τq,L2pΓqq, s ě s0,

or equivalently,

C}rq ´ q}L2pMq ď
1

s
1
n

` ecs
3
n
`1

}Bνv}H1pp0,τq,L2pΓqq, s ě s0.

We end up getting the expected inequality by minimizing with respect to s. �

5.4. Inverse source problem for the heat equation. Consider the IBVP for the heat equation

(5.19)

$

&

%

Btu´∆u` qpxqu “ gptqfpxq in Q :“M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ 0.

From classical parabolic regularity theorems in anisotropic Sobolev space, where

H2,1pQq “ L2pp0, τq, H2pMqq XH1pp0, τq, L2pMqq,

for any f P L2pMq, g P L2p0, τq and q P L8pMq, the IBVP (5.19) has a unique solution

u “ upq, f, gq P H2,1pQq.

Moreover, for any N ą 0, there exists a constant C ą 0 so that, for any q P L8pMq satisfying }q}L8pMq ď N ,

(5.20) }u}H2,1pQq ď C}g}L2p0,τq}f}L2pMq.

If in addition g P H1p0, τq, then it is not hard to check that Btu is the solution of the IBVP (5.19) with g
substituted by g1. Hence Btu P H

2,1pQq and

(5.21) }Btu}H2,1pQq ď C}g1}L2p0,τq}f}L2pMq,

for any q P L8pMq satisfying }q}L8pMq ď N , where C is the same constant as in (5.20).

We derive that Bνu is well defined as an element of H1pp0, τq, L2pΓqq and, by (5.20), (5.21) and the
continuity of the trace on Γ,

}Bνu}H1pp0,τq,L2pΓqq ď C}g}H1p0,τq}f}L2pMq,

the constant C is as in (5.20).

The following result will be useful in the sequel.

Proposition 5.1. Let N ą 0. There exist two constants c ą 0 and C ą 0 so that, for any q P L8pMq
satisfying }q}L8pMq ď N , f P H1

0 pMq and g P H1p0, τq with gp0q ‰ 0,

(5.22) C}f}L2pMq ď
1
?
ε
}f}H1

0 pMq
`

1

|gp0q|
e
τ
}g1}2

L2p0,τq

|gp0q|2 ecε}Bνu}H1pp0,τq,L2pΓqq, ε ě 1,

where u “ upq, f, gq is the solution of the BVP (5.19).

Proof. Pick q P L8pMq satisfying }q}L8pMq ď N , f P H1
0 pMq and g P H1p0, τq with gp0q ‰ 0. Without

loss of generality, we may assume that q ě 0. Indeed, we have only to substitute u by ue´Nt, which is the
solution of the IBVP (5.19) when q is replaced by q `N .

Let v “ vpq, fq P H2,1pQq be the unique solution of the IBVP
$

&

%

Btv ´∆v ` qpxqv “ 0 in M ˆ p0, τq,
v “ 0 on BM ˆ p0, τq
vp¨, 0q “ f.
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Then Bνv is well defined as an element of L2pΓˆ p0, τqq. As for the wave equation

Bνu|Γp¨, tq “

ż t

0

gpt´ sqBνv|Γp¨, sqds.

Therefore

(5.23) }Bνv}L2pΓˆp0,τqq ď

?
2

|gp0q|
e
τ
}g1}2

L2pp0,τqq

|gp0q|2 }Bνu}H1pp0,τq,L2pΓqq.

From the final time observability inequality in Theorem 2.3, we have

(5.24) }vp¨, τq}L2pMq ď K}Bνv}L2pΓˆp0,τqq,

for some constant K ą 0, independent on q and f .

A combination of (5.23) and (5.24) yields

(5.25) C}vp¨, τq}L2pMq ď
1

|gp0q|
e
τ
}g1}2

L2pp0,τqq

|gp0q|2 }Bνu}H1pp0,τq,L2pΓqq.

Denote by 0 ă λ1 ď λ2 ď . . . ď λk Ñ 8 the sequence of eigenvalues of the ´∆ ` q with domain
H1

0 pMq XH2pMq. Let pφkq be a sequence of eigenfunctions, each φk corresponds to λk, so that pφkq form
an orthonormal basis of L2pMq.

By usual spectral decomposition, we have

vp¨, τq “
ÿ

`ě1

e´λkτ pf, φ`qφ`.

Here p¨, ¨q is the usual scalar product on L2pMq. In particular,

pf, φ`q
2 ď e2λ`τ }vp¨, τq}2L2pMq, ` ě 1.

Whence, for any integer k ě 1,
k
ÿ

`“1

pf, φ`q
2 ď ke2λkτ }vp¨, τq}2L2pMq.

This and the fact that
´

ř

`ě1 λ`p¨, φ`q
2
L2pΩq

¯
1
2

is an equivalent norm on H1
0 pMq lead

}f}2L2pMq “

k
ÿ

`“1

pf, φ`q
2 `

ÿ

`ěk`1

pf, φ`q
2

ď

k
ÿ

`“1

pf, φ`q
2 `

1

λk`1

ÿ

`ěk`1

λ`pf, φ`q
2

ď ke2λkτ }vp¨, τq}2L2pMq `
1

λk`1
}f}2H1

0 pMq
.

in the rest of this proof C and c are generic constants, independent on q, f and g.

Applying inequality (5.13), we get

(5.26) C}f}2L2pMq ď keck
2
n
}vp¨, τq}2L2pMq `

1

pk ` 1q
2
n

}f}2H1
0 pMq

.

Let ε ě 1 and k ě 1 be the unique integer so that k ď εn{2 ă k ` 1. We obtain in a straightforward
manner from (5.26)

(5.27) C}f}2L2pMq ď ecε}vp¨, τq}2L2pMq `
1

ε
}f}2H1pMq.

(5.25) in (5.27) gives the expected inequality. �
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If q P L8pMq and g P H1p0, τq satisfying gp0q ‰ 0 are fixed, we obtain, by minimizing with respect to ε,
the following corollary

Corollary 5.1. Let N ą 0, q P L8pMq and g P H1p0, τq satisfying gp0q ‰ 0. There exists a constant C ą 0,
depending on N , q and g so that, for any f P H1

0 pΩq with }f}H1
0 pMq

ď N , we have

C}f}L2pMq ď Φ
`

}Bνu}H1pp0,τq,L2pΓqq

˘

,

where u “ upq, f, gq is the solution of the IBVP (5.19) and Φpρq “ |ln ρ|
´ 1

2 ` ρ, ρ ą 0, extended at ρ “ 0 by
setting Φp0q “ 0.

5.5. Determining the zero order coefficient in a heat equation. Consider the IBVP

(5.28)

$

&

%

Btu´∆u` qpxqu “ 0 in M ˆ p0, τq,
u “ 0 on BM ˆ p0, τq,
up¨, 0q “ u0.

One more time, referring to classical regularity theorems in anisotropic Sobolev spaces, we derive that, for
q P L8pMq and u0 P H

1
0 pMq, the IBVP(5.28) has unique solution u “ upq, u0q P H

2,1pMˆp0, τqq. Moreover,
for any N ą 0, there exists a constant C ą 0 so that

(5.29) }upq, u0q}H2,1pMˆp0,τqq ď C}u0}H1
0 pMq

,

for any q P L8pMq satisfying }q}L8pMq ď N .

Define
H0pMq “ tw P H

1
0 pMq; ∆w P H1

0 pMqu

that we equip with its natural norm

}u}H0pMq “ }u}H1
0 pMq

` }∆u}H1
0 pMq

.

If q PW 1,8pMq and u0 P H0pMq, then it is straightforward to check that

Btupq, u0q “ upq,∆u0 ´ qu0q.

So applying (5.29), with u0 substituted by ∆u0 ´ qu0, we get

(5.30) }Btu}H2,1pMˆp0,τqq ď C}u0}H0pMq,

for any q PW 1,8pMq satisfying }q}W 1,8pMq ď N , where the constant C is independent on q.

Bearing in mind that the trace operator w P H2,1pM ˆ p0, τqq ÞÑ Bνw P L
2pΓ ˆ p0, τqq is bounded, we

obtain that Bνu P H
1pp0, τq, L2pΓqq provided that u0 P H0pMq and q PW 1,8pMq. Additionally, from (5.29)

and (5.30), we get
}Bνu}H1pp0,τq,L2pΓqq ď C}u0}H0pMq,

for any q PW 1,8pMq satisying }q}W 1,8pMq, where the constant C is independent on q.

That is we proved that the operator

N pqq : u0 P H0pMq ÞÑ Bνu P H
1pp0, τq, L2pΓqq

is bounded and
}N pqq}BpH0pMq,H1pp0,τq,L2pΓqqq ď C,

for any q PW 1,8pMq satisfying }q}W 1,8pMq ď N , where the constant C is independent on q.

In the sequel, for simplicity’s sake, }N prqq ´N pqq}BpH0pMq,H1pp0,τq,L2pΓqqq is denoted by }N prqq ´N pqq}.

Theorem 5.6. Let N ą 0. There exists a constant C ą 0 so that, for any q, rq PW 1,8pMq satisfying

}q}W 1,8pMq, }rq}W 1,8pMq ď N,

we have
C}rq ´ q}L2pMq ď Θ p}N prqq ´N pqq}q .

Here Θpρq “ |ln ρ|
´ 1

1`4n ` ρ, ρ ą 0, extended by continuity at ρ “ 0 by setting Θp0q “ 0.
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Proof. Let q, rq PW 1,8pMq satisfying

}q}W 1,8pMq, }rq}W 1,8pMq ď N.

As in the preceding subsection, without loss of generality, we assume that q ě 0.

Denote by 0 ă λ1 ď λ2 ď . . . ď λk Ñ8 the sequence of eigenvalues of the operator ´∆` q with domain
H1

0 pMqXH
2pMq. Let pφkq a sequence of the corresponding eigenfunctions so that pφkq form an orthonormal

basis of L2pMq.

Taking into account that upq, φkq “ e´λktφk, we obtain that

v “ uprq, φkq ´ upq, φkq

is the solution of the IBVP
$

&

%

Btv ´∆v ` qpxqv “ prq ´ qqφke
´λkt in M ˆ p0, τq,

uv “ 0 on BM ˆ p0, τq,
vp¨, 0q “ 0.

Therefore

N prqqpφkq ´N pqqpφkq “ Bνv
from which we deduce

}Bνv}H1pp0,τq,L2pΓqq ď Cλk}N prqq ´N pqq}.
Here and henceforth C and c denote generic constants, independent on q and rq.

As in the preceding subsection, we get from (5.22), for any ε ě 1,

(5.31) C|prq ´ q, φkq| ď

?
λk
?
ε
` eτλ

2
kecελ2

k}N prqq ´N pqq},

where we used the estimate }prq ´ qqφk}H1
0 pMq

ď C
?
λk.

A straightforward consequence of estimate (5.31) is

(5.32) C
ÿ̀

k“1

|prq ´ q, φkq
2
L2pMq ď

`λ`
ε
` `ecλ

2
` ecε}N prqq ´N pqq}2,

for any arbitrary integer ` ě 1.

Similarly to the proof of Theorem 5.5, inequality (5.32) yields, for any s ě 1,

C}rq ´ q}2L2pMq ď
s1` 2

n

ε
`

1

s
2
n

` ecs
1` 4

n ecε}N prqq ´N pqq}2.

The proof is then completed in the same manner to that of Theorem 5.5. �

6. Determining a boundary coefficient in a wave equation

6.1. Inverse source problem for the wave equation with boundary damping. In this subsection
Ω “ p0, 1q ˆ p0, 1q and

Γ0 “ pp0, 1q ˆ t1uq Y pt1u ˆ p0, 1qq,

Γ1 “ pp0, 1q ˆ t0uq Y pt0u ˆ p0, 1qq.

Consider the IBVP

(6.1)

$

’

’

&

’

’

%

B2
t u´∆u “ λptqw in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ 0, Btup¨, 0q “ 0.

Fix 1
2 ă α ď 1 and let

A “ tb “ pb1, b2q P C
αpr0, 1sq ‘ Cαpr0, 1sq, b1p0q “ b2p0q, bj ě 0u.
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If V “ tu P H1pΩq; u “ 0 on Γ0u, consider on V ‘ L2pΩq the operator Aa, a P A , given by

Aa “ pw,∆vq, DpAaq “ tpv, wq P V ‘ V ; ∆v P L2pΩq and Bνv “ ´aw on Γ1u.

We are going to apply Theorem 4.2 with H “ V ‘L2pΩq, H1 “ DpAaq equipped with its graph norm and
Y “ L2pΓ1q.

Denote by H´1 the dual of H1 with respect to the pivot space H.

If p0, wq P H´1 and λ P H1p0, τq, the IBVP (6.1) has a unique solution upwq so that pupwq, Btupwqq P
Cpr0, τ s;V ‘ L2pΩqq and Bνupwq|Γ1

P L2pΓ1 ˆ p0, τqq.

Taking into account that t0u ˆ V 1 Ă H´1, where V 1 is the dual space of V , we obtain as a consequence
of Theorem 4.2

Proposition 6.1. There exists a constant C ą 0 so that for any λ P H1p0, τq and w P V 1,

(6.2) }w}V 1 ď C|λp0q|e

}λ1}2
L2p0,τq

|λp0q|2
τ
}Bνuw}L2pΓ1ˆp0,τqq.

6.2. Determining the boundary damping coefficient in a wave equation. Let Ω and Γi, i “ 1, 2 as
in the preceding subsection. Consider then the IBVP

(6.3)

$

’

’

&

’

’

%

B2
t u´∆u “ 0 in Ωˆ p0, τq,
u “ 0 on Γ0 ˆ p0, τq,
Bνu` aBtu “ 0 on Γ1 ˆ p0, τq,
up¨, 0q “ u0, Btup¨, 0q “ u1.

For pu0, u1q P H1, the IBVP (6.3) possesses a unique solution u “ upa, pu0, u1qq so that

pua, Btuaq P Cpr0,8q, H1q X C
1pr0,8q, Hq.

Fix 0 ă a ď N and set

A “ tb “ pb1, b2q P A XH1p0, 1q ‘H1p0, 1q; a ď b1, b2, }b}
2
H1p0,1q‘H1p0,1q ď Nu.

Let U0 given by

U0 “ tv P V ; ∆v P L2pΩq and Bνv “ 0 on Γ1u

and observe that U0 ˆ t0u Ă H1, for any a P A . We endow U0 with the norm

}u0}U0
“

´

}u0}
2
V ` }∆u0}

2
L2pΩq

¯
1
2

.

Define the initial-to-boundary operator

Λpaq : u0 P U0 ÞÑ Bνu P L
2pΣ1q,

where u “ upa, pu0, u1q is the solution of the IBVP (6.3). Then Λpaq P BpU0, L
2pΓ1 ˆ p0, τqqq.

The norm of Λpaq ´ Λp0q in BpU0, L
2pΓ1 ˆ p0, τqqq will simply denoted by }Λpaq ´ Λp0q}.

The following Hölder stability estimate is an improved version of the one derived in [4].

Theorem 6.1. Let δ P p0, 1q be fixed. There exists τ0 ą 0 so that for any τ ě τ0, we find a constant c ą 0
only depending on τ so that

(6.4) }a´ 0}L2p0,1q‘L2p0,1q ď cp1´ δq
´1
2`δN

1`δ
2`δ

`

a´1}Λpaq ´ Λp0q}
˘

δ
2p2`δq ,

for each a P A .

Proof. We first observe that upaq is also the unique solution of
$

’

’

&

’

’

%

ż

Ω

u2ptqvdx “

ż

Ω

∇uptq ¨∇vdx´
ż

Γ1

au1ptqv, v P V.

up0q “ u0, u1p0q “ u1.
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Therefore, u “ upaq ´ u, where u “ up0, pu0, u1qq, is the solution of the following problem

(6.5)

$

’

’

&

’

’

%

ż

Ω

u2ptqvdx “

ż

Ω

∇uptq ¨∇vdx´
ż

Γ1

au1ptqv ´

ż

Γ1

au1p0qptqv, v P V.

up0q “ 0, u1p0q “ 0.

For k, ` P Z, set

λk` “

«

ˆ

k `
1

2

˙2

`

ˆ

``
1

2

˙2
ff

π2

φk`px, yq “ 2 cos

ˆˆ

k `
1

2

˙

πx

˙

cos

ˆˆ

``
1

2

˙

πy

˙

.

Note that u “ cosp
?
λk` tqφk` when pu0, u1q “ pφk`, 0q.

Fix k and ` for the moment and set λptq “ cosp
?
λk` tq. Define wpaq P V 1 by

wpaqpvq “ ´
a

λk`

ż

Γ1

aφk`v.

Whence, (6.5) becomes
$

’

’

&

’

’

%

ż

Ω

u2ptqvdx “

ż

Ω

∇uptq ¨∇vdx´
ż

Γ1

au1ptqv ` λptqwpaqpvq, v P V.

up0q “ 0, u1p0q “ 0.

In other words, u is the solution of (6.1) with w “ wpaq. Applying Proposition 6.1, we find

(6.6) }wpaq}V 1 ď Ceλk`τ
2

}Bνu}L2pΓ1ˆp0,τqq.

But, noting that pa1 b a2qφk` P V even if a1 b a2 R V , we have

a1p0q
ˇ

ˇ

ˇ

ż

Γ1

paφk`q
2dσ

ˇ

ˇ

ˇ
“

1
?
λk`

ˇ

ˇwpaqppa1 b a2qφk`q
ˇ

ˇ(6.7)

ď
1

?
λk`
}wpaq}V 1}pa1 b a2qφk`}V ,

where we used a1p0q “ a2p0q, and

(6.8) }pa1 b a2qφk`}V ď C
a

λkl}a1 b a2}H1pΩq,

Here and henceforth, C is a generic constant independent on a and φk`.

Now a combination of (6.6), (6.7) and (6.8) yields

a1p0q
´

}a1φk}
2
L2p0,1q`}a2φ`}

2
L2p0,1q

¯

ď C}a1}H1p0,1q}a2}H1p0,1qe
λk`

τ2

2 }Bνu}L2pΓ1ˆp0,τqq,

where φkpsq “
?

2 cos
``

k ` 1
2

˘

πs
˘

. This, a ď ajp0q and }aj}H1p0,1q ď N imply

}a1φk}
2
L2p0,1q ` }a2φ`}

2
L2p0,1q ď C

N2

a
eλk`

τ2

2 }Bνu}L2pΓ1ˆp0,τqq,

Hence, where j “ 1 or 2,

(6.9) }ajφk}
2
L2p0,1q ď C

N2

a
ek

2τ2π2

}Bνu}L2pΓ1ˆp0,τqq.
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Let δ P p0, 1q be fixed. A forward calculation shows that |φ0|
´δ P L1p0, 1q. There exists an universal constant

C ą 0 such that
ż 1

0

|φ0pxq|
´δdx “ 2´δ{2

ż π
2

0

1

| sinpxq|δ
dx

ď
C

1´ δ
.

Following the proof of Lemma 3.2, we then obtain

}aj}L2p0,1q ď }|φ0|
´δ}

1
2`δ

L1p0,1q}aj}
2

2`δ

L8p0,1q}ajφ0}
δ

2`δ

L2p0,1q

ď Cp1´ δq
´1
2`δN

1
2`δ }ajφ0}

δ
2`δ

L2p0,1q.(6.10)

A combination of inequalities (6.10) and (6.9), with k “ 0, yields

}aj}L2p0,1q ď Cp1´ δq
´1
2`δ a

´δ
2p2`δqN

1`δ
2`δ }Bνu}

δ
2p2`δq

L2pΓ1ˆp0,τqq
,

which achieves the proof of the expected result. �
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