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HOW TO USE OBSERVABILITY INEQUALITIES TO SOLVE SOME INVERSE
PROBLEMS FOR EVOLUTION EQUATIONS ? AN UNIFIED APPROACH

KAIS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKI

ABSTRACT. We survey some of our recent results on inverse problems for evolution equations. The goal
is to provide an unified approach to solve various type of evolution equations. The inverse problems we
consider consist in determining unknown coefficients from boundary measurements by varying initial con-
ditions. Based on observability inequalities, and a special choice of initial conditions we provide uniqueness
and stability estimates for the recovery of volume and boundary lower order coefficients in wave and heat
equations. Some of the results presented here are slightly improved from their original versions.
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1. INTRODUCTION

Inverse coefficient problems in heat and wave equations using control results has been developed by a
large community of people (see for instance [7, 26, 16, 17] and the references therein). In [2] the authors
initiated a general method to deal with inverse source problems for evolution equations. Starting from the
ideas in [2], we developed an approach based on observability inequalities and spectral decompositions to
solve some inverse coefficients problems in evolution equations [3, 4, 5]. The measurements are made on a
sub-boundary by varying initial conditions. The key idea in our analysis consists in reducing the inverse
coefficients problems to inverse source problems. This is achieved by using spectral decompositions.

For clarity’s sake we limit ourselves to initial boundary value problems for wave and heat equations. But
our analysis can be extended to other type of evolution equation such as dynamical Schrédinger equation.

2010 Mathematics Subject Classification. 35R30.
Key words and phrases. Evolution equations, Laplace-Beltrami operator, observability inequality, geometric control, initial-
to-boundary operator.
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The main ingredient in our approach is observability inequalities. We point out that the wave and the
heat equations have different observability properties. We know that, under some appropriate conditions,
the wave equation is exactly observable, while the heat equation is only final time observable. We refer to
Section 2 for details.

2. OBSERVABILITY INEQUALITIES

In this section we collect various observability inequalities, necessary to the analysis of the inverse problems
we want to tackle in this text. Since most of these results are well recorded in the literature, we limit ourselves
to give precise statement of them and provide the references where the proofs can be found.

2.1. Wave and heat equations for the Laplace-Beltrami operator. Let n > 2 be an integer, and
consider M = (M, g) a compact n-dimensional Riemannian manifold with boundary. By a manifold with
boundary, we mean a C®° manifold and its boundary is C* manifold of dimension n — 1. Throughout this
text, we adopt the Einstein convention summation for repeated indices. If in any term the same index name
appears twice, as both an upper and a lower index, that term is assumed to be summed from 1 to n.

In local coordinates system z = (zt,...,2"),
g= gijdxi ®dx?.
Let (01,...,0,) be the dual basis to (z,...,2"). For two vector fields X = X%0; and Y = Y79; over M,
(X,Y) = gi; X'Y7.
Set |X| = /(X X).
As usual, the gradient of u € C™(M) is the vector field given by
Vu = ¢" 0;ud;
and the Laplace-Beltrami operator is the operator acting as follows

Ay = %tgai ( detggijéju> ,

where (¢g%/) denote the inverse of the metric (g;;).
We are first concerned with observability inequalities for the wave equation.

Consider the following initial-boundary value problem, abbreviated to IBVP’s in the sequel, for the wave
equation:

?u— Au+ q(z)u+a(z)dpu=0 in M x (0,7),
(2.1) u=0 on oM x (0,7),
u(+,0) = ug, dpu(-,0) = uy.

Recall that the usual energy space for the wave equation is
Ho = Hy(M)@® L*(M).

According to [10, sections 5 and 6, Chapter XVIII] or [6, Chapter 2]), for any ¢,a € L*(R2), 7 > 0 and
(up,u1) € Ho, the IBVP (2.1) has a unique solution

u = u(g, a, (ug, 1)) € C([0, 7], Hy (M)
so that d,u € C([0, 7], L2(M)). If, additionally
lglloo + llalec < N,
for some constant N > 0, then, by the energy estimate,
(2.2) luleo,m,m2(an)) + [0t o.71,22(an)) < Cll(uo, u1)] 40,

holds with C' = C(N) > 0 is a nondecreasing function.



INVERSE PROBLEMS FOR EVOLUTION EQUATIONS 3

Denote by v the unit normal vector field pointing inward M and set d,u = (Vu,v). From [6, Lemma
2.4.1], o,u € L*(B) and
(2.3) lovul 2onry < ear ([ (o, wr) 2 + lqu + adeul L1 0,7y, L2(a0)) 5
where cjs is a constant depending only on M.

In light of (2.2), (2.3) entails

(2.4) |0vull2(aary < Cl(uo, ua) 3o,
with a constant C of the same form as in (2.2).

Let T', a non empty open subset of 0M, and 7 > 0 so that (I',7) geometrically control M. This means
that if every generalized geodesic traveling at speed one in M meets I' in a non-diffractive point at a time
t € (0,7). We refer to [20] for a precise definition of this assumption.

In light of [20, theorem page 169] (see also [18, Theorem 1.5]), and bearing in mind that exact controlla-
bility is equivalent to exact observability, we can state the following inequality
2r0| (w0, u1) 7o < [000u°|L2(0x (0,7))s
for some constant kg > 0, where we set u® = u(0,0, (ug,u1)) for (ug,u1) € Ho.
The perturbation argument in [25, Proposition 6.3.3, page 189] allows us red to show the existence of
B > 0 so that, for any (¢,a) € Wh* (M) @ L*(M) satisfying |(¢, a)|wr.=an@r= ) < B,
Koll(uo, u1) o < |0vu]L2(rx(0,7))-
Here ko > 0 is as in previous inequality and u = u(q, a, (ug,u1)).
Fix N > 0. Repeating the preceding argument [%] + 1 times in order to deduce that there exist x > 0
so that (g,a) € WH®(M) @ L*(M) satisfying
I(g; @)|wr.e(any@reary < N,
we have
Kl (w0, u1) 4, < [0vu]L2(0x(0,7))>
where u = u(q, a, (ug,u1)).

We point out that the authors in [8] have established an observability inequality in which the constant
depends only on the L* bound of the potential.

Theorem 2.1. Let N > 0 and assume that (I',7) geometrically control M. There exists k > 0 so that, for
any (q,a) € WHP(M) @ L*(M) satisfying
I(g; @) |wr.e(any@reary < N,

we have
(2.5) k] (o, ur) o < [Ovuf2(rx 0.7y
where u = u(q, a, (ug, u1)).

Next, we examine the case where we do not assume that (I',7) geometrically control M. To this end,
define

d(T") = sup{d(z,T); z € M}.
Introduce the notation
v = v(q, (uo, vo)) = u(q,0, (uo, u1))
and set
H_y=L*(M)® H H(M).
In light of [18, Corollary 3.2] , we have
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Theorem 2.2. Let N > 0 and assume that d(I') < co. Under the assumption 7 > 2d(T"), there exist strictly
positive constants C, r and €q so that for any q € L* (M) with |q| L=y < N, we have

1
(2.6) Ol (o ur) e, < € 80]2(rx 0.y + gH(uo,m)HHm (ug,u1) € Ho, € = €.
Here v = v(q, (ug, vp))-

Next, we a give an observability inequality for a parabolic equation. Consider then the IBVP
oru—Au+qg(z)u=0 in M x (0,7),
(2.7) u=0 on oM x (0,7),
u(+,0) = up.

For q € L®(M), let A, = A — ¢q with domain D(4,) = H}(M) n H?(M). As Ay is an m-dissipative
operator, we deduce form the well established theory of continuous semigroups that A, generates a strongly
continuous semigroup e*4¢. Therefore, for any ug € L?(M) the IBVP has a unique solution

u = u(g,u0) = ¢"rug € C([0, 7], L*(M)) n C*(J0, 7], H*(M) n Hg(M)).

The perturbation argument we used previously for the wave equation is stated in general abstract setting
[25, Proposition 6.3.3, page 189]. So it is in particular [25, Proposition 6.3.3, page 189] applicable for the
heat equation. This argument together with [19, Corollary 4] yield the following final time observability
inequality

Theorem 2.3. Let 7> 0, I' a non empty open subset of OM and N > 0. There exists a constant k > 0 so
that, for any q € L*(M) satisfying |q| z2(ary < N, we have

(2.8) lu(-s T)z2ar) < Clovu]zrx(0,))
where u = u(q,ug) with ug € L*(M).

2.2. Wave equation in a rectangular domain with boundary damping. In this subsection 2 =
(0,1) x (0,1). Consider

Pu—Au=0 in Q x (0,7),
(2.9) u=0 on Ty x (0,7),
’ Oyu + adyu =0 onTy x (0,7),
’LL(,O) = Uo, atu(70) = U1.
Here

Lo = ((0,1) x {1}) u ({1} x (0,1)),

'y = ((0,1) x {0}) u ({0} x (0,1))
and 0, = v -V is the derivative along v, the unit normal vector pointing outward of €2. Note that v is
everywhere defined except at the vertices of €.

In the sequel we identify aj,1)x0; by a1 = a1(x), v € (0,1) and a0} (0,1) by a2 = a2(y), y € (0,1). In
that case it is natural to identify a, defined on I';, by the pair (a1, as).
Fix 3 <a <1 and let

A = {b = (b1, b2) € C%([0,1]) @ C*([0, 1]), b2(0) = b2(0), b; = 0}.
Let V = {ue H'(Q); u=0onTg} and consider on V @ L?(f2) the operator A,, a € &7, given by
A, = (w,Av), D(A,) = {(v,w) e VOV; Ave L*(Q) and d,v = —aw on ' }.

From [4], A, generates a strongly continuous semigroup e*4«. Whence, for any (ug,u;) € D(4,), the IBVP
(2.9) has a solution u = u(a, (ug,u1)) so that

(u, 0pu) € C([0,7], D(Ay)) N CH([0, 7],V ® L3(Q)).
We proved in [4, Corollary 2.2] the following observability inequality
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Theorem 2.4. Fix 0 < §y < §1. Then there exist 1o > 0 and k > 0, depending only on 0y and §; so that
for any T = 19 and a € & satisfying o < a < d1 on Iy,

K[ (w0, u1) lverz@) < [0vulL2(r, x(0,r))
where u = u(a, (ug, u1)), with (ug,u1) € D(A,).

We notice here that this result is a direct consequence of the fact that the observation is made on I'y
which fulfill the geometric control condition for 7 > 7y. If the observation is made only on one side of I'; we
obtain a Hélder type estimate (see [24]).

3. WEIGHTED INTERPOLATION INEQUALITIES

We aim in the present section to establish two weighted interpolation inequalities. These inequalities are
useful in the proof of Hélder stability estimates for certain inverse problems we will discuss in the coming
sections.

As in the preceding section, M = (M, g) is a compact n-dimensional Riemannian manifold with boundary.
Introduce the assumption:

() M is embedded in a n-dimensional complete manifold without boundary My = (My,g) and the
following Hardy’s inequality is fulfilled

2
3.1 Vf(z)|*dV = Mdv, H} (M),

(31) | @y s | lav remon

for some constant ¢ > 0, where dV is the volume form on M, d is the geodesic distance introduced previously,
and d(-,0M) is the distance to oM.

Recall that C, T, M is a-angled cone if, for some X € T, M, C,, is of the form
C,={YeT,M; L{(X,Y) < a}.

Define r,(v) = inf{|t|; Vs, (t) ¢ M}, where v, , is the geodesic satisfying the initial condition v, ,(0) =
and ¥, ,(0) = v. Following [23], Hardy’s inequality (3.1) holds for M whenever M has the following uniform
interior cone property: there are an angle o > 0 and a constant ¢y > 0 so that, for any x € M, there exists
an a-angled cone C, < T, M with the property that r,(v) < cod(x,0M), for all v € Cp. The proof in [23]
follows the method by Davies [11, page 25] for the flat case. Note that Hardy’s inequality holds for any
bounded Lipschitz domain of R™, and ¢ < i with equality when €2 is convex.

The following Hopf’s maximum principle is a key ingredient for establishing our first weighted interpolation
inequality.
Lemma 3.1. Let ¢ € C(M) and u € C*(M) n HY(M) satisfying ¢ < 0 and Au + qu < 0. If u is non
identically equal to zero, then w > 0 in M and dyu(y) = (Vu(y),v(y)) > 0 for any y € OM.

Proof. Similar to that of [13, Lemma 3.4, page 34 and Theorem 3.5, page 35]. The tangent ball in the classical
Hopf’s lemma is substitute by a tangent geodesic ball (see the construction in [22, Proof of Theorem 9.2,
page 51]). O

Proposition 3.1. Let g€ C(M) and u € C*(M) n H} (M) satisfying ¢ < 0 and Au + qu < 0. If u is non
identically equal to zero, then
u(z) = eyd(x,0M), xe M,

the constant c,, only depends on u and M.

Proof. Let 0 < € to be specified later. Let x € M so that d(xz,0M) < € and y € M satistying d(z,0M) =
d(x,y). Since M is complete, there exist a unit speed minimizing geodesic 7 : [0,7] — M such that (0) = y,
~(r) = z and §(0) = v(y), where we set r = d(z, M) (see for instance [21, page 150]).
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Define ¢(t) = u(y(t)). Then
¢'(t) = du(y(t))(7(1))
¢"(t) = d*u(v() (F(t), 4()) + du(v (1)) (3(2)).
Here 4(t) = 3%(t)0; € Tty Observe that by the geodesic equation
() = =4 (03 ()T (v (1)),
where Ffj are the Christoffel symbols associated to the metric g.
Taking into account that ¢'(0) = du(y)(v(y)) = Vu(y),v(y)) = dLuly), we get

2
6(r) = ro,uly) + ¢ (st),
for some 0 < s < 1. Hence, there exist ¢ > 0 depending on u and M so that
(1) = 2rn — cr® =y + r(n — ce)
with 27 = minger d,u(y) > 0 (by the compactness of M and Lemma 3.1). Thus,
o(r) =
provided that € < n/c. In other words, we proved
(3.2) u(z) = ¢(r) = rn =nd(xz,0M).
On the other hand, an elementary compactness argument yields, where M€ = {x € M; d(z,0M) > €},

. minepse u(z) .
> > )
(3.3) u(x) = min u(2) max.care d(z, M) d(z,0M), xe M

In light of (3.2) and (3.3), we end up getting
u(z) = cyd(x,0M), xe M.

A consequence of Proposition 3.1 is

Corollary 3.1. Assume that () is satisfied. Let ¢ € C(M), ¢ < 0, and u € C?*(M) n H(M) non
identically equal to zero satisfying Au + qu < 0. There exists a constant C,,, only depending on u and M,
so that, for any f € H*(M), we have

1 1
HfHLQ(M) < Cqu“HinM)HfHﬁp(M)-
Proof. By Proposition 3.1, u(z) > ¢,d(x,0M). Therefore

f f(2)2dV(z) < c;* f fiydvm
d(x,0M)?
Combined with Hardy’s inequality (3.1), this estimate gives

(3.4) J f(@)?dV(z) < CJICJ IV (fu)(@)[*dV (z).
M M
But, from usual interpolation inequalities,

1 1
HfUHHl(M) < CHquZz(M) Hqufqz(My

where the constant C only depends on M.
Whence, (3.4) implies

1 1
HfHLQ(M) < Cququ2(M)HfH]z{2(M)7
which is the expected inequality O
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Let 0 < g € C1(M) be fixed and consider the operator A = —A+¢, with domain D(A) = H2(M)nH}(M).
An extension of [13, Theorem 8.38, page 214] to a compact Riemannian manifold with boundary shows that
the first eigenvalue of A, denoted by \; is simple and has a positive eigenfunction. Let then ¢; € C?(M)
(by elliptic regularity) be the unique first eigenfunction satisfying ¢1 > 0 and normalized by [¢1]2(ar) = 1.
Since A¢p1 — qp1 = —A1¢1, the Hopf’s maximum principle is applicable to ¢1. Therefore, a particular weight
in the preceding corollary is obtained by taking u = ¢;.

Corollary 3.2. Under assumption (), there exists a constant ¢ > 0, depending on ¢1, so that, for any
fe H?*(M), we have
1 1
(3.5) 1A g2 airy < lf @l 2oy 1 1 Fr ary -
The second weighted interpolation inequality relies on the following proposition.

Proposition 3.2. Let p € L®(M) and u € W2"™(M) satisfying (A + p)p = 0 in M and p?> € W2 (M).
Then there exists § = d(p) > 0 so that || ~° € L*(M).

It is worth mentioning that § < 1 as soon as ¢ vanishes at some point zp € M. Indeed, in the flat case
¥(x) ~ |z — xo|* near zq if ¢ is a zero of order k. Hence ||~ is locally integrable in a neighborhood of g
if and only if 0k < 1.

Sketch of the proof. First step. Denote by B the unit ball of R™ and let B, = B n R’} with R} = {z =
(¢, z,) € R™; x, > 0}. Let L be a second order differential operator acting as follows

Lu= ﬁj(aijaiu) + C - Vu + du.

Assume that (a;;) is a symmetric matrix with entries in C'(2B;), C € L®(2B;)" is real valued and
de L*(2B,) is complex valued. Assume moreover that

aij(x)€; - & = wol€]?, v € 2B, £ R,
for some ko > 0.
Let u € W*"(2B;) n C°(2B;) be a weak solution of Lu = 0 satisfying v = 0 on d(2B;) n R" and
|u|> € W2n(2B,) n C°(2B). From [1, Theorem 1.1, page 942], there exists a constant C, that can depend
on u, so that the following doubling inequality at the boundary

J- lu’dz < C lu|*da,
Ba.nBy B,.nBy

holds for any ball Bs,., of radius 2r, contained in 2B.

On the other hand simple calculations yield, where v = Ru and w = Su,
0;(ai;0;|ul?) + 2C - V]u|* + 4(|Rd| + |Sd|)|ul® = 2a;;0;v0;v + 2a;;0;wd;w =0 in 2B,
and |u|> =0 on 0(2B;) N R7.
Harnak’s inequality at the boundary (see [13, Theorem 9.26, page 250]) entails

C
sup |ul? <

< = lu|*da,
B,~By |Bar| J,, B,

for any ball Bs,, of radius 2r, contained in 2B.
Define @ by
(2, xn) = (@, z,) if (o', 2,) € 2By, (2, x,) = u(z’, —x,) if (2/, —x,) € 2B.
Therefore % belongs to H(2B) n L®(2B) and satisfies

(3.6) f |17|2dx<CJ 2z,
B2r Br

(3.7 sup [a]? < [u|*da,

B, |Bar| Jp,,
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for any ball B,,., of radius 2r, contained in 2B.

Inequalities (3.6) and (3.7) at hand, we mimic the proof of [9, Theorem 4.2, page 1784] in order to obtain
that 21| =% € L'(B) for some ¢ > 0 depending on u. Whence |u|=% € L'(B,).

Second step. As 0M is compact, there exists a finite cover (U,) of 0M and C*-diffeomorphisms f, :
U, — 2B so that fo(Uy n M) = 2B, fo(Us n 0M) = 2B N R? and, for any z € M, x € V, = f,1(B),
for some a. Then u, = ¢ o f, ! satisfies Lou, = 0 in 2B and u = 0 on d(2B;) n R% for some L = L,
obeying to the conditions of the first step. Hence |u,| %> € L'(B,) and then || ™% e L'(V,). Let V the
union of V,,’s. Since u € L®(V), |u|7% € L} (V) with §y = mind,. Next, let e sufficiently small in such a
way that M\M, c V, where M, = {x € M; dist(x,0M) > €}. Proceeding as previously it is not hard to get
that there exists 81 so that || % € L*(M,/5). Finally, as it is expected, we derive that |¢|=° € L!(M) with
6= min(éo, 51)

]

Lemma 3.2. Let § > 0 be as in Proposition 3.2. There exists a constant C > 0, depending on ¢, so that,
for any f e L*(M), we have

I flz2 () CI\fIIMM)waIIM

Proof. Since ¢ in Proposition 3.2 belongs to L*(M), substituting § by min(1,d) if necessary, we assume
that § < 2. We get by applying Cauchy-Schwarz’s inequality

1/2 —51/2
| 15152av < Wl T el 11y

But, by Hélder’s inequality,
1/2 5/2
11l 1 Fary < VoL 2= o]0 .

Whence

_ 5/2 —51n1/2
(3.8) 1192 caqary < Vol(M) @04 £l 2 1 el = 12 -
On the other hand

1-46/4 1/2
(3.9) | Flz20ny < IFIE=n A2 -
A combination of (3.8) and (3.9) yields

1-6/4 5/4
| £y < CIEF I 125
which is the expected inequality.

4. INVERSE SOURCE PROBLEM: ABSTRACT FRAMEWORK

Let H be a Hilbert space and A : D(A) ¢ H — H be the generator of continuous semigroup 7'(¢). An
operator C' € B(D(A),Y), Y is another Hilbert space which is identified with its dual space, is called an
admissible observation for T'(¢) if for some (and hence for all) 7 > 0, the operator ¥ € Z(D(A), L*((0,7),Y)),
given by

(Tz)(t) = CT(t)x, te[0,7], x € D(A),
has a bounded extension to H.
We introduce the notion of exact observability for the system

(4.1) 2'(t) = Az(t), 2(0) =z,
(4.2) y(t) = Cz(1),

where C' is an admissible observation for T'(¢). Following the usual definition, the pair (A, C) is said exactly
observable at time 7 > 0 if there is a constant s such that the solution (z,y) of (4.1) and (4.2) satisfies

L ly(t)[3dt > w223, =< D(A).
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Or equivalently

(4.3) LT [(P2)(t)[3dt > w*|2|F;, @€ D(A).
Consider the Cauchy problem
(4.4) 2'(t) = Az(t) + Mt)x, 2(0) =0
and set
(4.5) y(t) = Cz(¢t), te][0,7].
By Duhamel’s formula, we have
(4.6) y(t) = J At — 8)CT(s)xds = J At — 8)(Vz)(s)ds.
0 0
Let
H{((0,7),Y) ={ue H((0,7),Y); u(0) = 0}.

We define the operator S : L2((0,7), Y) — H}((0,7),Y) by

(@.7) (SR)(t) JO At — 5)h(s)ds

If E = SV, then (4.6) takes the form
y(t) = (Bx)(t).

Theorem 4.1. We assume that (A,C) is exactly observable for T > 1o, for some 79 > 0. Let A € H*(0,7)
satisfies A(0) # 0. Then E is one-to-one from H onto H}((0,7),Y) and

A
V125

Kk|A(0)] —r_L20.n)
FAON =55 | < | Bellms omyrys € H.

V2

Proof. First, taking the derivative with respect to ¢ of both sides of the integral equation

(4.8)

jA@—@ﬂ@m:ww,

0
we get a Volterra integral equation of second kind

f)\’t—s s)ds = ' (t).

Mimicking the proof of [15, Theorem 2, page 33|, we obtain that this integral equation has a unique solution
pe L*((0,7),Y) and
lelzz(o,7),v) < ClY [ L2(0,7),v)
< O] a0,y
Here C' = C()) is a constant.

To estimate the constant C' above, we first use the elementary convexity inequality (a + b)? < 2(a? + b?)
in order to get

, 2
e <2 ([ B ixoesivias) + 2o
Thus,

IAO)Pe(6)]3 <2 'L”“”f 0)[? () 3-ds + 2[4/ ()3
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by the Cauchy-Schwarz’s inequality. Therefore, using Gronwall’s lemma, we obtain in a straightforward

manner o
V2 2z
< x(0)2 !
lelz2(0.m)x) NOIR 19122 (0.7
and then
V2 Mo
lelz2(0,),v) < |/\(0)|€ PO {Sol 10,0,y
In light of (4.3), we end up getting
12
kIA0)] 220
IE2| m2 0,r),v) = 7 ° DO 2] g

O

We shall need a variant of Theorem 4.1. If (A, C) is as in Theorem 4.1, then, as in the preceding section,
by the perturbation argument in [25, Proposition 6.3.3, page 189], for any N > 0, there is x > 0 such that
for any P € #(H) satistying |P|| < N, (A + P,C) is exactly observable with k(P + A) > k.

We define E¥ similarly to E by substituting A by A + P.

Theorem 4.2. Let N > 0 and assume that (A,C) is exactly observable for T = 1y, for some 19 > 0. Let
A€ HY(0,7) satisfies A(0) # 0. For any P € B(H), E¥ is one-to-one from H onto H}((0,7),Y) and

A2
IN122 .

K|A(0)] —r_L20.n)
PON =55 el < 1B 2l 12 0y @€ H.

V2

Here k is the observability inequality of A + P, depending on N but not in P.

(4.9)

We will consider inverse source problems with singular sources. So we need to extend Theorem 4.1. Fix
then f in the resolvent set of A. Let H; be the space D(A) equipped with the norm ||z|; = |(8 — A)z| and
denote by H_; the completion of H with respect to the norm ||z|_; = ||(83 — A)~!z|. As it is observed in
[25, Proposition 4.2, page 1644] and its proof, when z € H_; (which is the dual space of H; with respect
to the pivot space H) and A € H(0,7), then, according to the classical extrapolation theory of semigroups,
the Cauchy problem (4.1) has a unique solution z € C([0, 7], H). Additionally, y given in (4.2) belongs to
L2((0,7),Y).

When z € H, we have by Duhamel’s formula

t

(4.10) y(t) = L At = $)OT(s)wds — JO At — ) (W) (s)ds.

Let
Hﬁl((077—)7y) = {u € Hl((O,T),Y); U(O) = O} .
We define the operator S : L*((0,7),Y) — H}((0,7),Y) by

t

(4.11) (SR)(t) J At — s)h(s)ds.

0
If E = SV, then (4.10) takes the form
y(t) = (Bx)(?).
Let Z = (B — A*)"1X + C*Y).

Theorem 4.3. Assume that (A, C) is exactly observable at time 7. Then
(i) E is one-to-one from H onto H}((0,7),Y).
(it) E is extended to an isomorphism, denoted by E, from Z' onto L2((0,7),Y).
(iii) There exists a constant K, independent on A, so that
02

L2(0m) . o
(4.12) |2z < BIAO)e POF T Ex|r2((0,r),v)-
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Proof. We give the proof of (ii) and (iii). (i) is contained in Theorem 4.1. To do this, we start by observing
that S*, the adjoint of S, maps L?((0,7),Y) into H!((0,7), Y) where

H((0,7),Y) = {ue H((0,7),Y); u(r) = 0} .
Moreover

S*h(t) = J (s —t)h(s)ds, he L*((0,7),Y).
¢
Fix h € L?((0,7),Y) and set k = S*h. Then

Hence

TN (s — 2
AR < ( | W[wonh(s)]ds N W(t))

<2 ( | ' IA'“‘”'[M(on|h<s>|]ds) ok (1)

2O
Iy * ) o
< 2 OO [ )l 1n(s) s + 20 O

The last estimate is obtained by applying Cauchy-Schwarz’s inequality.
A simple application of Gronwall’s lemma entails

A
S Mh20r

[MOIRDI? < 26" BOF 7|k (1),

Therefore,
\/§ [P HLQ (0, T))
HhHLQ((O,T),Y) < |)\(O)|e IA(O)\2 ”k/HL2((O,T)7Y)'
This inequality yields
132
2 L2((0.7))
(4.13) 1Bl L2 (0,7),y) < Le ROP TS A (0,0, v) -

[AO)]
The adjoint operator of S*, acting as a bounded operator from [HL((0,7);Y)] into L2((0,7);Y), gives an

extension of S. We denote by S this operator. By [25, Proposition 4.1, page 1644] S defines an isomorphism
from [H,.((0,1);Y)]" onto L*((0,7);Y). In light of the identity

IStz (0,152 (0,7, v)) = 1™ (220,77 ) E12 ((0,7). 7))
(4.13) implies

IA(0)] _w ”L2(<o2f>> N
(4.14) ¢ " sBlsamenmron

On the other hand, according to [25, Proposition 2.13, page 1641], ¥ possesses a unique bounded extension,
denoted by ¥ from Z’ into [H}((0,7);Y)]" and there exists a constant ¢ > 0 so that

(4.15) IWlszaz (0.1 = ¢

E = SV gives the unique extension of E to an isomorphism from Z’ onto L2((0,7),Y).
We end up the proof by noting that (4.12) is a consequence of (4.14) and (4.15). O
5. INVERSE PROBLEMS FOR EVOLUTION EQUATIONS ASSOCIATED TO LAPLACE-BELTRAMI OPERATOR

In this section M = (M, g) is a compact n-dimensional Riemannian manifold with boundary, 7 > 0 and
T" is a nonempty subset of 0 M.
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5.1. Inverse source problem for the wave equation. Consider the IBVP for the wave equation
Pu— Au+ q(z)u + a(z)dpu = g(t) f(x)  in M x (0,7),
(5.1) u=0 on oM x (0,7),
u(+,0) =0, du(-,0) = 0.
Let T' be a nonempty subset of dM and assume that (T',7) geometrically control M. Fix N > 0 and
denote by  the observability constant corresponding to arbitrary (q,a) € WL (M) @ L* (M) satisfying
I(q, a)llwr (an@re(ar) < N.
For f e L?(M) and g € H(0,7) with g(0) # 0. According to Theorem 4.1, we have
12
\/5 7_Hg HLQ(O_’T)
5.2 flrzon < ———€e  19OFP | 0,ul| 107,12 ,
where u = u(q, a, f,g) denotes the solution of the IBVP (5.1).
As an immediate consequence of this inequality, we have

Theorem 5.1. Assume that (T',7) geometrically control M. Let N > 0 and g € H*(0,7) satisfying g(0) # 0.
Then there exists a constant C, depending on k, ', T and g so that, for any (q,a) € W (M) @ L*(M)
with
(g, @) lw.o (any@r=(ary < N,
we have
[ fl2any < Clovul i o,).22 ()

Here u = u(q, a, f,g) denotes the solution of the IBVP (5.1).
For simplicity’s sake, set v = v(q, f,g) = u(q,0, f,g). That is v is the solution of the IBVP

02u— Au+ q(z)u=g(t)f(z) inM x (0,7),
(5.3) u=0 on 0M x (0,7),
u(+,0) =0, du(-,0) = 0.

Using Duhamel’s formula, it is not hard to check that

v(x,t) = f g(t — s)w(x, s)ds,

0
where w = w(f) is the solution of the IBVP
2w —Aw+qz)w=0 in M x (0,7),
(5.4) w =0 on oM x (0,7),
U)(,O) = f, atw('ao) =0.
Let
Hi ((0,7), L*(1)) = {ue H'((0,7), L*(I'); u(0) = 0}
and define the operator S : L*(T" x (0,7)) — H}((0,7),L*(")) by
¢

(Sh)(t) = J g(t — s)h(s)ds.

0
We have seen in the proof of Theorem 4.1 that S is an isomorphism and
V2 Tug/uiQ((Oﬂ)

17 2 (0 0,7)) < FEOIR 9@ ||Sh|| g1 0,7y, L2(T))-
Whence
NG) T”g/”iZ«om)

(55) H&,,wHLz(FX(O’T)) < /§|g(0)| e 19(0)2 HauU”Hl((O,T),LQ(F))'
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Let N > 0, assume that d(I") < o0 and 7 > 2d(I"). From Theorem 2.2, there exist three constants C, x
and ¢ so that for any ¢ € L*(M) with |g] ;) < N, we have

1
(5.6) Clflzzy < el0wlrawxom) + ZIflmgan, €= .
Now (5.5) in (5.6) yields
12
2 0.0y 1
(5.7) Clflzzy <e RO 0O o vl 0,0, 2y + ZIf gy € > €o.

Let
V(p) = |lnp|[~ +p, p>0,
extended by continuity at p = 0 by setting ¥(0) = 0.
A standard minimization argument, with respect to € in (5.7) enables us to establish

Theorem 5.2. Let N > 0, R > 0, assume that d(T') < oo and 7 > 2d(T). Let g € HY(0,7) satisfying
g(0) # 0. Then there exists a constant C > 0, depending on N, R, T', 7 and g so that, for any q € L* (M)
with |q| =y < N and any f € Hy(M) satisfying If 1l 2z (ary < R, we have

[ fle2any < C ([00v] 2 (0,7),22())) »
where v = v(q, f,g) is the solution of the IBVP (5.3)

5.2. Determining the potential and the damping coefficient in a wave equation. Introduce the
IBVP for the wave equation
02u— Au+ q(z)u+ a(x)dpu =0 in M x (0,7),
(5.8) u=0 on oM x (0,7),
u(+,0) = ug, dpu(-,0) = uy.
Recall that
Ho = Hy (M) @ L*(M)
and let N > 0.
We have seen in Section 1 that, for any (q,a) € L*(M) @ L*(M), 7 > 0 and (ug,u1) € Hop, the IBVP
(5.8) has a unique solution
u = u(g, a, (ug, 1)) € C([0, 7], Hy (M)
so that d,u € C([0, 7], L*(M)) and d,u € L?(0M x (0,7)). Moreover, under the assumption

I(q,a)| Lo (ry@re= () < N,

we have

(5.9) lullero,m, 12 (any) + 10l o.m,22(an)) < Cll(uo, ur)lln,
and

(5.10) 10vu] 2 (anrx (0,7)) < Cll(uo, w1)lla,-

Here C' = C(N) is a nondecreasing function.

Define the initial-to-boundary operator A(q,a) as follows

A(g,a) : (ug,ur) € Ho — ,u(q, a, (ug,u1)) € L*(T" x (0,7)).
Let
My = (Hy (M) n H*(M)) ® Hy (M).
Observing that
oru(q, a, (ug,u1)) = u(q, a, (ur, Aug — quo — auq)),

we easily obtain that A(q,a) € B(H1, H'((0,7), L*(T'))). Additionally, as a consequence of (5.10), we have

1A(g, )| (3,1 ((0,7),22(r))) < C
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where the constant C is similar to that in (5.10).

Theorem 5.3. Assume that (I',7) geometrically control M. Let N >0 and 0 < q € H?(M). There exists a
constant C > 0, depending on N and q, so that, for any (¢,a) € H*(M) @ H?(M) satisfying
(@, @) | z2 (vpy@ 2 a1y < N,
we have )
13— allzz o + 1 — 0l 2 ary < CIAG @) — A0, 111 (022000

Proof. Let 0 < ¢1 be the first eigenfunction of the operator —A + ¢ with domain H*(M) n Hi(M). This
eigenfunction is normalized by ||¢1[z2(ar) = 1. If

u = (g0, (¢1,iv/Ai¢1)) = €V 'y and @ = u(@. @ (é1,iv/ A1 é1)),
then v = & — u is the solution of the following IBVP
20 — Av + Gu + a(x) 0w = —[(§ — q) + ivAdleVitg,  in M x (0,7),
(511) v=20 on aM X (OaT)a
v(+,0) =0, dyv(-,0) =0.
Bearing in mind that (I", 7) geometrically control M, we get from Theorems 5.1

|61(7 — @)l2(ary + |1 L2(ar) < ClOvv] m1((0,7),22000)) -
This inequality, combined with Corollary 3.1, yields

1
lg — QHLQ(M) + a— 0HL2(M) < C‘|auv||12{1((oﬂ-)7L2(p))~

This inequality entails in a straightforward manner the expected one. O

Denote the sequence of eigenvalues, counted according to their multiplicity, of A = —A with domain
HQ(M)K\Hol(M), by0<)\1 <)\2 SO <)\]€—>OO

Consider, on Hg, the operators

0 I
A(—A 0 ), D(A) = H4

and A(q,a) = A+ B(g,a) with D(A(gq,a)) = D(A), where

B(g,a) = ( _Oq M ) e B(Ho).

From [25, Proposition 3.7.6, page 100], A is skew-adjoint operator with 0 € p(.A) and

_ 0 —A"1
(0,

We note that, since A~! : H — H; is bounded and the embedding H; > H is compact, A~ : H — H is
compact.

Also, from [25, Proposition 3.7.6, page 100], A is diagonalizable and its spectrum consists in the sequence
(iv/Ak).-

Introduce the bounded operator C(q,a) = (iAy*)(—iB(g,a))(i.A7"). Let sx(C(g,a)) be the singular values
of C(q,a), that is the eigenvalues of [C(q,a)*C(q,a)]2. In light of [14, formulas (2.2) and (2.3), page 27], we
have

sk(C(g, ) < |B(g,a)|sk(iA™")? = |B(g, a) |\, 1,
where |B(g,a)| denote the norm of B(g,a) in Z(Ho).

On the other hand, referring to Weyl’s asymptotic formula, we have Ay = O(k%) Hence, C4,, belongs to
the Shatten class S, for any p > 3, that is

S [sx(Cla, )] < o

k=1
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We apply [14, Theorem 10.1, page 276] in order to get that the spectrum of A, , consists in a sequence of
eigenvalues (g (g, a)), counted according to their multiplicity, and the corresponding eigenfunctions (¢ (g, a))
form a Riesz basis of H,.

Fix (¢,a) and k. Set pu = ur(q,a) and ¢ = ¢r(q,a) = (p,1) € H1 be an eigenfunction associated to .
Then it is straightforward to check that ¢ = g and (—=A + g+ ap + p?)p = 0 in M. Since —Ap = f in M
with f = (¢ + au + p?)p, we can use iteratively [13, Corollary 7.11, page 158] (Sobelev embedding theorem)
together with [13, Theorem 9.15, page 241] in order to obtain that ¢ € W2P(M) for any 1 < p < c0. In
particular @, |p]? € W2 (M) n C°(M). In other words, ¢ satisfies the assumption of Proposition 3.2.

If
u=u(q,a,¢) and @ = u(q,d,d),
and v = U — u, then, similarly to Theorem 5.3, we prove
le(@ = a)lzzany + [0(@ = a)|r2ary < ClOvv] 1 (0,7, £2(00))-
This and Lemma 3.1 yield
Theorem 5.4. Assume that (T, 1) geometrically control M. Let N > 0 and (q,a) € WH*(M) @ L*(M).
There exists two constants C > 0 and o > 0, depending on N and (q,a) so that, for any (§,a) € WH* (M) ®
L*®(M) satisfying
(@, @) |wr.e (any@Le(ary < N,
we have
|lg — QHL2(M) +[a - a”L?(M) < C||A(q,a) — A(q, a)Hg?(?{l,Hl((O,r),L2(F)))'

5.3. Determining the potential in a wave equation without geometric control assumption. Con-
sider the IBVP

02u — Au+ g(z)u =0 in M x (0,7),
(5.12) u=0 on oM x (0,7),

u(+,0) = ug, dpu(-,0) =0.

From the preceding subsection, the initial-to-boundary mapping
A(q) 1 ug € HY (M) n H*(M) — d,u e H*((0,7), L*(T)),
where, u = u(q, ug) is the solution on the IBVP, defines a bounded operator. Moreover, for any N > 0, there
exists a constant C' > 0, depending on N, so that for any g € L*(M) satisfying |q| =) < N, we have
[MD (13 vy~ 12 (00, 111 (0,7),£2(0))) < C-

Theorem 5.5. Let N > 0, assume that d(I') < o0 and 7 > 2d(T"). There exists a constant C' > 0 so that,
for any 0 < qe L*(M), Ge L™ (M) satisfying g — e WH*(M) and

lalzoearys 1alzeany. la —dlwremny < N,
we have

lg = qllLz(ary < C® (HA(Q) - A(&)”Q(Hé(M)mHZ(M),Hl((O,T),LZ(F)))) )

with ®(p) = |In p\_#s + p, p >0, extended by continuity at p = 0 by setting ®(0) = 0.

Proof. Let 0 < q € L*(M) satisfying |q|lz») < N. Denote by 0 < Ay < Az... < Ag... the eigenvalues
of the operator —A + ¢ with domain Hg (M) n H%(M). Let (¢) an orthonormal basis of L?(M) consisting
in eigenfunctions, each ¢, is an eigenvalue for A;. Note that according to the usual elliptic regularity,
¢ € C*P(M) for each k.

By the Weyl’s asymptotic formula and the min-max principle, there exists a constant § > 1, depending
on N but not in ¢, so that

(5.13) B k% < Ay < Bk
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For §e L*(M) with |l L) < N, set
u = ’Lb(q, ¢k) = COS(Akt)(ﬁk and U = u(qNa ¢k)
Then v = % — w is the solution of the IBVP, where gx(t) = cos(v/Axt),

Ofu— Au+qu= (G- q)prgr(t)  in M x (0,7),
(5.14) u=0 on 0M x (0,71),
u(-,0) =0, du(-,0) =0.

We have Hg;H%%OJ) < Agp7. Hence

(5.15) lgklF20.) < BTk™,

by (5.13)
In the rest of this proof, C' and ¢ denote generic constant, depending only on M, N, I" and 7. From (5.7),
we have

(5.16) U@~ Dol < e [0,0lmson.z20 + <1~ el yany, € o
On the other hand,

17 = @)kl g (ary < 1T = allwre (an) | Dkl g (ar
< 2N/ A
< ckw by (5.13).
This in (5.16) gives
k%
Cl(q - DorlLzn) < ereech™ |0vv] m1 ((0,7),L2(r)) + —> €= €o.

On the other hand, by Cauchy-Schwarz inequality
(@~ a.6x)* < VOI(M)|(@ — @)k 2 (s

Whence
~ KE n k"
C{@—q,or)?<e eCk 10vv] &1 ((0,7),L2 (1)) + € = €.
But
1§ = ql72ar) = Z (G@—q,06)* + Z (G—q, %)
k<t k>0
<)@ q¢k)+72>\kq—q¢k)
k<t L k>e
N2
I—q¢¢)° + —=.
g (€+ 1)
Thus
: 2 N
5.17 Clg— <£’“C"6 .
( ) la QHL2(M) € |0vvll (0,7, L2(ry) + (€+1)% + c

Let s = 1 be a real number and let £ be the unique integer so that £ < s < £ + 1. Then (5.17) with that ¢
entails

1
sttw

1
e UHHI((O 7),L2(T)) + 7 +

(5.13) C1T— alsqan) < se™e” E
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Take € = s»+1 in (5.18) in order to get, where sy = max (1, eonﬁ),

- 5 1 oAl L B4
Clg - QHL2(M) < sj +e e HaVUHHl((O’T)’Lz(F)), s = Sp.
Therefore 1 X
~ ot
Cllg = qlZzqan < Z7 e ovvllm(o,m),L2(ry), 5= S0,

or equiValen‘ ly,
3
S 41 |

~ 1
Clg = dqlc>an < at e ovvllEo,m),L2(ry), 5= S0

We end up getting the expected inequality by minimizing with respect to s. O

5.4. Inverse source problem for the heat equation. Consider the IBVP for the heat equation

Oru— Au+q(z)u = g(t)f(z) nQ:=M x(0,7),
(5.19) u=0 on 0M x (0,7),
u(-,0) = 0.

From classical parabolic regularity theorems in anisotropic Sobolev space, where
H>H(Q) = L*((0,7), H*(M)) n H*((0,7), L*(M)),
for any f e L?(M), g€ L?(0,7) and g € L® (M), the IBVP (5.19) has a unique solution

u=u(g, f,9) € H*'(Q).
Moreover, for any N > 0, there exists a constant C' > 0 so that, for any ¢ € L* (M) satisfying ||g|[ L= < N,

(5.20) lull 21 @) < Cllgl20,m | f 22y -

If in addition g € H'(0, 7), then it is not hard to check that d,u is the solution of the IBVP (5.19) with g
substituted by ¢’. Hence d;u € H>'(Q) and
(5.21) I0cull 21 (@) < Clg' 20,0 2 (ary
for any q € L*(M) satisfying |q| z ) < IV, where C' is the same constant as in (5.20).

We derive that d,u is well defined as an element of H'((0,7),L?(T)) and, by (5.20), (5.21) and the
continuity of the trace on T,

\\(71»““H1((0,T),L2(F)) < CHgHHl(O,T) HfHL2(M)7

the constant C'is as in (5.20).

The following result will be useful in the sequel.

Proposition 5.1. Let N > 0. There exist two constants ¢ > 0 and C > 0 so that, for any g € L*(M)
satisfying |q| L=y < N, f € Hy(M) and g € H*(0,7) with g(0) # 0,

12
1 g7 2 o.r

(5.22) Clflzzny < \ﬁ“fHHg(M) + meT PO |0, ul 0,0 L2, €= 1,
where u = u(q, f,g) is the solution of the BVP (5.19).

Proof. Pick q € L*(M) satisfying |q|p=r) < N, f € Hy(M) and g € H'(0,7) with g(0) # 0. Without
loss of generality, we may assume that ¢ > 0. Indeed, we have only to substitute u by ue™N*, which is the
solution of the IBVP (5.19) when ¢ is replaced by ¢ + N.

Let v = v(q, f) € H*'(Q) be the unique solution of the IBVP
ow—Av+g(z)v =0 in M x (0,7),
v=0 on oM x (0,7)
U(~, 0) = f
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Then d,v is well defined as an element of L?(I" x (0,7)). As for the wave equation

dpur(-,t) = J g(t — s)dyvr (-, s)ds.

0
Therefore

VoI HLQ((O .
(523) ||auv||L2(F><(O,7—)) < |g(0)‘ e 19(0)[2 HaquHl((O,T),Lz(F))'

From the final time observability inequality in Theorem 2.3, we have
(5.24) () L2any < KldvvllL2rxo,m)s

for some constant K > 0, independent on ¢ and f.
A combination of (5.23) and (5.24) yields

lg” 12

F L L2((0.m))
(5.25) Cllo(-, T)ll2ary < me 9O || dyull g1 0,7),L2(T))-
Denote by 0 < A1 < Ay < ... < Ay — o the sequence of eigenvalues of the —A + ¢ with domain

HY (M) n H?>(M). Let (¢x) be a sequence of eigenfunctions, each ¢y corresponds to Ag, so that (¢) form
an orthonormal basis of L?(M).

By usual spectral decomposition, we have

= D e (S, d0) e

£=1

Here (-, ) is the usual scalar product on L?(M). In particular,

(£:60)° < e To( D)2y, €21,
Whence, for any integer k > 1

k
2 .00° < kel

N

This and the fact that (Zezl (s, QSZ)QLQ(Q)) is an equivalent norm on H} (M) lead

k
12 0ry = DL (F 002+ ) (f.60)?
=1 I=k+1
k
(f. be)? A(f, 60)
=1 ’ >\ k+1 €>%1 ’ e

. 1
< ke HU(.’T)HQLQ(M) + m“f“ifg(M)

in the rest of this proof C' and ¢ are generic constants, independent on ¢, f and g.
Applying inequality (5.13), we get
2
(5.26) Clf 172 ary < ke™™ [l )72 ar) + WHf“?—[é(M)

n/2

Let € > 1 and k > 1 be the unique integer so that k£ < €/¢ < k + 1. We obtain in a straightforward

manner from (5.26)

Cce 1
(5.27) ClfIZ2any < €“loC T2 + gl\fll?p(M

(5.25) in (5.27) gives the expected inequality. O
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If ge L®(M) and g € H*(0,7) satisfying g(0) # 0 are fixed, we obtain, by minimizing with respect to e,
the following corollary

Corollary 5.1. Let N >0, g€ L*(M) and g € H*(0,7) satisfying g(0) # 0. There exists a constant C > 0,
depending on N, q and g so that, for any f € H(Q) with HfHHé(M) < N, we have

Clflz2an < @ (lovulm o.m).L2r))
where u = u(q, f,g) is the solution of the IBVP (5.19) and ®(p) = |In p|_% +p, p> 0, extended at p =0 by
setting ®(0) = 0.
5.5. Determining the zero order coefficient in a heat equation. Consider the IBVP

oru—Au+q(z)u=0 inM x (0,7),
(5.28) u=0 on oM x (0,7),

u(+,0) = ug.
One more time, referring to classical regularity theorems in anisotropic Sobolev spaces, we derive that, for
qe L*(M) and ug € Hi (M), the IBVP(5.28) has unique solution u = u(q,ug) € H**(M x (0,7)). Moreover,
for any N > 0, there exists a constant C' > 0 so that
(5.29) lu(q, wo)ll 2. (arx (0,7)) < Clluol i (ary
for any q € L*(M) satisfying || L) < N.

Define

Ho(M) = {w e HI(M); Awe HY(M)}

that we equip with its natural norm
lullao(ary = Il mrary + 1 Aull g ary-
If ge Wh®(M) and ug € Ho(M), then it is straightforward to check that
dru(q, uo) = u(q, Auo — quo).

So applying (5.29), with ug substituted by Aug — qug, we get
(5.30) |0eue] zr2.1 (A1 x (0,7)) < Clluo] 3o (a1,
for any q € W1 (M) satisfying lglw.(ary < N, where the constant C' is independent on gq.

Bearing in mind that the trace operator w € H*1(M x (0,7)) — d,w € L*(T" x (0,7)) is bounded, we
obtain that d,u € H'((0,7), L?(T")) provided that uy € Ho(M) and g € W1 (M). Additionally, from (5.29)
and (5.30), we get

lovu] 1 (0,7),22(r)) < Clluolwg(ary,
for any g € W1 (M) satisying lgllw1.(ary, where the constant C' is independent on q.
That is we proved that the operator
N(q) : ug € Ho(M) — d,u e H'((0,7), L*(T))
is bounded and
IN (@0 a1y, 111 (0.7, 220y < €
for any ¢ € W1 (M) satisfying lgllwr.c(ary < N, where the constant C' is independent on g.
In the sequel, for simplicity’s sake, [N(§) — N (q)| @ (w00, 11 ((0,7),2(r))) 18 denoted by |N(§) — N(q)|-

Theorem 5.6. Let N > 0. There exists a constant C > 0 so that, for any q, ¢ € WH® (M) satisfying

lallw . ary, 1qllweary < N,
we have

Cla = allzzary < ©(IN(@) = N(@)]) -
Here ©(p) = |In p|_”%" + p, p >0, extended by continuity at p =0 by setting ©(0) = 0.
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Proof. Let q, ¢ € WH* (M) satisfying

lalweeary, [dllwrear < N
As in the preceding subsection, without loss of generality, we assume that ¢ > 0.

Denote by 0 < A\; < Ay < ... < A\ — o0 the sequence of eigenvalues of the operator —A + ¢ with domain
HY (M)~ H?(M). Let (¢r) a sequence of the corresponding eigenfunctions so that (¢) form an orthonormal
basis of L?(M).

Taking into account that u(q, ¢x) = e ***¢y, we obtain that

v = u(q, dr) — u(g, ¢r)
is the solution of the IBVP
0w — Av + q(z)v = (§ — q)pre™™*  in M x (0,7),
uv =0 on oM x (0,7),
v(+,0) = 0.
Therefore
N(@) (o) — N(a)(¢k) = duv
from which we deduce
[ovvll(o.m). L2y < CAIN(@) = N (9]
Here and henceforth C and ¢ denote generic constants, independent on ¢ and ¢.

As in the preceding subsection, we get from (5.22), for any € > 1,

A 2
(5.31) ClT-a.00] < T + PN - M)

where we used the estimate |[(§— q)dx |1 (ar) < CV Ak

A straightforward consequence of estimate (5.31) is
2) 2
(5.32) C Z (@ —q,0%); L2 (M) S J + Le e | N(Q) — N(9)|?,

for any arbitrary integer ¢ >
Similarly to the proof of Theorem 5.5, inequality (5.32) yields, for any s > 1,

2
stta

1 "1+% ce
+ o+ e T e N(@) — N(g)]*

Cl7 - alZzan < .

The proof is then completed in the same manner to that of Theorem 5.5. (]

6. DETERMINING A BOUNDARY COEFFICIENT IN A WAVE EQUATION

6.1. Inverse source problem for the wave equation with boundary damping. In this subsection
2 =(0,1) x (0,1) and

Lo = ((0,1) x {1}) u ({1} x (0, 1)),
Iy =((0,1) x {0}) v ({0} x
Consider the IBVP

?u— Au = \t)w in Q x (0,7),
(6.1) u=0 OHF0><(07T)
' Oyu + adiu = 0 on Ty x (0,7),

u(-,0) =0, dwu(-,0) =0.
le s <a<1andlet
= {b = (b1,b2) € C*([0,1]) & C*([0,1]), b1(0) = b2(0), b; = 0}.
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IfV ={ue H(Q); u=0onTIy}, consider on V@ L?*() the operator A,, a € &7, given by
Ay = (w,Av), D(A,) = {(v,w) e VOV; Ave L*(Q) and d,v = —aw on ' }.
We are going to apply Theorem 4.2 with H = V@ L?(Q), H; = D(A,) equipped with its graph norm and
Y = L3(T).
Denote by H_; the dual of H; with respect to the pivot space H.

If (0,w) e H_y and A € H'(0,7), the IBVP (6.1) has a unique solution u(w) so that (u(w), du(w)) €
C([0,7]; V& L*(Q)) and d,u(w)r, € L*(T'y x (0,7)).
Taking into account that {0} x V' < H_;, where V' is the dual space of V, we obtain as a consequence
of Theorem 4.2
Proposition 6.1. There exists a constant C > 0 so that for any A€ H'(0,7) and we V',
INI12 2

)
(6.2) [wlv: < CIAO)[e POF 0] L2 0y x (0,7)-

6.2. Determining the boundary damping coefficient in a wave equation. Let Q and I';, i = 1,2 as
in the preceding subsection. Consider then the IBVP

%u—Au=0 in Q x (0,7),
(6.3) u=0 on Ty x (0,7),
’ oyu+adiu =0 onT'1 x (0,7),

u(+,0) = ug, opu(,0) = u;.
For (ug,u1) € Hy, the IBVP (6.3) possesses a unique solution u = u(a, (ug, u1)) so that
(U, Oruqa) € C([0,0), Hy) n C*([0,0), H).
Fix 0 < a < N and set
A =1{b=(b1,b2) € & N H1(07 1) @Hl(oa 1); a < by, b, Hbeﬁ(O,l)@Hl(O,l) < N}

Let Uy given by
Uy ={veV; Ave L*(Q)and d,v = 0 on T}
and observe that Uy x {0} < Hy, for any a € «/. We endow Uy with the norm

1
2

Juolesy = (Jluol? + 1 Auo 32(qy )
Define the initial-to-boundary operator
A(a) : ug € Uy = d,u e LX),
where u = u(a, (ug,u1) is the solution of the IBVP (6.3). Then A(a) € B(Uy, L*(T1 x (0,7))).
The norm of A(a) — A(0) in B(Uy, L*(T'1 x (0,7))) will simply denoted by |A(a) — A(0)].

The following Hoélder stability estimate is an improved version of the one derived in [4].

Theorem 6.1. Let § € (0,1) be fized. There exists 7o > 0 so that for any T = 19, we find a constant ¢ > 0
only depending on T so that

_ S
(6.4) la—= 0]l 20 1y@r201) < c(1—8)75 N75 (¢~ [A(a) — A(0)]) =5
for each a e o .

Proof. We first observe that u(a) is also the unique solution of

f o (t)vdr = J Vu(t) - Vodx — J av' (t)v, veV.
Q Q I

u(0) = ug, u'(0) =uy.
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Therefore, u = u(a) — u, where u = u(0, (ug, u1)), is the solution of the following problem

(6.5) L W (tvds = JQ Vult) - Vode - Ll au'(t)v — Ll av' (0)(t)v, veV.

For k, ¢ € Z, set
1\? 1\?
Ao = l<k+2> + <£+2> ]7‘(2
1 1
odre(x,y) = 2cos ((k + 2> mc) cos ((5 + 2) Wy) .

Note that u = cos(v/Age t)dre when (ug, uy) = (¢ge, 0).
Fix k and ¢ for the moment and set A(¢) = cos(v/Axet). Define w(a) € V' by

w(@)(v) = —v/Awe f adrev.

Whence, (6.5) becomes
JQ u’ (t)vdx = JQ Vu(t) - Vodx — Ll au' (t)v + A(t)w(a)(v), veV.

u(0) =0, ¥ (0) =0.
In other words, u is the solution of (6.1) with w = w(a). Applying Proposition 6.1, we find
2
(6.6) [w(@)v: < Ce ™ |0,ul L2r, x (0.7) -

But, noting that (a1 ® as)dre € V even if a1 ® as ¢ V, we have

(6.7) @1 (0) L (adne)?do] - \/%\w(a)((m@az)m)\

1
< m”w(a)ﬂw |(a1 ® az)prelv,
where we used a;(0) = a(0), and

(6.8) [(a1 ® az)dellv < OV Awillar ® a2 1,
Here and henceforth, C' is a generic constant independent on a and ¢gg.
Now a combination of (6.6), (6.7) and (6.8) yields

a1(0) (lasdla o 1y +lazdelF0.1))

2
< Claa] g o, lazlmr0,0e™ 7 [0t L2 (ry < 0,1))

where ¢ (s) = v2cos ((k + &) ws). This, a < a;(0) and [a;||z1(0,1) < N imply
2 2 N? s
lardllzz0,1) + lazdelz2(0,1) < C—e M2 Opul L2 (ry x (0,7))s

Hence, where j = 1 or 2,

N2 k272

71_2
(6.9) lajorl7z00) < C—c |ovul 2 (ry % 0,m))-



INVERSE PROBLEMS FOR EVOLUTION EQUATIONS 23

Let & € (0,1) be fixed. A forward calculation shows that |¢g| % € L'(0,1). There exists an universal constant
C > 0 such that

1
1
—57.. _ 5—5/2
d 27 —d
J;) |¢0( )| €T = J |sm(m)|5 €z
<
14
Following the proof of Lemma 3.2, we then obtain
la;llz2(0,1) < Hlﬂéol_‘sl\ﬁ% ylailze 2 (0 1)Hag¢o||2§‘50 1
(6.10) < C(1-9) 75 N 23 Hajqbon;“gO 1

A combination of inequalities (6.10) and (6.9), with k& = 0, yields

—1 =5 146
Haj HLQ(O,l) < C(l - 5) 25 g2+ N 243 ”a HZ(;(}(SI)X(O 7))’

which achieves the proof of the expected result. O
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